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1. PUBLIC HEALTH STATEMENT

This public health statement tells you about total petroleum hydrocarbons (TPH) and the effects

of exposure. The Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in the

nation. These sites make up the National Priorities List (NPL) and are the sites targeted for long-term federal

cleanup activities. TPH, itself, has been reported at 34 of the 1,519 current or former NPL sites. Many NPL sites are

contaminated with components of TPH, though no estimate has been made of the number of these sites. This

information is important because exposure to these components may harm you and because these sites may be

sources of exposure.

When a substance is released from a large area, such as an industrial plant, or from a container, such as a drum or

bottle, it enters the environment. This release does not always lead to exposure. You are exposed to a substance

only when you come in contact with it. You may be exposed by breathing, eating, or drinking the substance or by

skin contact.

If you are exposed to TPH, many factors determine whether you’ll be harmed. These factors

include the dose (how much), the duration (how long), and how you come in contact with it.

You must also consider the other chemicals you’re exposed to and your age, sex, diet, family

traits, lifestyle, and state of health.

1.1 WHAT ARE TOTAL PETROLEUM HYDROCARBONS?

Total Petroleum Hydrocarbons (TPH) is a term used to describe a broad family of several

hundred chemical compounds that originally come from crude oil. In this sense, TPH is really a

mixture of chemicals. They are called hydrocarbons because almost all of them are made entirely

from hydrogen and carbon. Crude oils can vary in how much of each chemical they contain, and

so can the petroleum products that are made from crude oils. Most products that contain TPH

will bum. Some are clear or light-colored liquids that evaporate easily, and others are thick, dark
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liquids or semi-solids that do not evaporate. Many of these products have characteristic gasoline,

kerosene, or oily odors. Because modern society uses so many petroleum-based products (for

example, gasoline, kerosene, fuel oil, mineral oil, and asphalt), contamination of the environment

by them is potentially widespread. Contamination caused by petroleum products will contain a

variety of these hydrocarbons. Because there are so many, it is not usually practical to measure

each one individually. However, it is useful to measure the total amount of all hydrocarbons

found together in a particular sample of soil, water, or air.

The amount of TPH found in a sample is useful as a general indicator of petroleum contamination

at that site. However, this TPH measurement or number tells us little about how the particular

petroleum hydrocarbons in the sample may affect people, animals, and plants. By dividing TPH

into groups of petroleum hydrocarbons that act alike in the soil or water, scientists can better

know what happens to them. These groups are called petroleum hydrocarbon fractions. Each

fraction contains many individual compounds. Much of the information in this profile talks about

TPH fractions. See Chapter 2 for more information on what components make up TPH and how

they are measured.

1.2 WHAT HAPPENS TO TPH WHEN IT ENTERS THE ENVIRONMENT?

TPH is released to the environment through accidents, as releases from industries, or as

byproducts from commercial or private uses. When TPH is released directly to water through

spills or leaks, certain TPH fractions will float in water and form thin surface films. Other heavier

fractions will accumulate in the sediment at the bottom of the water, which may affect bottom- feeding

fish and organisms. Some organisms found in the water (primarily bacteria and fungi)

may break down some of the TPH fractions. TPH released to the soil may move through the soil

to the groundwater. Individual compounds may then separate from the original mixture,

depending on the chemical properties of the compound. Some of these compounds will evaporate

into the air and others will dissolve into the groundwater and move away from the release area.

Other compounds will attach to particles in the soil and may stay in the soil for a long period of
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time, while others will be broken down by organisms found in the soil. See Chapter 5 for more

information on how TPH enters and spreads through the environment.

1.3 HOW MIGHT I BE EXPOSED TO TPH?

Everyone is exposed to TPH from many sources, including gasoline fumes at the pump, spilled

crankcase oil on pavement, chemicals used at home or work, or certain pesticides that contain

TPH components as solvents. A small amount of lighter TPH components are found in the

general air you breathe. Many occupations involve extracting and refining crude oil,

manufacturing petroleum and other hydrocarbon products, or using these products. If you work

with petroleum products, you may be exposed to higher levels of TPH through skin contact or by

breathing contaminated air. If TPH has leaked from underground storage tanks and entered the

groundwater, you may drink water from a well contaminated with TPH. You may breathe in

some of the TPH compounds evaporating from a spill or leak if you are in the area where an

accidental release has occurred. Children may be exposed by playing in soil contaminated with

TPH. For more information on how you may be exposed to TPH, see Chapter 5.

1.4 HOW CAN TPH ENTER AND LEAVE MY BODY?

TPH can enter and leave your body when you breathe it in air; swallow it in water, food, or soil;

or touch it. Most components of TPH will enter your bloodstream rapidly when you breathe

them as a vapor or mist or when you swallow them. Some TPH compounds are widely

distributed by the blood throughout your body and quickly break down into less harmful

chemicals. Others may break down into more harmful chemicals. Other TPH compounds are

slowly distributed by the blood to other parts of the body and do not readily break down. When

you touch TPH compounds, they are absorbed more slowly and to a lesser extent than when you

breathe or swallow them. Most TPH compounds leave your body through urine or when you

exhale air containing the compounds. For more information on how TPH can enter and leave your

body, see Chapter 6.
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1.5 HOW CAN TPH AFFECT MY BODY?

Health effects from exposure to TPH depend on many factors. These include the types of

chemical compounds in the TPH, how long the exposure lasts, and the amount of the chemicals

contacted. Very little is known about the toxicity of many TPH compounds. Until more

information is available, information about health effects of TPH must be based on specific

compounds or petroleum products that have been studied.

The compounds in different TPH fractions affect the body in different ways. Some of the TPH

compounds, particularly the smaller compounds such as benzene, toluene, and xylene (which are

present in gasoline), can affect the human central nervous system. If exposures are high enough,

death can occur. Breathing toluene at concentrations greater than 100 parts per million

(100 ppm) for more than several hours can cause fatigue, headache, nausea, and drowsiness.

When exposure is stopped, the symptoms will go away. However, if someone is exposed for a

long time, permanent damage to the central nervous system can occur. One TPH compound

(n-hexane) can affect the central nervous system in a different way, causing a nerve disorder

called “peripheral neuropathy” characterized by numbness in the feet and legs and, in severe cases,

paralysis. This has occurred in workers exposed to 500-2,500 ppm of n-hexane in the air.

Swallowing some petroleum products such as gasoline and kerosene causes irritation of the throat

and stomach, central nervous system depression, difficulty breathing, and pneumonia from

breathing liquid into the lungs. The compounds in some TPH fractions can also affect the blood,

immune system, liver, spleen, kidneys, developing fetus, and lungs. Certain TPH compounds can

be irritating to the skin and eyes. Other TPH compounds, such as some mineral oils, are not very

toxic and are used in foods.

To protect the public from the harmful effects of toxic chemicals and to find ways to-treat people

who have been harmed, scientists use many tests.

One way to see if a chemical will hurt people is to learn how the chemical is absorbed, used, and

released by the body; for some chemicals, animal testing may be necessary. Animal testing may
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also be used to identify health effects such as cancer or birth defects. Without laboratory animals,

scientists would lose a basic method to get information needed to make wise decisions to protect

public health. Scientists have the responsibility to treat research animals with care and

compassion. Laws today protect the welfare of research animals, and scientists must comply with

strict animal care guidelines. Animal studies have shown effects on the lungs, central nervous

system, liver, kidney, developing fetus, and reproductive system from exposure to TPH

compounds, generally after breathing or swallowing the compounds.

One TPH compound (benzene) has been shown to cause cancer (leukemia) in people. The

International Agency for Research on Cancer (IARC) has determined that benzene is carcinogenic

to humans (Group 1 classification). Some other TPH compounds or petroleum products, such as

benzo(a)pyrene and gasoline, are considered to be probably and possibly carcinogenic to humans

(IARC Groups 2A and 2B, respectively) based on cancer studies in people and animals. Most of

the other TPH compounds and products are considered not classifiable (Group 3) by IARC. See

Chapter 6 for more information on how TPH can affect your body.

1.6  IS THERE A MEDICAL TEST TO DETERMINE IF I HAVE BEEN EXPOSED TO

       TPH?

There is no medical test that shows if you have been exposed to TPH. However, there are

methods to determine if you have been exposed to some TPH compounds, fractions, or petroleum

products. For example, a breakdown product of n-hexane can be measured in the urine. Benzene

can be measured in exhaled air and a metabolite of benzene, phenol, can be measured in urine to

show exposure to gasoline or to the TPH fraction containing benzene. Exposure to kerosene or

gasoline can be determined by its smell on the breath or clothing. Methods also exist to determine

if you have been exposed to other TPH compounds. For example, ethylbenzene can-be measured

in the blood, urine, breath, and some body tissues of exposed people. However, many of these

tests may not be available in your doctor’s office.

If you have TPH compounds in your body, they could be from exposure to many different

products, and tests cannot determine exactly what you were exposed to. Tests are useful if you
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suspect that you were exposed to a particular product or waste that contains TPH. More

information on testing for TPH can be found in Chapter 3. For information on tests for exposure

to specific TPH compounds, see the ATSDR toxicological profiles for benzene, toluene, total

xylenes, polycyclic aromatic hydrocarbons, and hexane.

1.7  WHAT RECOMMENDATIONS HAS THE FEDERAL GOVERNMENT MADE TO

       PROTECT HUMAN HEALTH?

The federal government develops regulations and guidelines to protect public health. Regulations

can be enforced by law. Federal agencies that develop regulations for toxic substances include the

EPA, the NRC (Nuclear Regulatory Commission), the Occupational Safety and Health

Administration (OSHA), and the Food and Drug Administration (FDA). Recommendations

provide valuable guidelines to protect public health but cannot be enforced by law. Federal

organizations that develop recommendations for toxic substances include the Agency for Toxic

Substances and Disease Registry (ATSDR), Centers for Disease Control and Prevention (CDC),

and the National Institute for Occupational Safety and Health (NIOSH).

Regulations and recommendations can be expressed in not-to-exceed levels in air, water, soil, or

food that are usually based on levels that affect animals. Then they are adjusted to help protect

people. Sometimes these not-to-exceed levels differ among federal organizations because of

different exposure times (an 8-hour workday or a 24-hour day), the use of different animal

studies, or other factors.

Recommendations and regulations are also periodically updated as more information becomes

available. For the most current information, check with the federal agency or organization that

provides it.

Although there are no federal regulations or guidelines for TPH in general, the government has

developed regulations and guidelines for some of the TPH fractions and compounds. These are

designed to protect the public from the possible harmful health effects of these chemicals. To



TOTAL PETROLEUM HYDROCARONS 7

1. PUBLIC HEALTH STATEMENT

protect workers, the Occupational Safety and Health Administration (OSHA) has set a legal limit

of 500 parts of petroleum distillates per million parts of air (500 ppm) in the workplace.

EPA regulates certain TPH fractions, products, or wastes containing TPH, as well as some

individual TPH compounds. For example, there are regulations for TPH as oil; these regulations

address oil pollution prevention and spill response, stormwater discharge, and underground

injection control. EPA lists certain wastes containing TPH as hazardous. EPA also requires that

the National Response Center be notified following a discharge or spill into the environment of 10

pounds or more of hazardous wastes containing benzene, a component in some TPH mixtures.

Nearly all states have cleanup standards for TPH or components of TPH (common cleanup

standards are for gasoline, diesel fuel, and waste oil). Analytical methods are specified, many of

which are considered to be TPH methods.

1.8 WHERE CAN I GET MORE INFORMATION?

If you have any more questions or concerns, please contact your community or state health or

environmental quality department or:

Agency for Toxic Substances and Disease Registry

Division of Toxicology

1600 Clifton Road NE, Mailstop E-29

Atlanta, GA 30333

* Information line and technical assistance

Phone: l-888-42-ATSDR (l-888-422-8737)

Fax: (404) 639-6314 or 6324

ATSDR can also tell you the location of occupational and environmental health clinics. These

clinics specialize in recognizing, evaluating, and treating illnesses resulting from exposure to

hazardous substances.
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* To order toxicological profiles, contact:

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22 16 1

Phone: (800) 553-6847 or (703) 487-4650
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This document presents information in a way that is more summary in nature than the usual comprehensive

toxicological profile. Total petroleum hydrocarbons (TPH) is such a broad family of compounds that it

would be a large undertaking to present comprehensive environmental, chemical/physical, and health

information on all the individual chemical components or on all petroleum products. This and subsequent

chapters are designed to aid the reader in understanding what TPH is, what we know about it, the chance of

significant exposure, and possible health consequences. Appendices are provided that present more

detailed information.

2.1 DEFINITION OF TOTAL PETROLEUM HYDROCARBONS

TPH is defined as the measurable amount of petroleum-based hydrocarbon in an environmental media. It is,

thus, dependent on analysis of the medium in which it is found (Gustafson 1997). Since it is a measured,

gross quantity without identification of its constituents, the TPH “value” still represents a mixture. Thus,

TPH itself is not a direct indicator of risk to humans or to the environment. The TPH value can be a result

from one of several analytical methods, some of which have been used for decades and others developed in

the past several years. Analytical methods are evolving in response to needs of the risk assessors. In

keeping with these developments, definition of TPH by ATSDR is closely tied to analytical methods and

their results. The ATSDR approach to assessing the public health implications of exposure to TPH is

presented in Section 2.3.

There are several hundred individual hydrocarbon chemicals defined as petroleum-based, with more than

2.50 petroleum components identified in Appendix D of this profile. Further, each petroleum product has

its own mix of constituents. One reason for this is that crude oil, itself, varies in its composition. Some of

this variation is reflected in the finished petroleum product. The acronym PHC (petroleum hydrocarbons) is

widely used to refer to the hydrogen- and carbon-containing compounds originating from crude oil, but

PHC should be distinguished from TPH, because TPH is specifically associated with environmental

sampling and analytical results.

Petroleum crude oils can be broadly divided into paraffinic, asphaltic, and mixed crude oils (WHO 1982).

Paraffinic crude oils are composed of aliphatic hydrocarbons (paraffins), paraffin wax (longer chain
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aliphatics), and high grade oils. Naphtha is the lightest of the paraffin fraction, followed by kerosene

fractions. Asphaltic crude oils contain larger concentrations of cycloaliphatics and high viscosity

lubricating oils. Petroleum solvents are the product of crude oil distillation and are generally classified by

boiling point ranges. Lubricants, greases, and waxes are high boiling point fractions of crude oils. The

heaviest, solid fractions of crude oils are the residuals or bitumen.

Some products are highly predictable (e.g., jet fuels) with specific fractions of defined components; others,

for example, automotive gasolines, contain broader ranges of hydrocarbon types and amounts. Table D- 1

in Appendix D provides a comprehensive list of petroleum hydrocarbons.

Petroleum products, themselves, are the source of the many components, but do not define what is TPH.

They help define the potential hydrocarbons that become environmental contaminants, but any ultimate

exposure is determined also by how the product changes with use, by the nature of the release, and by the

hydrocarbon’s environmental fate. When petroleum products are released into the environment, changes

occur that significantly affect their potential effects. Physical, chemical, and biological processes change

the location and concentration of hydrocarbons at any particular site.

Petroleum hydrocarbons are commonly found environmental contaminants, though they are not usually

classified as hazardous wastes. Many petroleum products are used in modern society, including those that

are fundamental to our lives (i:e., transportation fuels, heating and power-generating fuels). The volume of

crude oil or petroleum products that is used today dwarfs all other chemicals of environmental and health

concern. Due to the numbers of facilities, individuals, and processes and the various ways the products are

stored and handled, environmental contamination is potentially widespread.

Soil and groundwater petroleum hydrocarbon contamination has long been of concern and has spurred

various analytical and site remediation developments, e.g., risk-based corrective actions (ASTM’s

Risk-Based Corrective Action [RBCA]), EPA and state government underground storage tank (UST)

programs, British Columbia’s Ministry of Environment’s development of remediation criteria for

petroleum contamination (primarily environmental risks) (BC 1995), and the annual Amherst

Massachusetts conference from which the Total Petroleum Hydrocarbon Criteria Working Group

(TPHCWG) was formed. The TPHCWG is made up of industry, government, and academic

scientists, working to develop a broad set of guidelines to be used by engineering and public health
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professionals in decisions on petroleum contaminated media. In 1997 the criteria working group

published a technical overview of their risk management approach to TPH (TPHCWG 1997a), which

represents the most comprehensive effort in this area to date. In 1997 the TPHCWG published two

volumes, Selection of Representative TPH Fractions Based on Fate and Transport Considerations

(Vol. 3) and Development of Fraction Specific Reference Doses (RfDs) and Reference Concentrations

(RfCs) for Total Petroleum Hydrocarbons (TPH) (Vo1.4) (TPHCWG 1997b, 1997c). In

1998 the TPHCWG published Volume 1, Analysis of Petroleum Hydrocarbons in Environmental

Media (TPHCWG 1998a) and Volume 2, Composition of Petroleum Mixtures (TPHCWG 1998b).

2.2 TOTAL PETROLEUM HYDROCARBONS ANALYSIS OVERVIEW

The TPH method of analysis often used, and required by many regulatory agencies, is EPA Method

4 18.1. This method provides a “one number” value of TPH in an environmental media; it does not

provide information on the composition (i.e., individual constituents of the hydrocarbon mixture).

The amount of TPH measured by this method depends on the ability of the solvent used to extract the

hydrocarbon from the environmental media and the absorption of infrared (IR) light by the

hydrocarbons in the solvent extract. EPA Method 418.1 is not specific to hydrocarbons and does not

always indicate petroleum contamination (e.g., humic acid, a non-petroleum hydrocarbon, may be

detected by this method).

An important feature of the TPH analytical methods is the use of an Equivalent Carbon Number

Index (EC). The EC represents equivalent boiling points for hydrocarbons and is the physical

characteristic that is the basis for separating petroleum (and other) components in chemical analysis.

Petroleum fractions as discussed in this profile are defined by EC.

Another analytical method commonly used for TPH is EPA Method 8015 Modified. This method

reports the concentration of purgeable and extractable hydrocarbons; these are sometimes referred to

as gasoline and diesel range organics, GRO and DRO, respectively, because the boiling point ranges

of the hydrocarbon in each roughly correspond to those of gasoline (C6 to C10-12) and diesel fuel (C8-12

to C24-26), respectively. Purgeable hydrocarbons are measured by purge-and-trap gas chromatography

(GC) analysis using a flame ionization detector (FID), while the extractable hydrocarbons are

extracted and concentrated prior to analysis by GUFID. The results are most frequently reported as
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single numbers for purgeable and extractable hydrocarbons. Before the TPHCWG began publishing

its TPH guides, the Massachusetts Department of Environmental Protection (MADEP) developed risk

assessment and analytical methodologies for TPH (Hutcheson et al. 1996). MADEP developed a

method based on EPA Method 801.5 Modified which gives a measure of the aromatic and aliphatic

content of the hydrocarbon in each of several carbon number ranges (fractions). The MADEP method

is based on standard EPA methods, which allows it to be easily implemented by laboratories, though

there are limitations with the method (see Section 3.3). EPA has proposed a modification in its test

procedure for analysis of “oil and grease and total petroleum hydrocarbons” that not only overcomes

the problem of using freon as a solvent, but also provides more refined separation of aliphatic and

aromatic fractions (EPA 1998a).

The Risk-Based Corrective Action (RBCA) guidance of American Society for Testing and Materials

(ASTM), published in 1995, is an important document for public and private institutions that

remediate petroleum contaminated sites (ASTM 1995). EPA is telling agencies implementing risk- based

decision-making that the ASTM standard may be a good starting point for risk management

(EPA 1995c).

2.3 TPH FRACTIONS AND THE ATSDR APPROACH TO EVALUATING THE PUBLIC

      HEALTH IMPLICATIONS OF EXPOSURE TO TPH

The public health implications associated with TPH are common to the broader questions of chemical

mixtures. What does one know about the makeup and adverse health effects associated with the

whole mixture? Does one select the most toxic or carcinogenic elements or representative

chemical(s), or does one rely on whole product toxicity results? In the case of TPH, one sample is

likely to vary significantly in content from other samples, even with similar “single value” results.

This profile builds on the efforts by the TPHCWG and MADEP to group chemicals into fractions

with similar environmental transport characteristics (i.e., transport fractions). An important

difference is ATSDR’s concern with all possible exposure periods, from acute through chronic,

whereas other agencies or groups have focused on longer-term exposures. The common characteristic

of all of these approaches is the attempt to gather the available information about the toxicity and the

risks associated with transport fractions.
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Although chemicals grouped by transport fraction generally have similar toxicological properties, this is not

always the case. For example, benzene is a carcinogen, but toluene, ethylbenzene, and xylenes are not.

However, it is more appropriate to group benzene with compounds that have similar environmental

transport properties than to group it with other carcinogens such as benzo(a)pyrene that have very

different environmental transport properties. Section 6.1.1 provides a more detailed discussion of the

various transport fractions.

ATSDR’s mission of providing public health support to communities with potential exposure to hazardous

wastes is different from that of the ASTM, for example, which developed the RBCA guide for the

purpose of remediation of petroleum-contaminated sites. Also, ecological risk assessment is a

fundamental feature of the ASTM and British Columbia methodologies, though not for ATSDR.

Because a critical aspect of assessing the toxic effects of TPH is the measurement of the compounds,

one must first appreciate the origin of the various fractions (compounds) of TPH. Transport fractions are

determined by several chemical and physical properties (i.e. solubility, vapor pressure, and propensity to

bind with soil and organic particles). These properties are the basis of measures of leachability and

volatility of individual hydrocarbons and transport fractions. The TPHCWG approach defines petroleum

hydrocarbon transport fractions by equivalent carbon number grouped into 13 fractions (see

Section 6.1.2). The “analytical fractions” are then set to match these transport fractions, using specific

n-alkanes to mark the analytical results for aliphatics and selected aromatics to delineate hydrocarbons

containing benzene rings. ATSDR has used the basic TPHCWG approach and modified the fractional

groups (see Chapter 6). Fate and transport considerations are discussed in more detail in Chapter 5. The

TPHCWG transport fractions’ physical properties are presented in Table 2-l.

The approach to evaluating the potential health effects for these transport fractions taken by ATSDR and

the TPHCWG, however, uses a reduced number of fractions, namely three aliphatic fractions and three

aromatic fractions. Health effects screening values based on representative chemicals or-mixtures for

each of the fractions were developed using ATSDR minimal risk levels (MRLs). Table 2-2 presents the

ATSDR TPH fractions and their representative compounds or mixtures. In general, the most toxic

representative compound or mixture for each fraction is used to indicate the potential toxicity of the entire

fraction. Selection of the representative compounds and mixtures is discussed in detail in Sections 6.2,
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6.3, and 6.6. In addition, existing cancer assessments for each fraction are presented and discussed in

Chapter 6 and Appendix A.

Despite the large number of hydrocarbons found in petroleum products and the widespread nature of

petroleum use and contamination, only a relatively small number of the compounds are well characterized

for toxicity. The health effects of some fractions can be well characterized, based on their components or

representative compounds (e.g., light aromatic fraction-BTEX-benzene, toluene, ethylbenzene, and

xylenes). However, heavier TPH fractions have far fewer well characterized compounds. Systemic and

carcinogenic effects are known to be associated with petroleum hydrocarbons, but ATSDR does not

develop health guidance values for carcinogenic end points (ATSDR 1996b). See Chapter 6 for further

discussion of the ATSDR approaches and the approaches of other groups (MADEP, TPHCWG, and

ASTM).
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3.1 INTRODUCTION

Petroleum hydrocarbons (PHCs) are common site contaminants, but they are not generally regulated

as hazardous wastes. Methods for sampling and analysis of environmental media for the family of

PHCs are generally thought of as TPH methods. For purposes of this profile, the term TPH refers

not only to analytical results, but also to environmental and health properties of PHCs. In part due to

the complexity of TPH components themselves, little is known about their potential for health or

environmental impacts. As gross measures of petroleum contamination, TPH results simply show

that petroleum hydrocarbons are present in the sampled media. Measured TPH values suggest the

relative potential for human exposure and, therefore, the relative potential for human health effects.

The assessment of health effects due to TPH exposure requires much more detailed information than

what is provided by a single TPH value. This chapter, Chapter 5, and the accompanying Appendix E

provide more detailed physical and chemical properties and analytical information on TPH and its

components.

The federal government has left much of the specific regulation and oversight of crude oil production/

refining to the states. Leaking underground storage tanks (LUST) are the most frequent causes of

federal and state governmental involvement in petroleum hydrocarbon problems. Soil contamination

has been a growing concern, because it can be a source of groundwater (drinking water) contamination;

contaminated soils can reduce the usability of land for development; and weathered petroleum

residuals may stay bound to soils for years. Positive TPH test results may require action on the part

of land owners, local or state governments, and engineering firms called on to remove or reduce the

TPH problem.

ATSDR has the responsibility for health assessment at National Priorities List (NPL) hazardous

waste sites, many of which have petroleum hydrocarbon contamination. Specific contaminants that

are components of TPH, such as BTEX (benzene, toluene, ethylbenzene, and xylene), n-hexane, jet

fuels, fuel oils, and mineral-based crankcase oil, have been studied by ATSDR and a number of

toxicological profiles have been developed on individual constituents and petroleum products. The
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ATSDR profiles relevant to petroleum products are listed in Table 3- 1. However, TPH itself has not

been as extensively studied by ATSDR and no previous profile was developed. Although several

toxicological profiles have been developed for petroleum products and for specific chemicals found in

petroleum, TPH test results have been too nonspecific to be of real value in the assessment of its

potential health effects.

Several approaches are discussed in this document for interpreting TPH and related analytical results.

The TPH approach taken by EPA and others, through the mid-1990s, followed general risk

assessment approaches for chemical mixtures. In all approaches there is a need to reduce a

comprehensive list of potential petroleum hydrocarbons to a manageable size. Depending on how

conservative the approach is, methods that have been used select: (1) the most toxic among the TPH

compounds (indicator approach); (2) one or more representative compounds (surrogate approach, but

independent of relative mix of compounds); or (3) representative compounds for fractions of similar

petroleum hydrocarbons. ATSDR has taken, in part, the third approach in keeping with the Total

Petroleum Hydrocarbons Criteria Working Group (TPHCWG), but has developed its own set of TPH

fraction representatives, many of which overlap those of the TPHCWG. In addition, this profile

provides information on petroleum products, where such information exists. TPH risk (screening)

values for fractions presented in this profile are based on the ATSDR MRLs previously developed for

individual constituents and petroleum products. These MRLs are summarized in Appendix A. This

fraction approach is the most demanding in information gathering and because of that would appear

to be the most rigorous approach to date. Sections 6.1.2 and 6.1.3 contain a more comprehensive

discussion of the approaches. The identity, chemical-physical, and analytical information discussed

and listed in this chapter, in Appendices D and E, and in Chapter 5 are integral to defining TPH.

3.2 CHEMICAL AND PHYSICAL INFORMATION

Petroleum products are complex mixtures of hundreds of hydrocarbon compounds, ranging from light,

volatile, short-chained organic compounds to heavy, long-chained, branched compounds. The exact

composition of petroleum products varies depending upon (1) the source of the crude oil (crude oil is

derived from underground reservoirs which vary greatly in their chemical composition) and (2) the

refining practices used to produce the product.
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During the refining process, crude oil is separated into fractions having similar boiling points. These

fractions are then modified by cracking, condensation, polymerization, and alkylation processes, and

are formulated into commercial products such as naphtha, gasoline, jet fuel, and fuel oils. The

composition of any one of these products can vary based on the refinery involved, time of year,

variation in additives or modifiers, and other factors. The chemical composition of the product can be

further affected by weathering and/or biological modification upon release to the environment. The

following subsections present overviews of petroleum products. Also, a master list of individual

aliphatic and aromatic compounds found in TPH is provided in Appendix D. Further information on

whole petroleum products, their identity, major components, and physical/chemical properties is

found in Appendix E.

Automotive Gasoline. Automotive gasoline is a mixture of low-boiling hydrocarbon compounds

suitable for use in spark-ignited internal combustion engines and having an octane rating of at least

60. Additives that have been used in gasoline include alkyl tertiary butyl ethers (e.g. MTBE), ethanol

(ethyl alcohol), methanol (methyl alcohol), tetramethyl-lead, tetraethyl-lead, ethylene dichloride, and

ethylene dibromide.

Other categories of compounds that may be added to gasoline include anti-knock agents, antioxidants,

metal deactivators, lead scavengers, anti-rust agents, anti-icing agents, upper-cylinder

lubricants, detergents, and dyes (ATSDR 1995a).

Automotive gasoline typically contains about 150 hydrocarbon compounds, though nearly 1,000 have

been identified (ATSDR 1995a). The relative concentrations of the compounds vary considerably

depending on the source of crude oil, refinery process, and product specifications. Typical hydrocarbon

chain lengths range from C4 through Cl2 with a general hydrocarbon distribution consisting of

4-8% alkanes, 2-5% alkenes, 25-40% isoalkanes, 3-7% cycloalkanes, l-4% cycloalkenes, and

20-50% aromatics (IARC 1989a). However, these proportions vary greatly. Unleaded gasolines

may have higher proportions of aromatic hydrocarbons than leaded gasolines.

Table E-1.b (Appendix E) presents ranges and weight percentage means for a representative subset of

the hydrocarbon compounds identified in gasoline. In cases where data are not available, the range

and mean are left blank.
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Stoddard Solvent. Stoddard solvent is a petroleum distillate widely used as a dry cleaning solvent

and as a general cleaner and degreaser. It may also be used as a paint thinner, as a solvent in some types

of photocopier toners, in some types of printing inks, and in some adhesives. Stoddard solvent is

considered to be a form of mineral spirits, white spirits, and naphtha; however, not all forms of mineral

spirits, white spirits, and naphtha are considered to be Stoddard solvent (ATSDR 1995b).

Stoddard solvent consists of 30-50% linear and branched alkanes, 30-40% cycloalkanes, and lo-20%

aromatic hydrocarbons. Its typical hydrocarbon chain ranges from C7 through C12 in length.

Although a complete list of the individual compounds comprising Stoddard solvent is not available (Air

Force 1989) some of the major components are presented in Table E-2.b (Appendix E). Alcohols,

glycols, and ketones are not included in the composition, as few, if any, of these types of compounds

would be expected to be present in Stoddard solvent (ATSDR 1995b). Possible contaminants may

include lead (<1 ppm) and sulfur (3.5 ppm).

Jet Fuel. Jet fuels are light petroleum distillates that are available in several forms suitable for use in

various types ofjet engines. The exact compositions of jet fuels are established by the U.S. Air Force,

using specifications that yield maximum performance by the aircraft. The major jet fuels used by the

military are JP-4, JP-5, JP-6, JP-7, and JP-8. Briefly, JP-4 is a wide-cut fuel developed for broad

availability in times of need. JP-6 is a higher cut than JP-4 and is characterized by fewer impurities. JP-5

is specially blended kerosene, and JP-7 is a high flash point special kerosene used in advanced supersonic

aircraft. JP-8 is a kerosene modeled on Jet A-l fuel (used in civilian aircraft). For this profile, JP-4 will

be used as the prototype jet fuel due to its broad availability and extensive use.

Typical hydrocarbon chain lengths characterizing JP-4 range from C4 to C16. Aviation fuels consist

primarily of straight and branched alkanes and cycloalkanes. Aromatic hydrocarbons are limited to

20-25% of the total mixture because they produce smoke when burned. A maximum of5% alkenes are

allowed in JP-4 (ATSDR 1995c). The approximate distribution by chemical class is: 32% straight

alkanes, 31% branched alkanes, 16% cycloalkanes, and 21% aromatic hydrocarbons (ABB

Environmental 1990). The typical hydrocarbon composition of JP-4 is presented in Table E-3.b

(Appendix E).
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Fuel Oil #1. Fuel oil #l is a petroleum distillate that is one of the most widely used of the fuel oil

types. It is used in atomizing burners that spray fuel into a combustion chamber where the tiny droplets

bum while in suspension. It is also used as a carrier for pesticides, as a weed killer, as a mold release

agent in the ceramic and pottery industry, and in the cleaning industry. It is found in asphalt coatings,

enamels, paints, thinners, and varnishes.

Fuel oil #1 is a light petroleum distillate (straight-run kerosene) consisting primarily of hydrocarbons in the

range C9-C16 (ATSDR 19958). Fuel oil #l is very similar in composition to diesel fuel oil #l; the primary

difference is in the additives. The typical hydrocarbon composition of fuel oil #l is presented in

Table E-4.b (Appendix E).

Fuel Oil #2. Fuel oil #2 is a petroleum distillate that may be referred to as domestic or industrial. The

domestic fuel oil #2 is usually lighter and straight-run refined; it is used primarily for home heating and to

produce diesel fuel #2. Industrial distillate is the cracked type, or a blend of both. It is used in smelting

furnaces, ceramic kilns, and packaged boilers (ABB Environmental 1990).

Fuel oil #2 is characterized by hydrocarbon chain lengths in the C11-C20 range, whereas diesel fuels

predominantly contain a mixture of C10-C19 hydrocarbons (ATSDR 1995g). The composition consists of

approximately 64% aliphatic hydrocarbons (straight chain alkanes and cycloalkanes), l-2% unsaturated

hydrocarbons (alkenes), and 35% aromatic hydrocarbons (including alkylbenzenes and 2-, 3-ring

aromatics) (Air Force 1989). Fuel oil #2 contains less than 5% polycyclic aromatic hydrocarbons (IARC

1989b). The typical hydrocarbon composition of fuel oil #2 is presented in Table E-4.b (Appendix E).

Fuel Oil #6. Fuel oil #6 is also called Bunker C or residual. It is the residual from crude oil after the

light oils, gasoline, naphtha, fuel oil #l, and fuel oil #2 have been fractioned off. Fuel oil #6 can be

blended directly to heavy fuel oil or made into asphalt. It is limited to commercial and industrial uses

where sufficient heat is available to fluidize the oil for pumping and combustion (ABB Environmental

1990).

Residual fuel oils are generally more complex in composition and impurities than distillate fuels. Limited

data are available on the composition of fuel oil #6 (ATSDR 1995g). Clark et al. (1990) indicate that fuel

oil #6 includes about 25% aromatics, 15% paraffins, 45% naphthenes, and 15% non-hydrocarbon
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compounds. Polycyclic aromatic hydrocarbons (PAHs) and alkyl PAHs and metals are important

hazardous and persistent components of fuel oil #6. Table E-4.b (Appendix E) presents the results of an

analysis of one sample (Pancirov and Brown 1975).

Mineral Oils, Including Mineral-based Crankcase Oil. Mineral oils are often lubricating oils,

but they also have medicinal and food uses. A major type of hydraulic fluid is the mineral oil class of

hydraulic fluids (ATSDR 1997b). The mineral-based oils are produced from heavy-end crude oil

distillates. Distillate streams may be treated in several ways, such as vacuum-, solvent-, acid-, or hydro- treated, to

produce oils with commercial properties. Hydrocarbon numbers ranging from C15 to C50 are

found in the various types of mineral oils, with the heavier distillates having higher percentages of the

higher carbon number compounds (IARC 1984).

Crankcase oil or motor oil may be either mineral-based or synthetic. The mineral-based oils are more

widely used than the synthetic oils and may be used in automotive engines, railroad and truck diesel

engines, marine equipment, jet and other aircraft engines, and most small 2- and 4-stroke engines.

The mineral-based oils contain hundreds to thousands of hydrocarbon compounds, including a substantial

fraction of nitrogen- and sulfur-containing compounds. The hydrocarbons are mainly mixtures of straight

and branched chain hydrocarbons (alkanes), cycloalkanes, and aromatic hydrocarbons. PAHs, alkyl

PAHs, and metals are important components of motor oils and crankcase oils, with the used oils typically

having higher concentrations than the new unused oils. Typical carbon number chain lengths range from

Cl5 to C50 (ABB Environmental 1990).

Because of the wide range of uses and the potential for close contact with the engine to alter oil

composition, the exact composition of crankcase oil/motor oil has not been specifically defined. Table E-

5.b (Appendix E) presents analytical results for some constituents in used automotive oil (ABB

Environmental 1990).
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3.3 ANALYTICAL METHODS

The purpose of this section is to describe well established analytical methods that are available for

detecting, and/or measuring, and/or monitoring TPH and its metabolites, as well as other biomarkers

of exposure and effect of TPH. The intent is not to provide an exhaustive list of analytical methods.

Rather, the intention is to identify well-established methods that are used as the standard methods

approved by federal agencies and organizations such as EPA and the National Institute for

Occupational Safety and Health (NIOSH) or methods prescribed by state governments for water and

soil analysis. Other methods presented are those that are approved by groups such as ASTM.

The term “total petroleum hydrocarbons” (TPH) is generally used to describe the measurable amount

of petroleum-based hydrocarbons in the environment; and thus the TPH information obtained depends

on the analytical method used. One of the difficulties with TPH analysis is that the scope of the

methods varies greatly. Some methods are nonspecific while others provide results for hydrocarbons

in a boiling point range. Interpretation of analytical results requires an understanding of how the

determination was made.

Analytical methods for some petroleum products are discussed in existing ATSDR toxicological

profiles. The very volatile gases (compounds with 4 carbons or less), crude oil, and the solid

bituminous materials such as asphalt are not included in this discussion of analytical methods.

ATSDR profiles relevant to petroleum products are listed in Table 3-1. The TPHCWG also

addresses some of these issues from a different perspective which includes, in some cases, more detail

and references than provided here (TPHCWG 1998a).

3.3.1 Environmental Samples.

Most of the analytical methods discussed here for TPH have been developed within the framework of

federal and state regulatory initiatives. The initial implementation of the Federal Water Pollution

Control Act (FWPCA) focused on controlling conventional pollutants such as oil and grease. Methods

developed for monitoring wastewaters included EPA Method 4 13.1 (EPA 1979a) and EPA Method

413.2 (EPA 1979d) for Total Recoverable Oil and Grease (TOG), and EPA Method 418.1 for Total

Recoverable Petroleum Hydrocarbons (TRPH) (EPA 1979c). Freon-extractable material is reported

as TOG. Polar components may be removed by treatment with silica gel, and the material remaining,
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as determined by infrared (IR) spectrometry, is defined as Total Recoverable Petroleum Hydrocarbons

(TPH, TRPH, or TPH-IR). A number of modifications of these methods exist. EPA Method 418.1

has been one of the most widely used methods for the determination of TPH in soils. Many states use,

or permit the use of, EPA Method 418.1 for identification of petroleum products and during

remediation of sites (George 1992; Judge et al. 1997, 1998). This method is subject to limitations,

such as inter-laboratory variations and inherent inaccuracies (George 1992). In addition, the EPA

proposed to withdraw wastewater methods which use Freon- 113 extraction (EPA 1996a). These

methods will be replaced with EPA Method 1664: n-Hexane Extractable Material (HEM) and Silica Gel

Treated n-Hexane Extractable Material (SGT-HEM) by Extraction and Gravimetry (Oil and Grease

and Total Petroleum Hydrocarbons) (EPA 1996a). Conventional methods of TPH analysis are

summarized in Table 3-2.

These conventional TPH analytical methods have been used widely to investigate sites that may be

contaminated with petroleum hydrocarbon products. Many state and local regulatory agencies rely on

and require EPA Method 418.1 (EPA 1979c) for determination of petroleum hydrocarbons (Murray

1994). The important advantages of this approach are (1) the method is relatively inexpensive, and

(2) excellent sample reproducibility can be obtained. The disadvantages are (1) petroleum

hydrocarbon composition varies among sources and over time, so results are not always comparable;

(2) the more volatile compounds in gasoline and light fuel oil may be lost in the solvent concentration

step; (3) there are inherent inaccuracies in the method; and (4) the method provides virtually no

information on the types of hydrocarbons present. Several recent reports have detailed the problems

with this approach (George 1992; Rhodes et al. 1995/1996). Thus, these conventional TPH methods,

although they provide adequate screening information, do not provide sufficient information on the

extent of the contamination and product type. In addition, The Clean Air Act Amendments of 1990

require the phaseout of the use of chlorofluorocarbons. Therefore, the EPA methods using Freon-l 13

will be replaced with EPA Method 1664, n-Hexane Extractable Material (HEM) and Silica Gel

Treated n-Hexane Extractable Material (SGT-HEM) by Extraction and Gravimetry (EPA 1996a).

Proposed Method 1664 includes thorough method quality control, but results may not equivalent to

the current methods. Examples of TPH methods for environmental media are shown in Table 3-3.

Gas chromatography (GC) methods do provide some information about the product type. Most

methods involve a sample preparation procedure followed by analysis using GC techniques. GC
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determination is based on selected components or the sum of all components detected within a given

range. Frequently the approach is to use two methods, one for the volatile range and another for the

semivolatile range. Volatiles in water or solid samples are determined by purge-and-trap GC/FID.

The analysis is often called the gasolines range organics (GRO) method. The semivolatile range is

determined by analysis of an extract by GC/FID and is referred to as diesel range organics (DRO).

Individual states have adopted methods for measuring GRO and DRO contamination in soil and

water. The specific method details and requirements vary from state to state. Some of the GC TPH

methods are summarized in Table 3-4.

In the mid-1980s underground storage tank (UST) programs were a focus of federal and state

initiatives. The criteria and methodology for determining contamination are generally state-specific.

Although many states still use EPA Method 418.1, GC procedures have been developed to provide

more specific information on hydrocarbon content of waters and soils (Judge et al. 1997, 1998).

GRO and DRO are specified in some cases, and several states, such as California and Wisconsin,

aggressively developed programs to address groundwater contamination problems. These GC

methods, coupled with specific extraction techniques, can provide information on product type by

comparison of the chromatogram with standards. Quantitative estimates may be made for a boiling

range or for a range of carbon numbers by summing peaks within a specific window. Although these

methods provide more product information than the TPH and TOG methods, they are not without

limitations. These include high results caused by interferences, low recovery due to the standard

selected, petroleum product changes caused by volatility, and microbial activity (Restek 1994).

Many methods are available for analysis of petroleum hydrocarbon products, particularly in water

and soil matrices. The current literature includes a number of studies that document the performance

and limitations of the commonly used methods. Method modifications and new methods are being

investigated to provide better information about the petroleum component content of environmental

samples. However, the available analytical methodology alone may not provide adequate information

for those who evaluate the movement of petroleum components in the environment or evaluate the

health risks posed to humans (Heath et al. 1993a).

In its work to develop a fraction approach to assess TPH risks the TPH Criteria Working Group

(TPHCWG) has developed an analytical method for identifying and quantifying the presence of the
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groups or fractions with similar mobility in soils. The technique is based on EPA Method 3611

(Alumina Column Cleanup and Separation of Petroleum Wastes) and EPA Method 3630 (Silica Gel

Cleanup), which are used to fractionate the hydrocarbon into aliphatic and aromatic fractions. A gas

chromatograph equipped with a boiling point column (non-polar capillary column) is used to analyze

whole soil samples as well as the aliphatic and aromatic fractions to resolve and quantify the

fate-and-transport fractions selected by the TPHCWG (Gustafson 1997). The method is versatile and

performance-based and, therefore, can be modified to accommodate data quality objectives

(Gustafson 1997).

The Massachusetts Department of Environmental Protection (MADEP) approached its needs to

evaluate the potential health effects of petroleum hydrocarbons similarly by defining analytical

fractions. MADEP’s method is based on standard EPA Methods (8020/8015 Modified), which allows

it to be easily implemented by contract laboratories (Gustafson 1997; Hutcheson et al. 1996). Lighter

hydrocarbon fractions (C6-C12 are analyzed by purge-and-trap GC analysis using a FID to measure

the total hydrocarbons and a photoionization detector (PID) to measure the aromatics. The aliphatic

(e.g., hexane) component of the TPH is found by determining the difference. Aromatic and aliphatic

fractions are divided into carbon number fractions based on the normal alkanes (e.g., n-octane) as

markers. Heavier hydrocarbons (C12-C26) are analyzed using an extraction procedure followed by a

column separation using silica gel (Modified EPA Method 3630) of the aromatic and aliphatic

groupings or fractions. The two fractions are then analyzed using GC/FID. PAH markers and

n-alkane markers are used to divide the heavier aromatic and aliphatic fractions by carbon number,

respectively. A couple of concerns about the methodology have been expressed: (1) the PID is not

completely selective for aromatics and can lead to an overestimate of the more mobile and toxic

aromatic content; and (2) the results from the two analyses, purgeable and extractable hydrocarbons,

can overlap in carbon number and cannot be simply added together to get a total TPH concentration.

Few methods are available for monitoring petroleum products in other matrices such as plant and

animal tissue and food.
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3.3.1.1 Soils and Sediments

Methods for determining TPH in soils and sediments are discussed in Section 3.3.1 above. These

methods are used primarily for UST programs. Currently, many of the states have adopted EPA Method

418.1 or modified EPA Method 801.5 or similar methods for analysis during remediation of contaminated

sites. Thus, there is no standard for TPH analysis; each state has adopted its own criteria, and in some

cases, developed its own methodologies (Murray 1994).

There is a trend toward use of GC techniques in analysis of soils and sediments. One aspect of these

methods is that “volatiles” and “semivolatiles” are determined separately. The volatile or GRO

components are recovered using purge-and-trap or other stripping techniques (Chang et al. 1992; EPA

1995d; McDonald et al. 1984). Semivolatiles are separated from the solid matrix by solvent extraction

(EPA 1995d). Other extraction techniques have been developed to reduce the hazards and the cost of

solvent use and to automate the process (Gere et al. 1993). Techniques include supercritical fluid

extraction (SFE) (Fitzpatrick and Tan 1993; Gere et al. 1993; Hawthorne et al. 1993; Lopez-Avila et al.

1993) microwave extraction (Hasty and Revesz 1995; Lopez-Avila et al. 1994) Soxhlet extraction

(Martin 1992) sonication extraction (Martin 1992) and solid phase extraction (SPE) (Schrynemeeckers

1993). Capillary column techniques have largely replaced the use of packed columns for analysis, as they

provide resolution of a greater number of hydrocarbon compounds.

3.3.1.2 Water and Waste Water

Methods for determining TPH in aqueous samples are discussed above in Section 3.3.1. The overall

method includes sample collection and storage, extraction, and analysis steps. Sampling strategy is an

important step in the overall process. Care must be taken to assure that the samples collected are

representative of the environmental medium and that they are collected without contamination. There are

numerous modifications of the EPA, American Public Health Association (APHA), and American

Society for Testing and Materials (ASTM) methods discussed above. Most involve alternate extraction

methods developed to improve overall method performance for TPH or replacement of the

chlorofluorocarbon solvents. SPE techniques have been applied to water samples (Schrynemeeckers

1993). Solvent extraction methods with hexane (Murray and Lockhart 1981; Picer and Picer 1993) or

methylene chloride (Mushrush et al. 1994) have been reported as well.
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3.3.1.3 Air

Methods for determining hydrocarbons in air matrices usually depend upon adsorption of TPH

components onto a solid sorbent, subsequent desorption and determination by GC techniques.

Hydrocarbons within a specific boiling range (n-pentane through n-octane) in occupational air are

collected on a sorbent tube, desorbed with solvent, and determined using GC/FID (NIOSH 1994).

Although method precision and accuracy are good, performance is reduced at high humidity.

Compounds in the boiling range 80-200 ºC in ambient air may be captured on a Tenax GC adsorbent

tube which is thermally desorbed for GC/MS analysis (EPA 1988). Performance of the method had

not been established on a compound-by-compound basis (EPA 1988). Gasoline vapor in air may be

sampled on a tube containing Tenax adsorbent. The traps are thermally desorbed and analyzed by

GC/FID. The minimum detectable concentration is 0.03 mg/m3 total hydrocarbons in a 2.5 L sample.

Excellent recovery was reported (>90%) (CONCAWE 1986). Passive adsorbent monitors (badges)

may also be used. Compounds are solvent-desorbed from the exposed adsorbent and analyzed by GC.

Good recovery (>80%) has been reported for target n-alkanes and for gasoline, naphtha, and Stoddard

solvent (3M 1993).

The Massachusetts Department of Environmental Protection (MADEP), along with ENRS, Inc., of

Acton, Massachusetts, has developed a method for taking and analyzing air samples for the presence

of petroleum hydrocarbons (MADEP 1999). This Air-phase Petroleum Hydrocarbon (APH) method

uses SUMMA canisters and GC/MS for sampling and analysis of ambient air, indoor air, and soil

gas. This method can be downloaded from the MADEP website (http://www.state.ma.us/dep). The

complex mixture of petroleum hydrocarbons potentially present in an air sample is separated into

aliphatic and aromatic fractions, and then these two major fractions are separated into smaller

fractions based on carbon number. Individual compounds (e.g., benzene, toluene, ethylbenzene,

xylenes, MTBE, naphthalene) are also identified using this method. The range of compounds that can

be identified includes C4 (1,3-butadiene) through C 12 (n-dodecane).

Continuous monitoring systems for total hydrocarbons in ambient air are available. These usually

involve flame ionization detection. Detection limits are approximately 0.16 ppm (Lodge 1988).
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3.3.2 Biological Samples

Few analytical methods were located for determination of TPH in biological samples. However,

analytical methods for several important hydrocarbon components of total petroleum hydrocarbons

may be found in the ATSDR toxicological profiles listed in Table 3-1.

Some methods developed for analysis of aquatic and terrestrial life may be adaptable to human

biological samples. Examples are summarized in Table 3-5. Most involve solvent extraction and

saponification of lipids, followed by separation into aliphatic and aromatic fractions on adsorption

columns. Hydrocarbon groups or target compounds are determined by GC/FID or GC/MS. These

methods may not be suitable for all applications, so the analyst must verify the method performance

prior to use.

Methods are also available for determination of specific hydrocarbon compounds in biological

samples. Some of these methods are shown in Table 3-5. Since these methods have not been demon- strated for

total petroleum hydrocarbons, the analyst must verify that they are suitable prior to use.

3.3.3 Adequacy of the Database

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation

with the Administrator of EPA and agencies and programs of the Public Health Service) to assess

whether adequate information on the health effects of TPH is available. Where adequate information

is not available, ATSDR, in conjunction with the NTP, is required to assure the initiation of a program

of research to determine the health effects (and techniques for developing methods to determine

the health effects) of TPH. Since TPH is comprised of a number of component chemicals, these

directives and requirements can be assumed to extend to the individual compounds that may be found

as components of TPH.

Health assessment of the risks associated with petroleum hydrocarbons from environmental media are

difficult because of the complex nature of petroleum products, lack of adequate knowledge about the

movement of petroleum components in soil, and lack of knowledge about the toxicity of the components

(Heath et al. 1993a). Health assessors often select surrogate or reference compounds (or

combinations of compounds) to represent TPH so that toxicity and environmental fate can be
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evaluated. One approach is based on benzene as the most appropriate substitute for TPH based on its

toxicity, motility in the environment, and solubility in ground water (Youngren et al. 1994). Other

researchers have investigated the use of several surrogate compounds to represent the movement of

TPH in the environment and TPH toxicity. Potential candidates are n-hexane, benzo(a)pyrene, and

pyrene to represent alkanes, carcinogenic PAHs, and noncarcinogenic PAHs in gasoline, respectively.

Benzene and toluene would be included for sites where the BTEX portion of gasoline is not analyzed

separately (Koblis et al. 1993).

Another approach is to categorize hydrocarbon compounds into surrogate fractions characterized by

similar chemical and physical properties (EA Engineering 1995). Compounds are assigned to a given

fraction on the basis of similar leaching and volatilization factors. Correlation to Carbon Number

Index was used because it closely follows GC behavior. This method has the potential to provide

realistic evaluation of potential risks; however, a full set of parameters is not available for all the

compounds of interest (EA Engineering 1995).

3.3.4 Ongoing Studies

Governmental, industrial, and environmental groups have been attempting to understand the problems

of environmental contamination with petroleum hydrocarbons. Major agencies, such as the International

Agency for Research on Cancer (IARC) and the EPA are involved in the discussion of potential

health effects. Some groups have been attempting to improve the analytical consistency and

interpretation of results in dealing with petroleum hydrocarbons, and some have looked at the health

and environmental effects of petroleum. The ASTM publishes consensus standards, including analytical

methods. Committee D-19 of ASTM is concerned with the study of water and is responsible for

the standardization of methods for sampling and analysis of water, aqueous wastes, water-formed

deposits, and sediments. Committee D-2 on Petroleum Products and Lubricants is responsible for the

ASTM Manual on Hydrocarbon Analysis (ASTM 1992).

The Amherst annual conference continues to address issues surrounding petroleum contamination,

including analytical methods (Amherst 1999). Though the TPHCWG has taken on specific

responsibilities for TPH, further analytical developments will likely grow from this conference.
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In another ongoing effort, EPA is looking at the problem of petroleum wastes in all media. They have

formed an internal working group and are supporting the efforts of other groups such as the Amherst

Conference Workgroups and Workshop on General Population Exposures to Gasoline (Lioy 1992).

Dr. R.J. Rando, Tulane University, is investigating the use of passive samplers for measuring

hydrocarbon components. The overall goal of the program is to characterize and improve the

performance of passive samplers for use in ambient and indoor air monitoring.

Petroleum companies have conducted a number of studies regarding the health effects of TPH

constituents and products that have not appeared in the open published literature (API 1995a).
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This chapter summarizes useful background materials dealing with petroleum production and a range

of common products derived from petroleum contaminants that could be documented through TPH

testing at NPL sites. The chapter concludes with a discussion of acceptable disposal practices for

petroleum products. In conjunction with materials in Chapter 5, the section on disposal summarizes

special features of petroleum that set it apart from a variety of more highly processed petrochemicals.

Under normal uses as fuels, lubricants, or paving materials, petroleum products are not considered

hazardous materials. For instance, fuels are normally consumed through combustion processes to

drive motors or provide space heating. Some combustion by-products (e.g., carbon monoxide) may

be regarded as hazardous, but a variety of legal exemptions apply to the initial petroleum product, at

least under federal law.

The special status of petroleum under normal use means that limited attention is given to monitoring

of petroleum levels in the workplace or the environment. It is usually only in the case of accidental

spills, pipeline breaks, or seepage from storage tanks that well defined legal requirements are in place

that require record keeping and documentation. As a result, it is usually hard to make precise

connections between the original petroleum products and the types of TPH materials encountered at

NPL sites.

Especially at older dump sites, original petroleum product mixtures become even more complex

mixtures. Over time, biotic and abiotic weathering processes alter the types of chemical fractions still

present on-site. This means that even the most detailed knowledge of the various original petroleum

products does not necessarily provide clear signals on the exposure risks affecting an NPL site with

TPH contaminants. See Chapter 5 for discussion of environmental transport and potential human

exposure. This chapter, therefore, highlights basic information relevant to the original petroleum

products to provide a background for the discussion on environmental fate and transport issues in the

next chapter.

Background on Primary Petroleum Products. Petroleum is a natural resource found in

many types of sedimentary rock formations. Naturally occurring petroleum is a complex mixture of

gaseous, liquid, and solid hydrocarbons. Entire industries have grown up around the activities
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required to produce the crude oil, transport it to refineries, and convert the natural petroleum into a

variety of end products and chemical feedstocks. Processed petroleum products provide up to 50% of

the world’s total energy supply, major forms of transportation, electric utilities, and space heating.

Petroleum is also used in lubricants, solvents, highway surfacing, and roofing and waterproofing

materials, and as the source of the feedstocks used to make plastics and other modern petrochemicals.

Early refining techniques relied primarily on the separation of different fractions from the raw

petroleum using distillation over different temperature ranges. For straight-chain, branched, and

aromatic hydrocarbons, there is some degree of correlation between the number of carbon atoms in a

compound and the boiling point. Many refined products were initially given simple technical

definitions based on the temperature range at which a certain fraction was extracted from the crude

oil. The very lightest fractions (e.g., C4H10 or butane and other simple straight-chain compounds

down through CH4 or methane) were traditionally vented or flared since there was little apparent

demand for these gaseous components. The most prized fractions were liquids at normal room

temperatures that could be used as fuels in engines or as heating oils.

The petroleum refining industry has tried to find profitable uses for both the lighter and heavier crude

oil fractions. Lighter gaseous fractions can now be used for space heating or fuels in the form of

liquified petroleum gas (LPG). For the heavier fractions, a variety of technologies convert large

hydrocarbon molecules from the distilled crude oil into lighter compounds that can be used as motor

gasoline, aviation fuel, or fuel oil. In the process, large amounts of hydrocarbons are produced that

can be isolated as relatively pure substances for use as solvents or petrochemical feedstocks. For

instance, benzene was once derived from coal tars, but most supplies are now derived from oil.

Ethane is easily converted into ethylene, a major petrochemical feedstock. Commercial techniques for

producing xylenes, toluene, butadiene, butylenes, and propylene also involve simple adaptations of

modern oil refinery technologies.

Some specific refinery-generated hydrocarbons are blended into gasolines or fuel oils to enhance some

desired property. For example, commercially pure grades of toluene and benzene are added to

modern gasoline to boost octane ratings. Similar enhancements in basic product qualities for

combustion or viscosity are achieved through re-distilling products from the cracking process and

blending them with fractions obtained from primary distillation. While the resulting products are still
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referred to as gasolines or fuel oils, the chemistry of the hydrocarbons in these mixtures often differs

considerably from that of the hydrocarbons found in the original crude oil.

Refining also dramatically increases the frequency of hydrocarbons in which carbon-hydrogen bonds

have been replaced with double bonds between carbon atoms. The resultant chemicals are called

olefins and include ethylene (C2H4), propylene (C3H6), and butylene (C4H8). While the lighter forms

such as ethylene are relatively easy to remove for use as petrochemical feedstocks, a variety of

heavier olefins wind up in the refinery gasoline or fuel oil products.

In addition to aromatics with benzene ring structures, modern refinery processes tend to increase the

number of hydrocarbons with simpler types of carbon ring structures. Typical chemicals include

cyclopentane, where the straight-chain pentane has been wrapped into a five-carbon ring. Other

transformations of aliphatic hydrocarbons include cylcohexane and cyclopentane. These ring

compounds are usually called naphthenes.

These complex alterations in the types of compounds generated from refinery operations have led to

the development of a variety of technical nomenclatures to describe different petroleum fractions.

Many commercial products still carry such traditional names as gasoline or heating oil. In terms of

such basic physical and chemical properties as specific gravities and combustion performance, these

traditional labels have held their meanings fairly well. New products, such as fuel oils derived from

residuals, now join the original fuel oils derived from simple distillation, but the term “fuel oil” is still

commonly used to organize data on petroleum imports, exports, and production. But the chemistry of

these modern products is often considerably more complex than the chemistry of pre-World War II

products with the same names.

Petroleum Production, Import/Export, and Use in the United States.

Petroleum Production and Use Statistics. Petroleum use and production statistics pooled from a

variety of government and industry sources are available from the PennWell Publishing Company. A

convenient printed compendium (also available on computer disk in a digitized form) is the Energy

Statistics Sourcebook (PennWell 1994).
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During 1997, total U.S. crude oil production was 2,300,000,000 barrels (API 1998a). Using

consistent estimation methods comparable to those employed over the last decade, it is often difficult

to match current petroleum product statistics with historical statistics developed prior to 1978. For

1978, total U.S. crude production was 3,178,216,000 barrels. This represents a 27.6% decline in

total production between 1978 and 1998. While total crude oil production in the United States has

shown an overall downward trend, a comparison of statistics from 1993 and 1978 indicates that the

total output from refineries based in the United States has remained remarkably constant. Table 4-l

summarizes total refinery output along with output estimates for major refinery petroleum products.

Output for specific refinery products has changed: jet fuel kerosenes and LPG have increased, and

fuel oils recovered from heavier refinery residuals and ordinary kerosene have decreased. Crude oil

production levels and trends for selected states are summarized in Table 4-2.

Statistics on crude oil production or its processing into various petroleum fractions are generally

presented using a standard barrel (42 U.S. gallons) as the basis of comparison. The barrel is still an

international standard for crude oil statistics. While adjustments can be made for particular types of

crude oil related to variations in their specific gravities (e.g., light oils versus heavy oils), 7.3 barrels

of crude oil equal approximately 1 metric ton (1,000 kg or 2,204.6 pounds). Conversion factors are

also available to make estimates of the barrel equivalents of other common petroleum products

ranging from to liquified petroleum gas (LPG). Conversion factors for major petroleum fractions are

given in Table 4-3.

Although crude oil production is the source of TPH exposures to certain occupational groups and

people living near oil production sites, the releases in workplaces or to environmental media of more

concern for this profile begin during the stage when crude oil is refined and transformed into a variety

of petroleum products for fuels, lubricants, and petrochemical feedstocks.

In addition to the total production figures, percentage breakouts provide another way to summarize

the major products stemming from U.S. based refineries. Table 4-4 presents 1993 product yields on a

percentage basis.
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With a long-term decline in the levels of domestic crude oil production, imports have increased to

meet the demand for petroleum products and to sustain the fairly stable levels of U.S.-based refinery

output. Tables 4-5, 4-6, and 4-7 summarize trends in petroleum product imports, exports, and levels

of U.S. demand (use) for these products.

For the most common refinery products, statistics are available showing U.S. use patterns for sectors

such as major industrial groups or residential demand. These statistics are presented in Table 4-8.

Disposal. An estimated 2.3 billion barrels of crude oil were produced in 1997 (API 1998a). From

this crude oil, TPH waste may be generated in a number of ways that ultimately lead to either

improper or acceptable disposal. Incineration is a primary method of disposal for wastes containing

TPH. Oil spills are frequently captured and treated using various absorbents (e.g., straw,

polyurethane foam, activated carbon, peat), gelling agents, dispersants, and mechanical systems.

Biodegradation also has been used to treat contaminated soil (OHM/TADS 1985).

Sources of TPH waste include

• waste generated from crude oil production,

• waste generated from petroleum refining,

• used oil as a waste,

• used petroleum refining products as wastes, and

• accidental releases of crude oil, petroleum refining wastes, used oil, and petroleum refining

products.

Management of TPH wastes generated from the sources listed is discussed in the following sections,

which address existing regulatory programs, quantities disposed (where data are available), waste

management trends, recycling trends, and records of damage for each source.

Waste Generated from Crude Oil Production. EPA’s Report to Congress, Management of Wastes

from the Exploration, Development, and Production of Crude Oil, Natural Gas, and Geothermal

Energy (EPA 1987a), reported that the American Petroleum Institute estimated that 361 million

barrels of waste were generated from the drilling of 69,734 oil wells in 1985. This translates into

about 5,183 barrels of waste per well. These wastes are not pure crude but can include petroleum

hydrocarbons.
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Wastes include drilling fluids and produced waters which are managed in pits, discharged to surface

waters, or injected into the producing well or an aquifer (Charbeneau et al. 1995). Records of damage

due to both improper and acceptable management of these wastes reflects the presence of constituents of

concern found in crude oil such as benzene, phenanthrene, lead, and barium. Numerous damage cases

are cited in this Report to Congress, including an estimated 425 reported spills on the North Slope of

Alaska in 1986.

Current regulatory programs applicable to these wastes include a variety of state programs, the

Underground Injection Control Program established under the Safe Drinking Water Act Part C (Class II

wells are oil and gas-related), and the Bureau of Land Management regulations for the activities on

federal and Indian lands.

Wastes Generated from Petroleum Refining. Petroleum refining wastes are regulated by EPA in

several ways. There are approximately 150 active petroleum refineries in the United States. RCRA

Subtitle C currently lists four characteristics as hazardous in 40 CFR 264.21 and .24 and five waste

categories as hazardous in 40 CFR 261.31 and .32. When most of these wastes were listed beginning in

1980, there were 250-300 active refineries ranging in capacity from about 400,000 barrels (bbl) per day to

only a few hundred bbl per day.

In addition, petroleum refining wastes are subject to evaluation as characteristically hazardous waste,

including the toxicity characteristic (40 CFR 261, Subpart C) which labels wastes “RCRA hazardous” if a

measured constituent concentration exceeds a designated maximum (e.g., a benzene concentration of 0.5

mg/L )

All Subtitle C hazardous wastes are prohibited from land disposal without prior demonstration that

hazardous constituent concentration levels comply with regulatory limits or that prescribed methods of

treatment are used. These two criteria are intended to reduce the toxicity of the waste or-substantially

reduce the likelihood of migration of hazardous constituents from the waste, so that health and

environmental threats are minimized. The primary method of treatment is waste combustion to destroy

organic constituents.
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RCRA-classified listed hazardous wastes are also hazardous substances under the Comprehensive

Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended.

CERCLA hazardous substances are listed in 40 CFR 302.4 and have unique reportable quantities

(RQs) which, when released, trigger emergency response and reporting measures.

Oil generated and recovered during petroleum refining has also been excluded from RCRA regulation.

In 1994, EPA limited the exclusion to recovered oil from refining, exploration, and production that is

inserted into the petroleum refining process prior to distillation and catalytic cracking. Recovered oil

includes materials that are primarily oil and that are recovered from any phase of petroleum

exploration, refining production, and transportation. It is considered by EPA to be equivalent to the

raw materials normally used in refining in composition and management. In November 1995, EPA

proposed to expand this exclusion to encompass all oil-bearing secondary materials that are generated

within the petroleum refining industry and that are reinserted into the refining process (including

distillation, cracking, fractionation, or thermal cracking).

Used Oil as a Waste. “Used oil means any oil that has been refined from crude oil, that has been

used and as a result of such use is contaminated by physical or chemical impurities” (40 CFR

260.10). In 1992, there were approximately 700,000 commercial, industrial, and large farm used oil

generators in the United States. The management of used oil has a statutory, regulatory, and judicial

history dating back to 1978. Currently, used oil exhibiting any hazardous waste characteristics must

be managed under RCRA Subtitle C as a hazardous waste. In turn, used oils contaminated with

CERCLA hazardous substances are subject to RQs under 40 CFR 302.4. Disposal of nonhazardous

used oil that is not recycled is regulated under 40 CFR 257 and 258 of RCRA Subtitle D. The

recycling of all used oils is regulated under 40 CFR 279. These regulations include programs for

generators, collection centers, transporters and transfer facilities, processors and re-refiners, burners,

and marketers. An estimated 750 million gallons per year of used oil enter the commercial used oil

recycling system according to EPA. In 1992, these recycling businesses consisted of independent

collectors (383), minor processors (70), major processors (112), re-refiners (4), fuel oil dealers

(25-100) and burners (1,155). Products of used oil processing and re-refining include specification

fuel, reconstituted lubricating oils and fluids, distillate fuel, lube feedstock, asphaltic bottoms, and

other non-fuel oil-derived products. Part 279 prohibits used oil use as a dust suppressant unless a

state successfully petitions for authority to allow its use as a suppressant. As of 1992, 41 of 50
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states prohibited road oiling. No regulations exist for individuals who generate used oil through home

or personal use of oil products.

Used Petroleum Refining Products as Wastes. Government regulations presume that petroleum

refining products are consumed and not disposed. Therefore, there are no regulatory programs

designed for the intentional disposal of petroleum products. However, RCRA can apply to disposed

petroleum products. These products can be declared solid wastes and, possibly, hazardous waste as

defined under 40 CFR 261. The only exemption from the definition of solid waste for petroleum

products is when the material is recycled. There are no exemptions from the definition of hazardous

waste for petroleum products declared to be wastes. Used oil, in particular, has a specific RCRA

regulatory program, as described above.

Petroleum products such as gasoline contain certain hazardous constituents including benzene,

toluene, and xylene. However, the presence of such constituents in gasoline does not qualify it as a

hazardous waste under RCRA or a hazardous substance under CERCLA. The management of

petroleum products is, however, regulated under three programs: Underground Storage Tanks (UST)

(40 CFR Part 280) to prevent tank leakage, Hazardous Materials Transportation (HMT) (49 CFR

Chapter 1) for petroleum distillates with combustible and flammable properties, and the Occupational

Safety and Health standards (29 CFR Part 1910.1000) for inhalation hazard. The UST and HMT

programs are designed to prevent and respond to accidental releases of petroleum products. Both

programs are discussed in the next section.

Accidental Releases of Crude Oil, Petroleum Refining Wastes, Used Oil, and Petroleum Refining

Products

Oil Production Wastes. Numerous damage cases are cited in the 1987 EPA Report to Congress,

including the estimated 425 reported spills on the North Slope of Alaska in 1986. However, EPA did

not believe the impact of these releases warranted regulating these oil production wastes as RCRA

hazardous. Rather, they are regulated under state programs.

Petroleum Refining Waste. The extent of mismanagement or accidental releases of petroleum

refining wastes can be illustrated with the 1995 proposed RCRA listing determination for 16
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additional petroleum refining waste categories (of which 3 waste categories were determined to be

RCRA hazardous and proposed to be listed in 40 CFR 261). A search of state and federal

enforcement records, documented CERCLA-related activities at 10 sites and RCRA-related activities

at 29 sites.

Accidental releases of RCRA-listed petroleum refining wastes are regulated in two ways. First, as

part of the RCRA program, treatment storage and disposal facilities (TSDFs) that manage hazardous

refinery wastes must obtain permits. A key component of the permit application is demonstration of

an effective contingency plan for accidental releases, a preparedness/prevention plan, and a

groundwater monitoring plan when wastes are managed in land-based units among other activities.

Second, these wastes are also subject to the reportable quantity (RQ) requirements of CERCLA.

Used Oil and Other Waste Petroleum Refining Products. Used oil and other petroleum product

mismanagement and related risks are controlled under other regulations and statutes; these include the

40 CFR Part 268 underground storage tank (UST) regulations, the 40 CFR Part 112 Spill Prevention,

Control and Countermeasure (SPCC) program, the National Pollutant Discharge Elimination System

(NPDES) storm water regulations, and the lead phase-down program. Section 311 of the Clean

Water Act requires facilities to have an SPCC plan or contingency plan in place to ensure that oil

spills are prevented, controlled via containment measures, and responded to when oil spills occur and

reach navigable waterways. About 50% or more of the used oil generators, and most of the used oil

transporters, processors/re-refiners, and off-spec used oil burners are covered by the SPCC program.

Less than 10% of the used oil industry participants are excluded from the SPCC program because

they are not in the vicinity of navigable waterways. The program includes non-transportation-related

facilities located in proximity to navigable waters, USTs with capacities greater than 42,000 gallons,

aboveground storage tanks with capacities greater than 1,320 gallons, and single tanks with capacities

greater than 660 gallons.

The International Convention for the Prevention of Pollution from Ships (1973) as modified by the

1978 Protocol (MARPOL) focuses on preventing ship-generated ocean pollution. Annexes I-V of the

MARPOL protocol address oil, noxious liquids, and other petroleum-related contaminants (MARPOL

1978).
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The Hazardous Materials Transportation Act regulates used oil and petroleum distillates if they meet

the definitions of “flammable” or “combustible.” All used oil generators and transporters must

comply with applicable Department of Transportation regulations for hazardous materials (49 CFR,

Chapter I - Research and Special Programs Administration).

The Toxic Substances Control Act (TSCA) prohibits the use of waste oil containing any detectable

polychlorinated biphenyls (PCBs) as a sealant, coating or dust suppressant. Any spill of material

containing >50 ppm PCBs into the sewer, drinking water, surface water, grazing land, or vegetable

gardens must be reported (40 CFR 761).

The UST program (40 CFR Part 280) focuses on control and prevention of petroleum leaks from

underground petroleum storage tanks including petroleum products and waste oil tanks. The

regulations currently exempt UST systems less than 110 gallons in capacity, machinery containing

substances regulated under the UST program, farm or residential tanks less than 1,100 gallons in

capacity, heating oil tanks where the heating oil is used on the premises, and flow-through process

tanks, among others.



TOTAL PETROLEUM HYDROCARONS 57

5. POTENTIAL FOR HUMAN EXPOSURE

5.1 OVERVIEW

Petroleum products are an integral part of our modern lives. It is nearly impossible to avoid exposure

to hydrocarbons from petroleum products, whether it is from gasoline fumes at the pump, spilled

crankcase oil on asphalt, solvents used at home or work, or pesticide applications that use petroleum

products as carriers. There are concerns with both short-term (accidents) and long-term exposures to

petroleum hydrocarbons (e.g., contaminated drinking water). Gross measures of Total Petroleum

Hydrocarbons (TPH) in soil or water are not particularly valuable for assessing either the potential

for exposure to TPH or the impacts of such exposure on public health. This chapter addresses

questions related to the first point: what are the levels of contamination in the environment, what

happens to petroleum hydrocarbons in the environment, and what is the likelihood that individuals or

populations will be exposed to petroleum hydrocarbons at levels thought to be of concern?

Petroleum products are released to the environment through accidents, as managed releases, or as

unintended by-products of industrial, commercial or private actions. An understanding of the changes

that occur over time in the composition of petroleum hydrocarbons found in soil, water, or air is

extremely important in addressing public health issues for TPH. The TPH Criteria Working Group

(TPHCWG 1997b) has defined its TPH fractions by the mobility of constituents in order to address

this question of predicting risks associated with TPH contamination.

The following sections present an overview of releases to the environment (5.2), fate and transport

(5.3), and levels found in the environment (5.4).

5.2 RELEASES TO THE ENVIRONMENT

TPH has been identified in 34 of the 1,519 current or former EPA National Priorities List (NPL)

hazardous waste sites (ATSDR 1998a). Components of TPH are common environmental contaminants

in all media and are likely contaminants at many NPL sites. However, the number of sites

evaluated for TPH and TPH components is not known. The frequency of the TPH reported sites

within the United States can be seen in Figure 5- 1.
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Raw petroleum and refined petroleum products used as fuels or lubricants are generally excluded at

the national level from the cradle-to-grave record-keeping associated with recognized toxics such as

heavy metals or chlorinated solvents. With an eye to the availability of petroleum as a source of

energy, petroleum production is tracked by the federal government as well as industry trade

associations. Statistics are available for wellhead production as well as for production of major bulk

fuel types from domestic refineries. These primary production statistics have been summarized in

Chapter 4.

Once processed into products such as motor gasoline and fuel oil, most of the petroleum is burned in

engines or boilers to provide energy for transportation, space heating, or electricity. In these

combustion processes, the petroleum fuel is oxidized. Because of incomplete oxidation, small

amounts of hydrocarbon emissions result. These emissions often contain much larger percentages of

combustion by-products such as polycyclic aromatic hydrocarbons (PAHs) than the initial petroleum

products. Incomplete combustion and heat also alter the composition of crank case oils and

lubricants.

Emissions statistics are usually lacking for TPH or most TPH fractions since there is no record-

 keeping associated with smaller internal combustion engines used in cars and trucks or fuel oil boilers

for individual buildings or homes. These individual uses account for the majority of petroleum

product use. These releases, mostly to the atmosphere from incomplete combustion, however, are

generally small compared to a variety of other releases connected with spills or uncontrollable losses

during storage, transport, or fueling operations.

The movement of raw petroleum to automobile fuel tanks or fuel oil boilers is part of a complex bulk

product distribution and storage system, providing many opportunities for accidents, spills, leaks, and

losses from simple volatilization. Consistent national statistics are lacking for many stages in the

overall oil distribution and storage system. The main exceptions involve larger leaks and spills,

especially spills in coastal areas or on larger navigable rivers.

Data for the period from 1984 through 1993 (API 1996) show that most data reported to the U.S.

Coast Guard occurred in inland bodies of water: rivers, lakes, and points on bays or estuaries. Spills

from large ocean-going tankers and large spills in general (more than 1,000 gallons) are relatively
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infrequent, never more than 5% of the total number of reported spills in a year. The average number

of spills during the 1984-93 period was just under 6,000 spills. The numbers in any given year can

vary enormously, with a maximum of just under 9,600 spills reported in 1991.

In terms of the amounts of oil estimated from spills, large spills, although rare, can dominate the

annual totals. For instance, of about 14,000,000 total estimated gallons of oil spilled to U.S. waters

in 1989, 10.8 million gallons resulted from the Exxon Valdez catastrophe in the coastal waters of

Alaska. One or two large tanker spills in the course of a decade can make it very hard to draw

conclusions on trends. The average amount of oil spilled in the 5-year period from 1984 to 1988 was

6.3 million gallons per year, compared to 5.6 million gallons spilled from 1989 to 1993. With

eventual implementation of double-hull requirements for large tankers required in the Oil Pollution

Act of 1990, the releases from tankers should be greatly curtailed.

Within the broad reporting categories of vessels (tankers and barges) and facilities (pipelines, tanks

batteries, and other onshore facilities) in the period 1984-1993, numbers of reported spill incidents

were roughly equivalent: 42,000 incidents from vessels and 38,000 from facilities. Over this period,

the vessels spilled a much larger cumulative amount of oil: 45 million gallons from vessels versus

15 million gallons for facilities. Major incidents can dominate these totals. Two vessel spills account

for around one-third of the vessel totals.

Most spills involve either crude oil or bulk fuels (distillates) such as fuel oils. Four tables (adapted

from API 1996) help summarize annual figures on oil spills to coastal and inland waters of the United

States. Table 5-l shows statistics on the number of spills broken out by size categories, where the

prevalence of very small releases is obvious. Table 5-2 summarizes releases from vessels, and

Table 5-3 summarizes releases from facilities. Table 5-4 summarizes spills according to the type of

petroleum product involved.

At the national level, virtually the only other regulatory program that provides broad-based statistics

on petroleum product releases to the environment is EPA’s (leaking) Underground Storage Tank

(UST) Program. In 1994, there were over a million underground storage tanks on more than 300,000

identified UST sites; about 91% of these involve tanks at gasoline stations, truck stops, vehicle repair

shops, or convenience stores selling gasoline or diesel fuel (EPA 1998c). There were at least
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119,000 confirmed instances of underground releases of gasoline or similar petroleum bulk fuels to

soils or groundwater, with the total number of sites needing remediation likely to climb to over

176,000 by the turn of the century (EPA 1994a). While tests to confirm contamination may involve

TPH or tests for surrogates of specific chemicals such as benzene, the UST program does not attempt

to make detailed estimates of releases to environmental media.

Since many releases of petroleum to environmental media involve unintentional leakage or spillage, it

can be helpful to present some rough estimates of release from various categories of activities or

components within the overall petroleum production and distribution system. Results assembled from

various sources in a study by Doyle (1994) are summarized in Table 5-5. While different estimation

techniques could alter these leakage values, the major components of the oil production and

distribution system include: leaking (abandoned) oil wells, large aboveground storage tanks, leaks

from gasoline stations, tank bottoms and refinery residuals disposal, used motor oil, and evaporative

losses.

Doyle (1994) estimates the total amount of leakage or spillage related to petroleum product

production, processing, and distribution to end users at around 134 million barrels per year (see

Table 5-5); different estimation approaches could lead to slightly different total figures. For instance,

total U.S. refinery output in 1993 was around 2,608 million gallons (PennWell 1994); total

consumption of motor gasoline during 1992 was around 5,762 million barrels (PennWell 1994). The

levels of spillage or leakage resulting in releases to the environment amount to about 2.3% of total

refinery output and around 5% of total gasoline consumed; conversely, about 95% of the original

amounts petroleum products are completely consumed, generally in combustion processes to heat

homes or power cars, trucks, planes, boats, and trains.

Recurrent spills or a long history of disposal at specific sites can lead to concerns. Oil dumped onto

soils can saturate the soil matrix (see Section 5.3). This type of very concentrated contamination can

be virtually impossible to eliminate without excavating and removing all the soil materials.

If TPH is introduced at any depth within the soil matrix, as in the case of leaks from underground

storage tanks, natural weather and biodegradation processes are rendered less effective and the

chances are increased that some of the TPH fractions may contaminate groundwater. Since many
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TPH components have densities less than or close to that of water, these lighter nonaqueous phase

liquids (LNAPLs) generally pose less potential for groundwater pollution than most chlorinated

solvents (e.g., PCBs or TCE) that are denser than water (denser nonaqueous phase liquids

[DNAPLs]). The nonaqueous phase liquid refers to liquids that are immiscible in water. Still, there

are risks for shallow groundwater supplies, which may be used for private wells for drinking water

purposes.

For surface water, the relatively low density of many petroleum fractions can pose some major short-

term concerns, especially for fish and wildlife. Many petroleum fractions float in water and form thin

surface films (Jordan and Payne 1980; Mackay 1984). Gasoline, diesel, or other common fuel oils

when spilled to water quickly spread out into a film 0.1 millimeter or less in thickness. This means

that a very small amount of oil can create a film over a very large area of water surface. While

natural physical and biological weathering processes will dissipate or degrade such oil slicks in time

frames ranging from days to a few weeks, there is considerable short-term opportunity for damage to

water fowl, aquatic mammals, fish, and other aquatic organisms. For inland waters, large oil spills

may force shutdowns in surface water withdrawals for public drinking water supplies until the

surface slicks have dissipated (Clark et al. 1990). Where the spilled petroleum washes up onto

beaches or shorelines, there may be short-term damage to fish and wildlife as well as impacts to

recreational use of shoreline or riparian areas for human swimming or fishing.

Some heavier petroleum fractions, including the chemicals called PAHs found in motor oils or as byproducts

of combustion, show neutral buoyancy or may be heavier than water. Such components can

accumulate in substrates. This can lead to stresses for benthic organisms, shellfish, or bottom feeding

fish. PAHs or “tarballs” formed when lighter oil fractions combine with suspended sediment or algae

can have a serious impact on a water body’s use for commercial fishing or shellfishing and its value

for recreational swimming or sports fishing.

In addition to releases from the various components or activities that make up the production and

distribution system for petroleum products (the oil system), many older waste sites show TPH-related

site contamination. Comprehensive Environmental Response, Compensation, and Liability Act

(CERCLA) site descriptions often mention petroleum, oil and grease, or petroleum, oil, and lubricants

(POL) as present at a former waste disposal site. An example is given below for a waste oil recycling

site, where TPH-type chemicals were obviously a common site contaminant. The CERCLA clean-up

actions, however, focus on a range of specific hazardous or toxic chemicals. Some of the specific

chemicals (e.g., toluene) would show up in a TPH test, but the chlorinated solvents and metals do not.
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Since a site cannot be prioritized for CERCLA attention if the only problem involves TPH site

contamination, CERCLA actions are often triggered by the presence of other site contaminants that

can clearly be ranked as hazardous or toxic. The long-term clean-up actions may entail remediation

steps that reduce or eliminate the TPH concerns, but these actions are secondary results of the cleanup

activities.

This oil exemption aspect of CERCLA introduces complications when trying to present summary data

on the distribution of NPL sites showing TPH site contamination. The ATSDR HazDat database

contains only 34 records dealing explicitly with TPH at current or former NPL sites (ATSDR 1998a).

While CERCLA deals with former waste disposal sites, the RCRA program handles active waste

disposal facilities. Many waste facilities still in use have older sites (management units) within them

that may need corrective actions similar to those encountered at CERCLA NPL sites. At least 5,100

RCRA hazardous waste treatment, storage, and disposal facilities (TSDFs) may need some corrective

actions before they can be shut down (EPA 1994b). While there are no readily available statistics,

many of these RCRA facilities needing corrective actions also contain waste oils (EPA 1994b). As

with CERCLA, RCRA works with what amounts to a hazardous waste exclusion clause for ordinary

petroleum products. Most clean-up efforts, therefore, focus on legally defined toxics and hazardous

materials as the main line of attack in site remediation, with the expectation that these measures will

also help ameliorate any TPH-related concerns.

5.3 FATE AND TRANSPORT

5.3.1 Overview

Chemical analysis for all individual compounds in a petroleum bulk product released to the

environment is generally unrealistic due to the complexity of these mixtures and the laboratory

expense. Determining the chemical composition of a petroleum release is further complicated by

hydrodynamic, abiotic, and biotic processes that act on the release to change the chemical character.

The longer the release is exposed to the environment, the greater the change in chemical character and

the harder it is to obtain accurate analytical results reflecting the identity of the release. After

extensive weathering, detailed knowledge of the original bulk product is often less valuable than

current site-specific information on a more focused set of hydrocarbon components, for example TPH

fractions.
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Health assessment efforts are frequently frustrated by three primary problems: (1) the inability to

identify and quantify the individual compounds released to the environment as a consequence of a

petroleum spill; (2) the lack of information characterizing the fate of the individual compounds in

petroleum mixtures; and (3) the lack of specific health guidance values for the majority of chemicals

present in petroleum products. To define the public health implications associated with exposure to

petroleum hydrocarbons, it is necessary to have a basic understanding of petroleum properties,

compositions, and the physical, chemical, biological, and toxicological properties of the compounds

most often identified as the key chemicals of concern.

5.3.2 Fate and Transport Processes

This section describes important chemical, physical, and biological processes that affect the behavior

of hydrocarbon compounds in the environment. This information may be used to identify the

environmental media that are likely to be affected by a release and to predict the potential for

subsequent human exposure.

5.3.2.1 Bulk Oil Migration

Petroleum products released to the environment migrate through soil via two general pathways: (1) as

bulk oil flow infiltrating the soil under the forces of gravity and capillary action, and (2) as individual

compounds separating from the bulk petroleum mixture and dissolving in air or water. When bulk oil

flow occurs, it results in little or no separation of the individual compounds from the product mixture

and the infiltration rate is usually fast relative to the dissolution rate (Eastcott et al. 1989). Many

compounds that are insoluble and immobile in water are soluble in bulk oil and will migrate along

with the bulk oil flow. Factors affecting the rate of bulk oil infiltration include soil moisture content,

vegetation, terrain, climate, rate of release (e.g., catastrophic versus slow leakage), soil particle size

(e.g., sand versus clay), and oil viscosity (e.g., gasoline versus motor oil).

As bulk oil migrates through the soil column, a small amount of the product mass is retained by soil

particles. The bulk product retained by the soil particles is known as “residual saturation.”

Depending upon the persistence of the bulk oil, residual saturation can potentially reside in the soil

for years (Dragun 1988). Residual saturation is important as it determines the degree of soil

contamination and can act as a continuing source of contamination for individual compounds to

separate from the bulk product and migrate independently in air or groundwater (Bauman 1988). If
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the release is persistent in the environment, there can be impacts to extensive areas as the individual

compounds continue to separate and migrate away from the spill area via air or groundwater.

When the amount of product released to the environment is small relative to the volume of available

soil, all of the product is converted to residual saturation and downward migration of the bulk product

usually ceases prior to affecting groundwater resources. Adverse impacts to groundwater may still

occur if rain water infiltrates through soil containing residual saturation and initiates the downward

migration of individual compounds.

When the amount of product released is large relative to the volume of available soil, the downward

migration of bulk product ceases as water-saturated pore spaces are encountered. If the density of the

bulk product is less than that of water, the product tends to “float” along the interface between the

water saturated and unsaturated zones and spread horizontally in a pancake-like layer, usually in the

direction of groundwater flow. Almost all motor and heating oils are less dense than water (Knox

1993; Mackay 1988) and are referred to as LNAPLs.

If the density of the bulk product is greater than that of water, the product will continue to migrate

downward through the water table aquifer under the continued influence of gravity. Downward

migration ceases when the product is converted to residual saturation or when an impermeable surface

is encountered. Polychlorinated biphenyls and other chlorinated organic solvents are usually denser

than water and are characterized as DNAPLs.

In reality, bulk oil flow is affected by numerous product-specific and site-specific factors. As a

consequence, product distribution in the subsurface can be quite complex.

5.3.2.2 Compound Migration

As the bulk product migrates through the soil column, individual compounds may separate from the

mixture and migrate independently. Chemical transport properties such as volatility, solubility, and

sorption potential are often used to evaluate and predict which compounds will likely separate from

the mixture.

Volatility. Volatility is defined as the propensity of a chemical to partition to air and migrate as a

vapor. It is primarily a function of the vapor pressure of the compound. Vapor pressure is defined as

the pressure of a chemical exerted by its vapor when in equilibrium with the solid or liquid form of
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that chemical. For example, if a chemical in a liquid form is placed in a closed container, molecules

of the chemical that possess relatively high kinetic energy will migrate to the surface of the liquid and

evaporate into the air space in the container.

Since petroleum products are complex mixtures of hundreds of compounds, the compounds

characterized by relatively high vapor pressures tend to volatilize and enter the vapor phase. The

exact composition of these vapors depends on the composition of the original product. Using gasoline

as an example, compounds such as butane, propane, benzene, toluene, ethylbenzene and xylene are

preferentially volatilized (Bauman 1988). Because volatility represents transfer of the compound

from the product or liquid phase to the air phase, it is expected that the concentration of that

compound in the product or liquid phase will decrease as the concentration in the air phase increases.

In general, compounds having a vapor pressure in excess of 10-2 mm Hg are more likely to be present

in the air phase than in the liquid phase. Compounds characterized by vapor pressures less than

10-7 mm Hg are more likely to be associated with the liquid phase. Compounds possessing vapor

pressures that are less than 10-2 mm Hg, but greater than 10-7 mm Hg, will have a tendency to exist in

both the air and the liquid phases (Knox 1993).

Although volatility is a function of vapor pressure, environmental factors affect the rate of

volatilization. For example, high summer temperatures enhance volatilization, particularly when soils

begin to dry out. The rate of volatilization is also a function of air and soil temperature, humidity,

wind speed, soil type, moisture content, oil composition, solar radiation, and thickness of the oil layer.

Volatilization of benzene, toluene, ethylbenzene, and xylene from gasoline-contaminated soils tends to

increase with decreasing moisture content (Frankenberger 1992). Bossert and Bartha (1986)

indicated that n-alkanes greater than C18 exhibit no substantial volatilization at ambient temperatures;

however, lighter fractions (<C18) are subject to volatilization.

The propensity for a compound to volatilize from an aqueous phase can be grossly estimated using

Henry’s law, which relates vapor pressure, solubility, and molecular weight. Henry’s law constant

can be estimated using these three chemical-specific parameters or it can be measured on a

compound-by-compound basis in the laboratory. Henry’s law constant is frequently used to assess the

environmental fate of organic compounds in the subsurface.

Solubility. Solubility is one of the key factors in determining compound behavior, and thus the

impact, of a chemical in the environment. Solubility is expressed in terms of the number of milli-
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grams of pure chemical that can be dissolved in one liter of water under standard conditions of 25 ºC

and one atmosphere of pressure. The solubility of an organic compound determines its propensity to

dissolve into water. The greater the solubility, the greater the likelihood that the chemical will

dissolve into infiltrating rainwater or groundwater and migrate away from the release area.

Solubility generally decreases with increasing molecular weight of the hydrocarbon compounds. For

compounds having similar molecular weights, the aromatic hydrocarbons are more water soluble and

mobile in water than the aliphatic hydrocarbons (ASTM 1995) and branched aliphatics are less

water-soluble than straight-chained aliphatics. Coleman et al. (1984) determined that the compounds

most likely to be measured in water in contact with gasoline, kerosene, and fuel oil #2 were the

light-fraction, aromatic hydrocarbons such as benzene, toluene, ethylbenzene, and xylenes. They

found that although the aromatic compounds in these three fuels may comprise as much as 50% by

weight, aromatic compounds in the C6-C13, range made up approximately 95% of the compounds

dissolved in water. This correlates well with studies showing an enrichment of light-fraction

hydrocarbons in the water phase and a depletion in the fuel phase.

It is important to note that the partitioning behavior of organic compounds is affected by the presence

of other hydrocarbons in the subsurface. The maximum dissolved concentrations achieved in the

subsurface are always less than the concentration of any pure compound, when it is present as one of

many constituents of a petroleum product (ASTM 1995). For example, the solubility of pure benzene

in water is given as 1,780 mg/L, but the maximum calculated concentration in an aquifer immediately

beneath a gasoline release has been estimated to be about 62 mg/L (Daugherty 1991).

Organic Carbon-Water Partition Coefficient. The organic carbon-water partition coefficient

(Koc) describes the propensity for a organic compound to partition between water and organic carbon

in the soil. Chemical mobility can be determined based on the likelihood of a chemical to partition

more strongly to either the organic carbon in the substrate or the water. If the chemical is strongly

associated with the substrate (i.e., sorbed), the chemical is relatively immobile and will not be leached

or transported great distances from the area of the release. In contrast, if the chemical is weakly

sorbed to the substrate, the chemical has the potential to be transported greater distances and greater

chance to contact human receptors.

The degree of sorption not only affects the mobility of the compound, it can also affect other

transport and transformation reactions. For example, volatilization and biodegradation rates are

directly dependent upon the extent of partitioning (Dragun 1988). A compound that is strongly
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sorbed to the organic carbon in the substrate is less available and less likely to be volatilized or

biodegraded.

A mobility classification scheme based on the Koc indicates that compounds having Koc values

<50 L/kg, 50-150 L/kg, and 150-500 L/kg are considered to be very mobile, mobile, and

intermediate in mobility, respectively (Dragun 1988). Using this scheme, benzene (Koc = 60 L/kg) is

classified as mobile; whereas toluene, ethylbenzene, and total xylenes (Koc = 182 L/kg, Koc = 363

L/kg, and Koc ≅ 400 L/kg, respectively) are classified as having intermediate immobility.

In summary, lighter petroleum products such as gasoline contain constituents with higher water

solubility and volatility and lower sorption potential than heavier petroleum products such as fuel oil.

Data compiled from gasoline spills and laboratory studies indicate that these light-fraction hydrocarbons

tend to migrate readily through soil, potentially threatening or affecting groundwater

supplies. In contrast, petroleum products with heavier molecular weight constituents, such as fuel oil,

are generally more persistent in soils, due to their relatively low water solubility and volatility and

high sorption capacity (Stelljes and Watkin 1991).

5.3.2.3 Biodegradation

Indigenous microbes found in many natural settings (e.g., soils, groundwater, ponds) have been shown

to be capable of degrading organic compounds. Biodegradation occurs as microbes use organic

compounds as a source of energy. Unlike other fate processes that disperse contaminants in the

environment, biodegradation can eliminate the contaminants without transferring them across media.

The final products of microbial degradation are carbon dioxide, water, and microbial biomass.

The rate of hydrocarbon degradation depends on the chemical composition of the product released to

the environment as well as site-specific environmental factors. Generally the straight chain

hydrocarbons and the aromatics are degraded more readily than the highly branched aliphatic

compounds (Havlicek 1988). The n-alkanes, n-alkyl aromatics, and the aromatics in the C10-C22

range are the most readily biodegradable; n-alkanes, n-alkyl aromatics, and aromatics in the C5-C9

range are biodegradable at low concentrations by some microorganisms, but are generally

preferentially removed by volatilization and thus are unavailable in most environments; n-alkanes in

the C1-C4 ranges are biodegradable only by a narrow range of specialized hydrocarbon degraders; and

n-alkanes, n-alkyl aromatics, and aromatics above C22 are generally not available to degrading

microorganisms. Hydrocarbons with condensed ring structures, such as PAHs with four or more
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rings, have been shown to be relatively resistant to biodegradation. PAHs with only 2 or 3 rings (e.g.,

naphthalene, anthracene) are more easily biodegraded (Park et al. 1990).

A large proportion of the water-soluble fraction of the petroleum product may be degraded as the

compounds go into solution. As a result, the remaining product may become enriched in the

alicyclics, the highly branched aliphatics, and PAHs with many fused rings.

Environmental factors such as oxygen content, pH, moisture content, temperature, nutrient

concentrations, and the microbiota also affect the rate of biodegradation. In almost all cases, the

presence of oxygen is essential for effective biodegradation of oil. Anaerobic decomposition of

petroleum hydrocarbons leads to extremely low rates of degradation (Frankenberger 1992). The ideal

pH range to promote biodegradation is close to neutral (6-8). For most species, the optimal pH is

slightly alkaline, that is, greater than 7 (Dragun 1988). The moisture content of the contaminated soil

will affect biodegradation of oils due to dissolution of the residual compounds, dispersive actions, and

the need for microbial metabolism to sustain high activity. The moisture content in soil affects

microbial locomotion, solute diffusion, substrate supply, and the removal of metabolic by-products.

Excessive moisture will limit the gaseous supply of oxygen for enhanced decomposition of petroleum

hydrocarbons. Most studies indicate that optimum moisture content is within 50-70% of the water

holding capacity (Frankenberger 1992).

All biological transformations are affected by temperature. Generally, as the temperature increases,

biological activity tends to increase up to a temperature where enzyme denaturation occurs. The

presence of oil should increase soil temperature, particularly at the surface. The darker color

increases the heat capacity by adsorbing more radiation. The optimal temperature for biodegradation

to occur ranges from 18 ºC to 30 ºC. Minimum rates would be expected at 5 ºC or lower

(Frankenberger 1992).

There are at least 11 essential macronutrient and micronutrient elements that must be present in the

soil in proper amounts, forms, and ratios to sustain microbe growth (Dragun 1988). These

11 elements are nitrogen, phosphorus, potassium, sodium, sulfur, calcium, magnesium, iron,

manganese, zinc, and copper. Nitrogen is usually the main limiting nutrient governing the rate of

decomposition of petroleum hydrocarbons. However, small amounts of phosphorus fertilizers may

also be necessary to stimulate biodegradation (Mills and Frankenberger 1994).
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Biodegradation rates in soils are also affected by the volume of product released to the environment.

At concentrations of l-0.5% of oil by volume, the degradation rate in soil is fairly independent of oil

concentrations. However, as oil concentration rises, the first order degradation rate decreases and the

oil degradation half-life increases. Ultimately, when the oil reaches saturation conditions in the soil

(i.e., 30-50% oil), biodegradation virtually ceases (Eastcott et al. 1989). This is substantiated by

Borden et al. (1986) who found that biodegradation of trace quantities of hydrocarbon compounds

occurred along contaminant plume edges in the presence of oxygenated formation water, but that little

biodegradation occurred in the plume center where concentrations were higher. Wilson et al. (1985)

also found biodegradation to take place selectively along plume margins controlled by the oxygen

supply.

The point at which biodegradation starts to become adversely affected by the amount of oil present is

not well established. Other inhibitory effects include the generation of toxic intermediate organic

compounds. Degradation of aromatic hydrocarbons, such as toluene, can yield phenolic and benzoic

acid intermediates. Various microbial populations may be inhibited by compounds such as phenol

and toluene, particularly at high concentrations. Although phenol- and toluene-degrading microorganisms

have been isolated in soil exposed to low concentrations of these compounds, they are

biocidal at elevated concentrations (Frankenberger 1992).

The inhibitory effects of heavy metals can also influence biodegradation of organic materials. The

presence of heavy metals in oil sludge, motor oil, and used crankcase oil may have deleterious effects

on the hydrocarbon oxidizers in decomposing petroleum hydrocarbons (Frankenberger 1992). Jensen

(1977) studied the effects of lead on biodegradation of oily waste in soil and found that the presence

of lead caused certain changes in the population of soil microbiota. Reduction in the bacterial

population was evident, particularly at the highest lead concentration of 5,000 ppm. Measurements

of oxygen consumption revealed increased microbial activity after the addition of oil to soils, but the

presence of lead markedly reduced this activity with a prolonged lag phase in the biodegradation of oil

sludge. Other elements of concern include zinc, copper, chromium, nickel, and cadmium. With

repeated applications of oily sludge to a landfarm operation, heavy metals may accumulate at levels

in which biodegradation may be reduced.
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5.3.3 Models

An understanding of the factors that affect the fate and transport of contaminants in the environment,

and the ability to develop and apply mathematical models that incorporate these factors, are important

in risk management applications. Models are used to approximate real world processes to provide

environmental analyses to support management decisions. If properly used, models can assist

decision makers in effectively dealing with the complex issues related to petroleum releases in the

environment.

As noted earlier, petroleum products released to the environment migrate through soil by two general

pathways: via bulk oil flow and as individual compounds dissolved in air or water. Although

comprehensive mathematical models could be devised to treat both types of migration, the resultant

framework would likely be excessively complex. Eastcott et al. (1989) suggests a two-stage modeling

approach. The first stage considers transport of the bulk oil phase. After the oil is rendered

immobile, a second stage is applied to assess the fate of the individual compounds that separate from

the bulk phase. Models of this sort are often called solute transport models. The use of a two-stage

approach is justified because when bulk oil flow does occur, it results in little or no component

separation (i.e., benzene travels as fast as hexane) and the transport rate is usually fast relative to that

of the dissolution rate (Eastcott et al. 1989).

Modeling the bulk oil phase is complex and includes many uncertainties; consequently, it has not been

employed extensively in decision-making processes (Bonazountas 1988). One exception is the

Hydrocarbon Spill Screening Model (HSSM), which simulates the flow of LNAPLs through the

unsaturated zone, LNAPL spreading in the capillary fringe, and the transport of a single chemical

originating from the LNAPL in the water table aquifer (Charbeneau et al. 1995). HSSM may be used

to provide an estimate of dissolved concentrations of compounds originating from a petroleum release

of known composition, rate of release, and volume of release. It is generally assumed that modeling

interest lies in the potential for adverse impacts to water quality, and most modeling practices have

concentrated on the behavior of dissolved organic compounds at the edges of bulk oil plumes or

lenses. Table 5-6 lists selected soil and groundwater models that are well documented, operational,

and representative of types of available models.
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approximately one order of magnitude (TPHCWG 1997b). A set of 13 fractions were selected by the

TPHCWG for use in evaluating TPH environmental levels (TPHCWG 1997b).

5.3.3.3 Transport Models

Transport models fall into four main categories:

• unsaturated zone,

• groundwater,

• geochemical, and

• ranking

The first two categories use similar methodologies applied to different geohydrologic conditions; the

third estimates chemical concentrations at equilibrium; and the fourth serves as a screening

methodology to evaluate the severity of a release. As shown in Table 5-6, the majority of the models

are geared toward assessing contaminant behavior in the unsaturated zone and groundwater. These

types of models can appropriately be used for assessing petroleum release sites, but it is important to

note that they have been developed for the broad spectrum of contaminants typically found at

Superfund sites (e.g., chlorinated hydrocarbons and metals) and have not always been verified or

validated for petroleum hydrocarbons in natural porous media (Daugherty 199 1). For example, well

known and available models such as SESOIL, which is a one-dimensional, finite difference flow and

transport model developed for evaluating the migration of contaminants through the unsaturated zone,

cannot simulate the transfer of hydrocarbon compounds from the bulk oil phase to the dissolved

aqueous phase.

Despite their limitations, models are useful for assessing generic effects of contaminants or impacts

over larger areas. For this purpose, however, simplified expressions derived from first principles

appear to be as useful as more elegant computer models for the evaluation of contaminant fate and

transport at small sites.

For purposes of this section, the chemical-specific parameters for the petroleum hydrocarbon

fractions are based on selecting a midpoint for the fraction, based on empirical data unified by

equivalent carbon number (EC). The fractions labeled as C5-C7 and >C7-C8 are characterized by one

compound only, benzene and toluene, respectively. Remaining fractions are characterized by multiple
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compounds, as described in TPHCWG (1997b). Representative physical parameters for TPH

fractions are presented in Table 5-7.

ASTM’s risk-based corrective action (RBCA) uses a tiered approach to data collection and analysis

in supporting decisions on site assessment and response to petroleum. The RBCA procedure begins

with the assessment of the site (see Figure 5-2 for RBCA process flow-chart).

As part of Tier 1, a look-up table is used to determine whether site conditions satisfy the criteria for a

quick regulatory closure or warrant a more site-specific assessment. The look-up table is a tabulation

for potential exposure pathways, media (i.e., soil, water, and air), a range of incremental carcinogenic

risk levels and hazard quotients equal to unity, and potential exposure scenarios for each chemical of

concern. In Tier 2, the non-site-specific assumptions and point(s) of exposure (point at which an

individual or population may come in contact with a chemical of concern originating from a site) used

in Tier 1 are replaced with site-specific data and information. In Tier 2, the user applies Tier 1 risk-

based screening levels (RBSL) look-up table values for the direct exposure scenario at reasonable

point(s) of exposure (as opposed to the source areas as is done in Tier 1). The additional site-specific

data may support alternate fate and transport analysis. Tier 2 RBCA process also involves the

development of site-specific target levels (SSTLs) based on the measured and predicted attenuation of

the chemical(s) of concern away from the source using relatively simplistic mathematical models. In

Tier 3 evaluation, SSTLs for the source area(s) and the point(s) of compliance are developed on the

basis of more sophisticated statistical and contaminant fate and transport analysis using site-specific

input parameters for both direct and indirect exposure scenarios. Tier 3 evaluation is much more

complex than Tiers 1 and 2 since it may include additional site assessment, probabilistic evaluations,

and sophisticated chemical fate/transport models.

5.4 LEVELS IN THE ENVIRONMENT

It is extremely difficult to make general statements about typical TPH or TPH-component levels in

environmental media. Environmental fate and transport processes of TPH mixtures are complex.

Interactions of the chemicals within the bulk oil typically result in different environmental fate and

transport than would be predicted for the individual components. As with the discussion of basic fate

and transport processes (see in Section 5.3), site-specific information is nearly always needed for
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correct interpretation of data for such media as surface water, soils, or groundwater. Petroleum site

contaminants, especially the types of bulk fuel products and lubricants that are the focus of this

profile, are usually encountered as liquids or semi-liquid sludges. The site contaminants almost

always originate as mixtures of many different hydrocarbons typical of such initial products as motor

gasoline, jet fuels, or fuel oils. Frequently, there are portions of a waste site where soils or sub-soil

materials have accumulated large masses of petroleum contaminants that form nonaqueous liquid

systems. The term nonaqueous phase liquids (NAPL) is often applied to such areas of heavy

contamination. NAPLs propagate plumes moving away from the central mass. The NAPL complex,

consisting of the central mass and plumes, usually reaches an equilibrium due to a combination of

physical, chemical, and biochemical processes. TPH chemicals move into the actual soil or

groundwater media from the edge of the NAPL plumes.

Without some knowledge of the locations of NAPL central masses or plumes at a waste site, it can be

very hard to interpret analyses from soil samples or test wells. Within the NAPL zone, readings for

TPH or one or more specific petrochemicals may be very high. Such high readings are indicative of a

soil matrix virtually engulfed by a petroleum waste and represent the bulk oil product rather than the

environmental media. Beyond the NAPL zone, the observed levels are substantially less. Media

sampling values taken at random from different site-specific spatial contexts should be interpreted

within the context of the sampling location relative to the NAPL central masses and plumes.

Since most TPH contamination involves a complex mixture of hydrocarbons, it is unlikely that

aqueous readings beyond the NAPL zone will be near the limits of solubility (based on assumptions of

a pure hydrocarbon type in equilibrium with water). If concentrations are near or above solubility

limits, NAPL was probably present in the sample. TPH materials are relatively insoluble in water,

with only the BTEX chemicals or some short-chain aliphatic hydrocarbons showing any appreciable

potential for water solubility. When they are part of complex mixtures, the individual components

never reach the concentrations predicted from their solubility constants as individual chemicals. For

example, chemicals like benzene or toluene, which may constitute a small percentage within an initial

bulk product like gasoline, jet fuel, or diesel fuel, have a much greater tendency to stay dissolved in

the NAPL system than to become integrated into the water-based system beyond the NAPL boundary.

Therefore, the effective solubility of these chemicals as part of a complex mixture is less than it

would be in a release of the pure chemical.
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Some simple examples help illustrate this point. A study by Burris and MacIntyre (1984) compared

the theoretical solubilities of specific chemicals in water to the solubilities of the same chemicals

when they were part of such petroleum product mixtures as JP-4 jet fuel. The results are summarized

in Table 5-8. Similar comparisons for all the BTEX (benzene, toluene, ethylbenzene, xylene)

chemicals, based on materials presented by Potter (1993) are presented in Table 5-9.

The information presented in Tables 5-8 and 5-9 shows that for common petroleum products in water,

the solubility of the component chemicals is usually less than the potential solubility of the individual

chemical in water by an order of magnitude or more. Table 5-9 also shows why much attention often

focuses on site contamination involving gasoline. Gasoline mixtures have much higher percentages of

light fraction aromatic hydrocarbons, such as the BTEX aromatics, than other bulk fuel products.

This can lead to much higher levels of contamination in ambient water or groundwater from gasoline

than from petroleum mixtures with less soluble components. The increased solubilities of the BTEX

chemical components from gasoline mixtures would thus be more likely to result in groundwater

contamination. For other bulk fuel products, BTEX levels in the mixture are generally far lower; as a

result, their water solubility and thus, their potential for groundwater contamination, would be much

lower.

In light of these considerations, it becomes easier to see why it is highly desirable that available

monitoring data from environmental media be combined with site-specific information. The basic

needs are locational data on the spatial configuration of NAPL pockets and plumes combined with

analyses of the types of TPH components found in the NAPL system and the surrounding, relatively

uncontaminated media (soils, water, and groundwater). With this basic knowledge, a variety of

modeling techniques can be applied to estimate effective solubilities of specific hydrocarbon

compounds (Feenstra et al. 1991). Moreover, since there can be literally thousands of specific

compounds in TPH site contaminants, it is improbable that a site analysis for a TPH-contaminated

site would include sampling data for all TPH components. As a result, the surrogate approaches and

screening modeling tools such as RBCA have been widely used to evaluate environmental data at

TPH-contaminated waste sites.
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5.5 ADEQUACY OF THE DATABASE

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation

with the Administrator of EPA and agencies and programs of the Public Health Service) to assess

whether adequate information on the health effects of TPH is available. Where adequate information

is not available, ATSDR, in conjunction with the NTP, is required to assure the initiation of a

program of research designed to determine the health effects (and techniques for developing methods

to determine such health effects) of TPH.

The following categories of possible data needs have been identified by a joint team of scientists from

ATSDR, NTP, and EPA. They are defined as substance-specific informational needs that if met

would reduce the uncertainties of human health assessment. This definition should not be interpreted

to mean that all data needs discussed in this section must be filled. In the future, the identified data

needs will be evaluated and prioritized, and a substance-specific research agenda will be proposed.

5.5.1 Identification of Data Needs

Physical and Chemical Properties. The physical and chemical properties of some TPH

compounds and petroleum products containing TPH are well defined and can be used to estimate the

fate of TPH transport fractions following release to the environment (Air Force 1989, 1991; IARC

1987, 1989a, 1989b, 1989c, 1989d). Data needs associated with specific TPH compounds that are

components of petroleum products (benzene, ethylbenzene, toluene, xylenes, hexane, and PAHs) are

presented in the ATSDR toxicological profiles for these chemicals (ATSDR 1994, 1995d, 1995f,

1997a, 1999a, 1999b).

Production, Import/Export, Use, Release, and Disposal. TPH compounds are the primary

component in various petroleum products; therefore, most releases of TPH occur as a result of

petroleum product spills either on land or water. More information on the production volumes for

various petroleum products, environmental releases, and disposal would aid in assessing the potential

for human exposure to TPH as a result of accidental or intentional release. Data needs for specific

petroleum products are discussed in the ATSDR toxicological profiles for automotive gasoline

(1995a), Stoddard solvent (1995b), jet fuels (1995c and 1998b), fuel oils (1995g), hydraulic fluids

(1997b), and mineral-based crankcase oil (1997c).
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Environmental Fate. The environmental fate of TPH is based on the environmental partitioning

of the major hydrocarbon fractions. However, the environmental fate of chemicals in mixtures and/or

bulk oil releases may be different than that observed for releases of individual TPH chemicals (see

Sections 5.3.2.1 and 5.3.2.2). The more soluble and volatile fractions (i.e., the low molecular weight

aliphatic and aromatic fractions) are more likely to leach to groundwater, volatilize to the air, or

biodegrade than the larger TPH compounds are. These higher molecular weight compounds tend to

sorb to the soil and persist at the site of release. The movement and persistence of several TPH

compounds and petroleum products are well studied. Data needs for specific TPH compounds and

petroleum products have been discussed in other ATSDR toxicological profiles (ATSDR 1994,

1995a, 1995b, 1995c, 1995d, 1995e, 1995f, 1995g, 1997a, 1997b, 1997c, 1998b, 1999a, 1999b).

Bioavailability from Environmental Media. The extent of absorption of TPH by inhalation,

oral, and/or dermal routes varies because of the wide range of physical/chemical properties observed

for these chemicals. The extent of absorption by the various routes depends on the volatility,

solubility, lipophilicity, and other properties of the specific TPH chemical or mixture. Several of the

TPH component compounds have been discussed in individual ATSDR toxicological profiles (e.g.,

benzene, ethylbenzene, toluene, xylenes, hexane, PAHs), which should be consulted for further

information (ATSDR 1994, 1995d, 1995f, 1997a, 1999a, 1999b). More data linking exposure levels

of TPH mixtures with biological levels of component chemicals would be useful in determining which

chemicals in the mixture are most likely to be absorbed and by which routes. This information would

aid in determining daily human exposure levels and more accurately assessing the risk associated with

exposure to TPH.

Food Chain Bioaccumulation. Studies of the accidental and intentional release of gasoline and

fuel oils to the aquatic environment indicate that aquatic organisms are able to bioaccumulate some

TPH fractions, particularly PAHs (Air Force 1989; Farrington et al. 1982); however, depuration does

occur if the source of the contamination is removed (Cox et al. 1975; Williams et al. I989). In

general, the lower molecular weight aliphatics and aromatics do not bioaccumulate (Air Force 1989).

Further studies are needed to determine the biomagnification potential of the TPH fractions,

particularly PAHs, up the food chain within aquatic and terrestrial ecosystems. Specific research

needs are presented in the individual ATSDR toxicological profiles on specific hydrocarbon

components such as benzene, toluene, total xylenes, and PAHs (ATSDR 1994, 1995d, 1995f, 1997a).
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Research on the biomagnification of various petroleum products (e.g., gasoline, fuel oil) would not be

useful because the composition of these mixtures changes rapidly in the environment. Individual

chemicals present in the original mixture may bioaccumulate, but the mixture does not.

Exposure Levels in Environmental Media. TPH is commonly measured where hydrocarbon

releases have occurred (e.g., leaking gasoline, diesel, or fuel oil tanks and petroleum product spills).

In most cases, the analytical method does not provide specific information regarding the TPH

fractions present (see Section 3.3). More data on levels of TPH fractions and/or their components in

the air, water, and soil around facilities where petroleum products are produced, stored, and used

would be useful. Data on levels in contaminated surface water, groundwater, and soil are needed to

assess the potential risk from these likely sources of exposure.

Exposure Levels in Humans. Workers who use petroleum products in manufacturing and those

involved in their transfer may experience increased dermal and inhalation exposures to TPH.

Workers in the petroleum refining industry, particularly those involved with monitoring and servicing

unit equipment, are known to have increased exposure to TPH (Runion 1988). Reliable monitoring

data for levels of TPH in contaminated media could be used in combination with biomarkers to

identify TPH exposure and assess the potential risk of adverse health effects in populations living

near contaminated areas. This information is necessary for assessing the need to conduct health

studies on these populations.

Exposure Registries. No exposure registries for TPH or petroleum products were located. This

substance is not currently one of the compounds for which a subregistry has been established in the

National Exposure Registry. The substance will be considered in the future when chemical selection

is made for subregistries to be established. The information that is amassed in the National Exposure

Registry facilitates the epidemiological research needed to assess adverse health outcomes that may

be related to exposure to this substance. A registry does exist for benzene, a component of TPH.

More information on the benzene exposure registry can be found in the ATSDR toxicological profile

for benzene (ATSDR 1997a).
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5.5.2 Ongoing Studies

No summary of ongoing studies is presented in this profile. Useful summaries are provided in

toxicological profiles for the specific petroleum hydrocarbons or petroleum products, as listed in

Table 3-l. As of September 1999, a 90-day toxicity study of a C9 to C16 aromatic fraction in rats and

mice was completed by Dr. D. Mattie and colleagues at Wright Patterson toxicology laboratory

(DOD), though not published. No other petroleum fraction toxicity research can be reported.
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6.1 INTRODUCTION

The primary purpose of this chapter is to provide public health officials, physicians, toxicologists,

and other interested individuals and groups with an overall perspective on the toxicology of total

petroleum hydrocarbons (TPH), and an understanding of various approaches used to assess petroleum

hydrocarbons on the basis of fractions, individual indicator compounds, and appropriate surrogates.

This chapter also provides descriptions and evaluations of toxicological studies and epidemiological

investigations for these TPH fractions, indicator compounds, and surrogates, and provides

conclusions, where possible, on the relevance of toxicity and toxicokinetics data to public health.

6.1.1 TPH Definition and Issues

Overview. The assessment of petroleum hydrocarbon-contaminated sites has involved analysis for

“total petroleum hydrocarbons” or TPH. TPH is a loosely defined aggregate that depends on the

method of analysis as well as the contaminating material, and represents the total mass of

hydrocarbons without identification of individual components (see Chapter 3). As TPH is not a

consistent entity, the assessment of health effects and development of health guidance values, such as

Minimal Risk Levels (MRLs) for TPH as a single entity are problematic. Earlier in the profile

(Chapters 2 and 3), various TPH approaches were presented that divide TPH into fractions or groups

of compounds based on analytical, fate and transport, and exposure issues. Similarly, several

different approaches have also been evolving to assess the health effects of TPH on the basis of

indicator compounds for separate fractions, which consist of petroleum hydrocarbons with similar

physical and chemical properties. ATSDR’s approach to potential health effects from exposure to

TPH uses surrogate health effects guidelines for each fraction, whether they represent an individual

compound or a whole petroleum product. Additional discussions focusing on these various

approaches to health effects assessment are presented in the remainder of this section (6.1). In

particular, the ATSDR approach (Section 6.1.3) uses existing ATSDR MRLs for several individual

TPH compounds and for specific petroleum products. The use of these MRLs to characterize the

health effects of TPH, using an indicator compound and fraction/surrogate approach, is also

discussed.
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Scope of the Problem. Petroleum hydrocarbons are the principal components in a wide variety

of commercial products (e.g., gasoline, fuel oils, lubricating oils, solvents, mineral spirits, mineral

oils, and crude oil). Because of widespread use, disposal, and spills, environmental contamination is

relatively common. It is important to understand that petroleum products are complex mixtures,

typically containing hundreds of compounds. These include various amounts of aliphatic compounds

(straight-chain, branched-chain, and cyclic alkanes and alkenes) and aromatic compounds (benzene

and alkyl benzenes, naphthalenes, and PAHs). In addition, many petroleum products contain non-

hydrocarbon additives such as alcohols, ethers, metals, and other chemicals that may affect the

toxicity of the mixture.

The number of individual identified hydrocarbon components of the various petroleum products has

been estimated at several hundred to over a thousand. Toxicity data are available for about 95 of

these, but only about 25 were considered to have sufficient data to develop toxicity criteria according

to the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG 1997b). ATSDR has

derived MRLs for 12 of these compounds (anthracene, benzene, ethylbenzene, fluoranthene, fluorene,

n-hexane, naphthalene, toluene, m-xylene, p-xylene, xylenes, and l-methyl naphthalene). EPA has

derived Reference Doses (RfDs) and Reference Concentrations (RfCs) for some of the remaining

compounds. The TPHCWG (1997c) and the Massachusetts Department of Environmental Protection

(MADEP) (Hutcheson et al. 1996) have also derived other health guidance criteria for some of these

compounds. Two of these compounds have EPA-derived cancer slope factors and/or unit risks, and a

relative potency approach has been developed for some of the PAHs. However, it is not yet possible

to assess the overall health implications of TPH from the individual hydrocarbon components because

many of the known components lack appropriate, standardized, comparable toxicity data. In addition

the cost of analysis for all TPH constituents is usually prohibitive.

Although health effects data are available for some petroleum products, and ATSDR-derived MRLs

are available for fuel oil no. 2, JP-4, JP-5/JP-8, JP-7, and kerosene, there are limitations to applying

MRLs for the whole products to TPH. A major limitation is that, when released to the environment,

the composition of a petroleum product changes due to weathering (i.e., differential fate and transport

of its components). Partitioning of fractions consisting of hydrocarbons with similar physical and

chemical properties occurs, with migration of some fractions to other locations and environmental

media, leaving the relatively nonmobile components (the weathered product) at the original location.
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Thus, the actual petroleum hydrocarbon mixture to which a given population is exposed varies with

location, time and environmental medium. Accordingly, health effects data for whole petroleum

products that are relatively heterogeneous, such as gasoline and JP-4, are not necessarily applicable

to the fractions to which exposure actually occurs as a result of transport and weathering. For

example, acute inhalation exposure to a fresh spill of gasoline will be to the more volatile

constituents, whereas intermediate or chronic oral exposure to drinking water contaminated by a

gasoline release will be to the soluble constituents, and exposure to soil at the site of the original spill

will be to the less volatile and less soluble constituents. Thus, none of these exposure scenarios

would be well represented by experimental data using the whole product.

Additional limitations to the use of health effects data for whole petroleum products include the

variable composition of each type of petroleum product due to differences in the crude oil from which

it was refined, in the refining processes used, and in the formulation of the final product. Also, non-hydrocarbon

additives and contaminants, many of which have significant toxicity, are often included

in these whole products (e.g., methyl-tert-butyl ether (MTBE) or lead in gasoline). Finally, the

identity of the originally released material may not be known or more than one such product may have

been released.

Health effects data also are available for some petroleum fractions or process streams that are less

heterogeneous. These materials are more representative of the fractions that may partition in the

environment and are more useful for assessing health effects of intermediate and chronic exposure to

petroleum hydrocarbons. These products are discussed further in Section 6.2. Additional discussion

of these and also the more heterogeneous products is presented in Section 6.3.

Mixtures Issues. Petroleum products and their environmental transport fractions are complex

mixtures. The preferred method for assessing the health effects of complex mixtures is to use

exposure and toxicity data for the mixture of concern, because this approach takes into account

toxicological interactions, such as synergism or antagonism, that may occur among the constituents of

the mixture. If data for the mixture of concern are not available, then data for a similar mixture may

be used. In the absence of pertinent data for the same or a similar mixture, data on the individual

components of the mixture are used, taking into account the potential for toxicological interactions.

The default assumption, when data regarding interactions are not available or do not clearly indicate
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the direction of the interaction, is that the doses or effects are additive (ATSDR 1992; De Rosa et al.

1996; EPA 1986; Johnson and De Rosa 1995; Mumtaz et al. 1994). Other public health aspects of

chemical mixtures and TPH have recently been reviewed (Hansen et al. 1998; Todd et al. 1999)

The mixtures of concern for TPH are not the heterogeneous petroleum products, but rather the

transport fractions to which populations are more likely to be exposed. Thus, use of health effects

data for these fractions would be preferable. When health effects data for petroleum products

(mixtures) similar in composition to these fractions are not available, data for individual constituents

could be used as surrogates, taking into account the potential for toxicologic interactions. Given the

complexity of the interactions data for the individual constituents (Section 6.9) however, the

assumption that the toxicity of the constituents is additive may be the most reasonable approach.

This implicit assumption underlies the adoption of an MRL as a surrogate value to represent the

toxicity of an entire fraction.

6.1.2 Existing Risk-Based Methods for TPH Health Assessment

This section presents approaches of other organizations. The ATSDR approach is presented in

Section 6.1.3.

The American Society for Testing and Materials (ASTM) Approach. ASTM (1995)

developed a Risk-Based Corrective Action (RBCA) approach for petroleum release sites. Additional

information regarding this approach is provided in previous sections of this document and in

Chapter 7. The present discussion is limited to health effects aspects of the approach. The RBCA

approach is not limited to TPH, but includes any chemical that may be associated with petroleum

product releases, including nonhydrocarbon constituents and additives. ASTM used an indicator

compound approach that assumes that a significant portion of the total potential impact on human

health from all chemicals in a petroleum product spill is due to the indicator compounds, termed

chemicals of concern. The ASTM approach assesses the risk of exposure to each chemical of concern

separately during the derivation of Tier 1 (general) risk-based screening levels, and Tier 2 and 3 site- specific

target levels for contaminated media. Although the use of whole mixture toxicity data and

the assumption of additivity for the toxicity of individual chemicals in a mixture were mentioned as

options for Tier 2 and 3, neither approach was recommended by ASTM. The criteria to be used in

selection of the chemicals of concern for various petroleum products are concentrations in the
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product, solubility and mobility, toxicological properties, aesthetic characteristics (e.g., odor), and

availability of sufficient information to conduct risk assessments. For gasoline, kerosene, and jet

fuels, commonly selected hydrocarbon chemicals of concern are benzene, toluene, ethylbenzene, and

xylene (BTEX). Additional chemicals of concern for kerosene and jet fuels are PAHs. For diesel

fuel, light fuel oils, and heavy fuel oils, the commonly selected hydrocarbon chemicals of concern are

PAHs. Twelve PAHs, including benzo(a)pyrene, were selected for consideration.

The MADEP Approach. The MADEP (Hutcheson et al. 1996; MADEP 1997, 1999)

recommends the use of a combination indicator compound and fraction approach for the assessment

of health effects from TPH in soil and water as follows:

Carcinogenic Effects. Specific petroleum hydrocarbon indicator compounds that have EPA cancer

potency factors are assessed; these are benzene and benzo(a)pyrene. EPA relative potency factors

can be used for benz(a)anthracene, indeno( 1,2,3-cd)pyrene, dibenz(a,h)anthracene, chrysene,

benzo(b)fluoranthene, and benzo(k)fluoranthene.

Noncarcinogenic Effects. The following petroleum hydrocarbon fractions were established based on

molecular structure (aromatic versus aliphatic) and then on number of carbon atoms, using toxicologically

similar groupings and excluding compounds with less than 5 carbons because their high

volatility precludes chronic exposure from spills/releases. With the exception of the aromatic C5-C8

fraction, the toxicity of each fraction is represented by the RfD for a representative “reference

compound” from the fraction. Analytical methods for these fractions have also been suggested

(Section 3.3). Some of these fractions include subfractions that were combined because of similarity

of toxicity across fractions or limitations in the toxicity data.

Aromatic fractions

C5-C8 , assessed on the basis of the individual indicator compounds-benzene (MADEP RfD

derived from inhalation study), toluene, ethylbenzene, and xylenes (EPA RfDi).

C9-C10, using an EPA RfD for pyrene (the lowest RfD for compounds in this group) as a

surrogate and an RfC for xylenes.

Cl1C12, using and EPA RfD for pyrene and an RfC for naphthalene.
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Aliphatic fractions

C5-C8, using an EPA RfD and RfC for n-hexane as a surrogate.

C9-C12, using a MADEP RfD and RfC for n-nonane as a surrogate, based on estimated

relative potency of n-nonane as compared with n-hexane.

C13-C18, using a MADEP RfD and RfC for naphthalene as a surrogate.

C19C35,using a MADEP RfD for white mineral oil (but listing eicosane as the reference

compound).

The MADEP (1997) has published a draft report for public comment regarding implementation of

their approach. This report references the TPHCWG (1997a, 1997b, 1997c) approach (below),

particularly in defining fractions with regard to transport properties, which are related to the

equivalent (or relative) carbon number indexes for the compounds.

The TPHCWG Approach. The TPHCWG (1997a, 1997b, 1997c) also recommends a

combination indicator compound and fraction approach for TPH, but it differs from the MADEP

approach in the elimination of assessment for noncarcinogenic effects if carcinogens are present

above regulatory criteria, in the basis for selection of the fractions, and in a more extensive use of

toxicity data for mixtures to represent the toxicity of the fraction. Some petroleum hydrocarbon

fractions listed below include subfractions that were combined because of similarity of toxicity across

fractions or limitations in the toxicity data.

Carcinogenic Effects. Specific petroleum hydrocarbon indicator compounds that have EPA cancer

potency factors are assessed (i.e., benzene and benzo(a)pyrene).

Noncarcinogenic Effects. These effects are assessed only if the carcinogenic indicator compounds

are not detected or are below regulatory criteria. The following petroleum hydrocarbon fractions,

minus the carcinogenic indicator compounds, were selected as representing compounds with similar

transport properties. Toxicity values for constituents of the fraction or for a similar mixture were

selected to represent the toxicity of the fraction. Aromatic and aliphatic hydrocarbons are considered

separately and further subdivided on the basis of equivalent carbon number index (EC). This index is

equivalent to the retention time of the compounds on a boiling point GC column (non-polar capillary

column), normalized to the n-alkanes. Physical and chemical properties of hydrocarbons that are



TOTAL PETROLEUM HYDROCARONS 99

6. HEALTH EFFECTS

useful in predicting transport (vapor pressure, solubility, partition coefficient, Henry’s law constants)

are predictably related to the EC and can be estimated using algorithms (see Chapter 5).

Aromatic fractions

EC5-EC8, using EPA RfD and RfC for toluene as a surrogate.

EC>8-EC16, using EPA RfDs (all the same value) for two compounds (cumene

[isopropylbenzene] and naphthalene) as a surrogate and an RfC for C9 aromatics (hi-flash

aromatic naphtha).

EC>16EC35, using the EPA RfD for pyrene (C16) as a surrogate. Anthracene, fluorene, and

fluoranthene are also in this group; however, pyrene was selected because it had the lowest

RfD.

Aliphatic fractions

EC5-EC8, using TPHCWG RfD (derived from inhalation data) as a surrogate and RfC for

commercial hexane, a mixture of C6 hydrocarbons containing 53% n-hexane.

EC>8-EC16, using TPHCWG RfD and RfC for dearomatized petroleum streams (white

spirit).

EC>14-EC35, using TPHCWG RfD for white mineral oils.

The MADEP (Hutcheson et al. 1996; MADEP 1997) and the TPHCWG (1997a, 1997b, 1997c)

approaches both assume additivity of the indicator compounds and the hydrocarbon fractions in

assessing the potential for adverse effects of TPH on health. In contrast, the ASTM approach ten

to assess each individual TPH indicator chemical separately and without regard to the presence of

other petroleum hydrocarbons and the potential for additivity or interactions, although it does not

preclude a consideration of these factors.

6.1.3 Overview of the ATSDR Approach

In formulating an approach to health assessment of TPH, ATSDR has drawn on the experience of

other groups that have been developing approaches to health-based assessment for TPH (i.e., ASTM

[1995]; Hutcheson et al. [1996]; and TPHCWG [1997a, 1997b, 1997c]), but has developed an

approach designed to address its own specific concerns and mandates. A notable difference between

ATSDR and these other groups is that the other groups have focused on longer-term exposure
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scenarios, whereas ATSDR is concerned with the entire spectrum of possible exposure periods from

acute through chronic. In addition, the health guidance values developed by ATSDR, MRLs, are

intended to serve as screening levels by ATSDR health assessors to identify contaminants and

potential health effects that may be of concern at hazardous waste sites. MRLs are not intended to

define clean-up or action levels.

The ATSDR approach, as reflected in this profile, focuses on an assessment of the health effects of

petroleum hydrocarbon transport fractions, as suggested by the TPHCWG (1997a, 1997b, 1997c).

This approach is the most universally useful, given the limitations to using data for the whole

petroleum products or individual constituents, discussed in Chapter 2 and in Section 6.2.1 above.

Methods of analysis for these fractions are available, and modeling can be performed to predict

exposure to the fractions. The assessment of the health effects of the fractions by ATSDR is similar

but not identical to that of the TPHCWG. In addition, to capitalize on the best features of the

MADEP (Hutcheson et al. 1996) and TPHCWG (1997a, 1997b, 1997c) approaches, the aromatic

EC5-EC8 fraction has been redefined as an EC5-EC9 fraction, so that it includes all the BTEXs. The

aromatic EC>8-EC16 fraction is then redefined as an EC>9-EC16 fraction.

Carcinogenic Effects. Specific hydrocarbon indicator compounds that have EPA cancer risk

estimates are assessed; these are benzene and benzo(a)pyrene. EPA relative potency factors can be

used for benz(a)anthracene, indeno( 1,2,3-cd)pyrene, dibenz(a,h)anthracene, chrysene,

benzo(b)fluoranthene, and benzo(k)fluoranthene.

Noncarcinogenic Effects. The following petroleum hydrocarbon fractions, including the

carcinogenic indicator compounds, were selected as representing compounds with similar transport

properties, based on the recommendations of the TPHCWG (1997b, 1997c), with an adjustment of

the lower EC aromatic fractions in order to include all the BTEXs in the first fraction, as discussed

above. As with the MADEP and TPHCWG approaches, some of the fractions include subfractions

that have been combined because of similarity of health effects across fractions or limitations in the

health effects data. Provisional recommendations regarding suitable MRLs are made, using a

surrogate approach as needed and appropriate. The MRL for the surrogate compound or for a

petroleum product similar in composition to the fraction is used to indicate the potential toxicity of

the entire mass of the fraction.
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Aromatic Fractions

EC5EC9, using inhalation and oral MRLs specific to each individual indicator compound-benzene,

toluene, ethylbenzene, and the xylenes.

EC>9-EC16, using a chronic inhalation MRL and acute and intermediate oral MRLs for

naphthalene as surrogates.

EC16-EC35, using an intermediate oral MRL for fluorene and fluoranthene as a surrogate.

Aliphatic Fractions

EC5-EC8, using a chronic inhalation MRL for n-hexane as a surrogate.

EC>8-EC16, using a chronic inhalation MRL for JP-7.

EC>16-EC>35, using health effects data for mineral oils, but no MRLs are available.

The health effects of these fractions are discussed in Section 6.2, and details of the selection of the

fraction-specific MRLs can be found in Section 6.6. These fraction-specific values are provisional

values, reflecting the uncertainty inherent in this approach, as discussed in Section 6.6. Further

information on ATSDR MRLs is given in Appendix A, while information on other toxicity criteria

such as RfDs and RfCs, is provided in Chapter 7.

ATSDR has already prepared toxicological profiles on a large number of individual constituents of

TPH and on a number of whole petroleum products. In order to give an overall perspective on the

toxicology of TPH, without duplicating the existing profiles, this toxicological profile will present

brief summaries of the health effects of these individual petroleum hydrocarbon compounds and

petroleum products. MRLs have been derived for a number of these compounds, which serve as

indicator and surrogate compounds for the ATSDR approach as outlined above. Thus, consideration

of these compounds as part of the TPH contamination profile is useful. Similarly, information

regarding the extent and identity of petroleum product contamination may be available, and toxicity

information and MRLs for these original products may be useful in some circumstances for assessing

potential health effects. These brief summaries of information on the individual compounds and on

petroleum products that are representative of particular fractions occur during the discussion of the

health effects of the fractions in Section 6.2. Information on petroleum products, including the more

heterogenous mixtures, also is presented in Section 6.3. The reader is encouraged to consult the

original toxicological profiles listed in Appendix A and other cited sources for more detail.
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The content of this chapter and this document is different from that of a standard toxicological

profile, in recognition of the extensive assessments of individual petroleum hydrocarbons already

performed by ATSDR and other agencies, and the need for an approach that focuses on the most

important information. This chapter presents the ATSDR perspective and approach, and serves as a

guide to sources of more detailed information.

6.2 DISCUSSION OF HEALTH EFFECTS BY FRACTION AND ROUTE OF

EXPOSURE

Because of the complexity of TPH, and the existence of extensive ATSDR and TPHCWG

documentation for constituents of TPH and for petroleum products and mixtures corresponding to

some of the fractions, this section of the document adopts a “handbook approach” to delineating the

health effects of TPH. The organization and content of this section, while retaining an emphasis on

route and duration of exposure and on type of health effect, is streamlined in order to avoid

duplication of existing resources and to help public health professionals, and others who address the

needs of people living or working near hazardous waste sites, to gain an understanding of the

characteristic health effects of TPH fractions. The juxtaposition of information on fraction

composition with information on health effects for fraction constituents facilitates evaluation of the

suitability of the existing health effects information to represent the potential health effects of the

entire fraction. Further discussion of the suitability and representativeness of the information is

presented in Section 6.6.

Thus, for each fraction, the components of the fraction are delineated first. Health effects for the

fraction are then discussed by route of exposure. This discussion includes information on individual

constituents of the fraction and on mixtures that correspond to the fraction. The text focuses on the

major, sensitive, and/or characteristic end points.

The figures give a condensed picture of exposure-effect relationships for each fraction. They show

the lowest reliable lowest-observed-adverse-effect-level (LOAEL) in animals and humans for each

route, exposure period, and end point, including cancer. The three exposure periods-acute (14 days

or less), intermediate (15-365 days), and chronic (365 days or more)-are represented. Different

symbols are used to represent different compounds or mixtures, with open symbols for animals and
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closed for humans. For additional information, including no-observed-adverse-effect levels

(NOAELs), classification of LOAELs into “less serious” or “serious” effects, and details of the

actual studies, the reader is encouraged to consult the sources referenced in the figures. Because

cancer effects could occur at lower exposure levels than the exposures plotted in some of the figures,

these figures also show a range for the upper bound of estimated excess risks, ranging from an

estimate of 1 in 10,000 to 1 in 10,000,000 (l0-4 to 10-7), as developed by EPA.

In addition, estimates of minimal risk to humans (MRLs) are plotted. An MRL is defined as an

estimate of daily human exposure to a substance that is likely to be without an appreciable risk of

adverse effects (noncarcinogenic) over a specified duration of exposure. MRLs are derived when

reliable and sufficient data exist to identify the target organ(s) of effect or the most sensitive health

effect(s) for a specific duration within a given route of exposure. MRLs are based on noncancerous

health effects only and do not consider carcinogenic effects. MRLs can be derived for acute,

intermediate, and chronic duration exposures for inhalation and oral routes. Appropriate

methodology does not exist to develop MRLs for dermal exposure.

Although methods have been established to derive these levels (Barnes and Dourson 1988; EPA

199Oc), uncertainties are associated with these techniques. Furthermore, ATSDR acknowledges

additional uncertainties inherent in the application of the procedures to derive less than lifetime

MRLs. As an example, acute inhalation MRLs may not be protective for health effects that are

delayed in development or are acquired following repeated acute insults, such as hypersensitivity

reactions, asthma, or chronic bronchitis. As these kinds of health effects data become available and

methods to assess levels of significant human exposure improve, these MRLs will be revised.

The figures in this section were compiled primarily from the tables and figures showing Levels of

Significant Exposure in ATSDR toxicological profiles. To fill data gaps for some of the fractions,

pertinent additional health effects information from EPA sources and from the TPHCWG (1997c)

was included. MADEP also was consulted, but did not appear to provide significant additional

information for this purpose. (RfCs and RfDs from these sources are reported in Chapter 7.)
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6.2.1 Aromatic EC5-EC9 Indicator Compounds

This fraction consists of indicator compounds: benzene, toluene, ethylbenzene, and xylene (mixture

and individual isomers o-, m-, p-). These indicator compounds are often referred to as the BTEXs,

and are commonly assessed using MRLs (or EPA toxicity values) specific to each compound.

Styrene also would fall in this fraction, but does not appear to be a significant constituent of the

petroleum products whose composition was reported by TPHCWG (1997c). The BTEXs are the

subject of separate ATSDR toxicological profiles (ATSDR 1994, 1995b, 1997a, 1999a); these

profiles should be consulted for detailed information on these compounds. The information in

Sections 6.2.1.1 through 6.2.1.3 is taken from these profiles; for the sake of readability, references to

these ATSDR profiles will not be repeated in these sections.

6.2.1.1 Inhalation Exposure

All the BTEXs cause neurological effects. Neurological effects are the basis for MRLs for both

acute and chronic exposures to toluene and mixed xylenes, and for intermediate exposures to benzene;

neurological effects are not as sensitive for ethylbenzene. The neurological effects consist primarily

of central nervous system depression. Toluene’s neurotoxicity also includes ototoxicity. Evidence of

hearing loss has been seen in both occupationally exposed humans and in animals. There is limited

evidence that chronic inhalation exposure to benzene may affect the peripheral nervous system; this

evidence is from a single study of occupationally exposed humans who also had aplastic anemia.

Benzene is the only BTEX that has well characterized hematological, immunological, and

lymphoreticular effects in humans and animals at low levels of inhalation exposure. Immunological

and lymphoreticular effects are the basis for the derivation of the acute inhalation MRL for benzene.

Benzene affects hematopoiesis, decreasing the production of all major types of blood cells, and can

also cause hyperplasia.

Developmental effects are the basis for intermediate MRLs for ethylbenzene and mixed xylene,

indicating that the embryo/fetus may be particularly sensitive to these two BTEXs.

Benzene is considered to be carcinogenic to humans by the inhalation route of exposure (EPA weight-of-

evidence Group A, human carcinogen). Occupational exposure to benzene was associated with
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increased incidences of nonlymphocytic leukemia. Studies in animals also found increased incidences

of neoplasia in animals treated by inhalation or gavage with benzene.

Although ethylbenzene was classified in EPA weight-of-evidence Group D (not classifiable as to

human carcinogenicity), subsequent publication of a chronic inhalation study of ethylbenzene

provides evidence of carcinogenicity in rats and mice, and indicates a need for reassessment. Toluene

and mixed xylene are classified in Group D.

The lowest reliable LOAEL values for the BTEXs are summarized in Figure is 6-l through 6-4, as

are MRLs and cancer risk levels. The data for each compound are presented in a separate figure

because of the voluminous data available for each and because these compounds are commonly

assessed using the exposure data and MRLs (or EPA toxicity values) specific for each. The data for

mixed xylene are extensive, and MRLs are available for all three durations, whereas little data and no

MRLs are available for the individual isomers (o-, m-, and p-). The inhalation toxicity data for the

individual isomers are reasonably similar to those for the mixture. Accordingly, only the data for

mixed xylene are included in the figure. More detailed information is available in the ATSDR

toxicological profiles on the individual compounds (ATSDR 1994, 1995d, 1997a, 1999a), from which the

information in this section is drawn.

6.2.1.2 Oral Exposure

Data for the oral route of exposure are less extensive. The BTEXs cause neurological effects,

generally central nervous system depression, by the oral route. This is a sensitive effect for toluene

and p-xylene, for which it is the basis of acute and/or intermediate MRLs. Renal and hepatic effects

are also seen with oral exposure to these compounds. Renal effects are the basis for the intermediate

MRL for mixed xylenes and hepatic effects are the basis for the intermediate MRL for m-xylene. The

hepatic effects tend to be mild, including increased liver weight and cytochromes P-450 and b5

contents. Benzene causes hematological effects by the oral route that are similar to those seen from

inhalation exposure.
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Benzene is considered to be carcinogenic (EPA weight-of-evidence Group A) to humans by either

inhalation or oral exposure, based on occupational studies that showed increased incidences of

nonlymphocytic leukemia in humans exposed by inhalation, with supporting data from oral and

inhalation studies in animals. Results of a recently published study of ethylbenzene in animals

indicate carcinogenicity by the inhalation route, but there is no evidence of carcinogenicity by the oral

route. Toluene and mixed xylene are classified in EPA weight of evidence Group D (not classifiable

as to human carcinogenicity).

The lowest reliable LOAEL values for the BTEXs are summarized in Figures 6-5 through 6-7, as are

MRLs and cancer risk levels. With the exception of ethylbenzene, the data for each of the BTEXs are

presented in a separate figure because of the voluminous data available for each and because these

compounds are commonly assessed using the exposure data and MRLs (or EPA toxicity values)

specific for each. There are only two pertinent LOAELs and no MRLs for ethylbenzene, so the

LOAELs for ethylbenzene are plotted with those for toluene, and indicated by a different symbol.

More detailed information is available in the ATSDR toxicological profiles on the individual

compounds (ATSDR 1994, 1995d, 1997a, 1999a), from which the information in this section is

drawn.

6.2.1.3 Dermal Exposure

Information on the health effects of dermal exposure to the BTEXs is limited. Skin and eye irritation

are well documented, but effects from systemic absorption are not. ATSDR (1997a) concluded that it

is reasonable to expect that adverse hematological and immunological effects might occur following

dermal exposure to benzene, because benzene is absorbed through the skin and absorption through

any route would increase the risk of these effects. For more detailed information, see the ATSDR

toxicological profiles on the individual compounds (ATSDR 1994, 1995d, 1997a, 1999a), from which

the information in this section is drawn.

6.2.2 Aromatic EC>9-EC16 Combined Fractions

EC>9-EC10 fraction: includes cumene (isopropylbenzene), n-propylbenzene, the methyl-ethylbenzenes, some

trimethylbenzene isomers, and the branched-chain butylbenzenes. None of these

compounds is the subject of an ATSDR toxicological profile.
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EC>10-EC12 fraction: includes n-butyl and n-pentylbenzene, a trimethylbenzene isomer and

various other multi-substituted alkylbenzenes, as well as indan, methylindans and naphthalene. The

only compound in this fraction for which an ATSDR toxicological profile is available is naphthalene

(ATSDR 1995e).

EC>12- EC16 fraction: includes a few longer-chain and multi-substituted alkyl benzenes,

biphenyls, the mono- and dimethylnaphthalenes, and PAHs, including acenaphthene and acenaphthylene.

The monomethylnaphthalenes (l- and 2-methyl naphthalene) are discussed in the ATSDR

toxicological profile on naphthalene (ATSDR 1995e) and acenaphthene and acenaphthylene are

included in the ATSDR toxicological profile on PAHs (ATSDR 1995f).

6.2.2.1 Inhalation Exposure

No toxicological profiles are available for petroleum hydrocarbons in the EC>9-EC10 fraction.

Inhalation exposure to isopropylbenzene (cumene) and to the trimethylbenzene is known to have

neurological and respiratory irritant effects (EPA 1997a, 1998b; TPHCWG 1997c), but these may

not be the most sensitive effects of inhalation exposure to the compounds in this fraction. EPA

(1998b) concluded that the critical effect of inhalation exposure to isopropylbenzene was increased

renal weights in female rats and increased adrenal weights in both sexes of rats in a 13-week

inhalation study (Cushman et al. 1995). An RfC was based on these data. Toxicity data for a

mixture of C9 aromatics, consisting primarily of trimethylbenzene and methylethylbenzene isomers,

have been assessed (as the basis for an RfC) by the TPHCWG (1997c). The critical effects were

hepatic and renal.

Hemolytic anemia is a frequent consequence of acute inhalation exposure to naphthalene in humans,

particularly infants and those with a G6PD genetic defect. Exposure-effect relationships for

hemolytic anemia are not well characterized. Ocular effects, including cataracts, have been reported

in humans exposed to naphthalene vapors, but exposure levels were not known. In mice, respiratory

effects are a sensitive effect of inhalation exposure to naphthalene. A chronic MRL has been derived

for naphthalene based on respiratory effects in mice-chronic inflammation and regeneration of the

nasal epithelium and inflammation of the lung epithelium. In addition, the same study in mice

reported an increased incidence of lung adenomas in female but not in male mice (ATSDR 1995e).
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The EPA classified naphthalene in Group D (not classifiable as to human carcinogenicity) prior to

publication of this study, but notes that naphthalene may be more appropriately classified in Group C

(possible human carcinogen) (EPA 1998b).

No MRLs have been developed for compounds in the EC>9 –EC16 fraction. Only acenaphthylene has

been assessed by the EPA for carcinogenicity; the data were considered inadequate (Group D)

(ATSDR 1995e, 1995f).

The lowest reliable LOAEL values for the combined aromatic EC>9-EC16 fraction are summarized in

Figure 6-8, as are MRLs. Because so few of the compounds in this fraction have been assessed by

ATSDR, additional information from EPA sources and the TPHCWG (1997c) have been added.

More detailed information is available in the ATSDR toxicological profiles on the individual

compounds and in the other sources noted above.

6.2.2.2 Oral Exposure

There are no toxicological profiles or MRLs for compounds in the EC>9-EC10 fraction. Toxicity data,

primarily from subchronic oral studies in rats, have been assessed by EPA during the derivation of

RfDs for two of the compounds-isopropylbenzene (cumene) (EPA 1997a) and 1,3,5-trimethylbenzene

(EPA 1996). The critical effect for isopropylbenzene was renal; for 1,3,5trimethylbenzene,

the critical effect was a combination of renal, hepatic, and other systemic effects. Oral data for these

compounds were limited. Isopropylbenzene has been classified in Group D (not classifiable as to

human carcinogenicity) (EPA 1998b). 1,3,5-Trimethylbenzene has not been classified and does not

appear to have been studied for carcinogenicity.

Naphthalene, a constituent of the EC>10-EC12 fraction, produces hemolytic anemia in humans when

ingested. As mentioned previously, individuals with a genetic G6PD deficiency have an increased

susceptibility to this effect. Little dose-effect information is available for this effect in humans or in

animals; dogs appear to be more susceptible than other animal species. Ocular effects occur with

high-dose oral administration of naphthalene in animals. The most common effect is cataract

formation, but retinal damage has also been noted (ATSDR 1995e). More sensitive effects in animals

are neurological effects (central nervous system depression in pregnant animals) and mild hepatic
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effects (altered microsomal enzyme activities and blood chemistry findings). The EPA classified

naphthalene in Group D (not classifiable as to human carcinogenicity) prior to publication of an

inhalation study that reported an increased incidence of pulmonary adenomas in female mice, but

notes that naphthalene may be more appropriately classified in Group C (possible human carcinogen)

(EPA 1998b). No studies documenting carcinogenic effects by the oral route were found (ATSDR

1995e).

Some of the constituents of the EC>12-EC16 fraction have been evaluated in ATSDR toxicological

profiles. Although the database for l-methyl naphthalene is very limited, it includes a chronic study

in mice, which serves as the basis for a MRL (ATSDR 1995e). The only effects seen were

respiratory (nodular alveolar proteinosis) and hematological (slight increases in hemoglobin

parameters and elevated monocyte counts). The limited database for acenaphthene indicates that

hepatic effects may be a sensitive consequence of intermediate exposure in mice; the intermediate

MRL was based on this finding (ATSDR 1995f). Biphenyl, not included in an ATSDR toxicological

profile, has been evaluated by EPA (1998b), which derived an RfD based on renal effects in a chronic

study in rats. Hematological effects (reduced hemoglobin), decreased food intake, and decreased

longevity also occurred, but renal effects appeared more sensitive. Although the database for this

compound is limited, it indicates that reproductive and developmental end points are not as sensitive

as renal.

Biphenyl (EPA 1998b) and acenaphthylene (ATSDR 199X) have been classified in Group D (not

classifiable as to human carcinogenicity).

The lowest reliable LOAEL values and the available MRLs for the combined aromatic EC>9-EC16

fraction are summarized in Figure 6-9. Because only a few of the compounds in this fraction have

been assessed by ATSDR, additional information from EPA sources and the TPHCWG (1997c) has

been added. More detailed information is available in the ATSDR toxicological profiles on the

individual compounds and in the other sources noted above.
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6.2.2.3 Dermal Exposure

The compounds in the combined EC>9-EC16 fraction are known to be irritating to the skin, but little

information is available to suggest systemic toxicity from dermal exposure alone. Naphthalene,

however, has caused hematological effects in human infants exposed to diapers that had been treated

with naphthalene moth balls (ATSDR 1995e).

6.2.3 Aromatic EC>16- EC35 Combined Fractions

This fraction consists entirely of PAHs. The more environmentally and toxicologically significant

PAHs are the subjects of the ATSDR toxicological profile on PAHs (ATSDR 1995f); two of these

PAHs, acenaphthene and acenaphthylene, are constituents of the EC>12-EC16 fraction, discussed

previously, and the remaining 15 are constituents of the EC>16- EC35 combined fraction, described

below.

EC>16- EC21 fraction: includes anthracene, fluorene, phenanthrene and pyrene, which are

discussed in ATSDR (1995f), and other, less well known PAHs such as substituted fluorenes,

anthracenes, and phenanthrenes.

EC>21- EC35 fraction: includes benz(a)anthracene; benzo(b)-, benzo(j)-, and benzo(k)fluoranthene;

benzo(g,h,i)perylene; benzo(a)- and benzo(e)pyrene; chrysene; dibenz(a,h)anthracene;

fluoranthene; and indeno( 1,2,3-c,d)pyrene, which are discussed in ATSDR (1995f), as well as other,

less well known PAHs, that include substituted pyrenes, fluorenes, and fluoranthenes.

6.2.3.1 Inhalation Exposure

Little information regarding the inhalation toxicity of PAHs in the EC>16-EC35 combined fraction is

available, and no inhalation MRLs have been derived. A 4-week study of nose-only inhalation

exposure of rats to an aerosol of benzo(a)pyrene identified no treatment-related lesions in the

respiratory tract or the kidneys at the single exposure level tested. Respiratory effects, including

reduced lung function and abnormal chest X-ray, have been seen in humans exposed occupationally to

benzo(a)pyrene and particulate matter. Hamsters exposed by inhalation of benzo(a)pyrene particles

developed respiratory tract tumors (nasal, pharyngeal, laryngeal, and tracheal) (ATSDR 1995f).
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Assessments of carcinogenicity by EPA have placed some of these compounds in EPA Weight-of-

Evidence Group B2 (probable human carcinogen) and others in D (not classifiable as to human

carcinogenicity). These classifications were based on evidence from dermal and parenteral studies,

and for a few PAHs, oral and inhalation studies, all in animals. See Section 6.2.3.2 and Section 6-6

for specific information regarding EPA cancer assessments. The compounds in this EC range are not

volatile (TPHCWG 1997c), so inhalation exposure to any of these PAHs as a result of contamination

at hazardous waste sites is expected to be minimal under most circumstances. However, people may

be exposed by inhaling dust or particles containing PAHs, or by inhaling PAHs released to the air, as

vapors or aerosols, from shower water as a result of contamination of groundwater at hazardous

waste sites.

The few available inhalation LOAEL values for the combined aromatic E16-EC35 fraction are

summarized in Figure 6-10. More detailed information is available in the ATSDR (199%)

toxicological profile.

6.2.3.2 Oral Exposure

Data for oral exposure, while more extensive than for inhalation exposure, are nonetheless limited.

Hepatic effects appear to be a common sensitive end point of oral exposure to the PAHs in this

combined fraction. Renal effects have been seen with some (ATSDR 1995f; EPA 1998b). Aplastic

anemia and immunological/lymphoreticular effects have been seen at higher exposure levels.

Intermediate oral MRLs are available for two of the compounds in the EC>16 –EC21 fraction, fluorene

and anthracene, based on subchronic studies in mice. The MRL for fluorene was based on hepatic

effects (increased liver weight); the MRL for anthracene was based on the absence of any effects,

including hepatic, in a similar study (ATSDR 1995f). An EPA-sponsored subchronic oral study of

pyrene in mice was used by that agency as the basis for developing subchronic and chronic RfDs

(EPA 1997a, 1998b). The critical effect was renal (nephropathy). Hepatic effects were not seen in

this study, which is the only subchronic or chronic oral toxicity study of pyrene encountered. All four

of the PAHs in this fraction that have been assessed for carcinogenicity by EPA have been classified

in EPA Weight-of-Evidence Group D (not classifiable as to human carcinogenicity) (ATSDR 199%).
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The only oral MRL available for compounds in the EC>21- EC35 fraction is an intermediate MRL for

fluoranthene, based on hepatic effects in mice. The sensitive noncancer effect of oral exposure to

benzo(a)pyrene is developmental, also determined in animals.

Studies of the compounds in this fraction have focused primarily on potential carcinogenicity. Of the

nine compounds in this EC range that have been assessed for carcinogenicity by EPA, seven have

been classified in Group B2 (probable human carcinogen), and the remaining two, fluoranthene and

benzo(g,h,i)perylene, in group D (ATSDR 1995f; EPA 1997a, 1998b). The evidence has come in

large part from parenteral and dermal studies. Oral studies of carcinogenicity have been conducted

for six of the PAHs in this EC fraction, with positive results for benzo(a)pyrene, benz(a)anthracene,

and dibenz(a,h)anthracene, and with negative results for anthracene, fluoranthene, and fluorene

(ATSDR 1995f).

The lowest reliable LOAEL values and the available MRLs for the combined aromatic EC>16-EC35

combined fraction are summarized in Figure 6- 11, as are cancer risk levels. Information on pyrene is

discussed above in this section. Additional information from EPA sources has been added for pyrene.

More detailed information on the constituents of this fraction is available in the ATSDR (1995f)

toxicological profile.

6.2.3.3 Dermal Exposure

The PAHs tend to be irritating to the skin. In addition, benzo(a)pyrene has been shown to cause

immunological/lymphoreticular effects evidence as contact hypersensitivity or suppression of this

response to other sensitizers. The PAHs classified as B2 carcinogens induce skin tumors following

intermediate dermal application to animals (ATSDR 1995f).

6.2.4 Aliphatic EC5-EC8 Combined Fractions

EC5-EC6 Fraction: includes n-pentane, n-hexane, the dimethylbutanes and methylpentanes,

cyclopentane, and some alkenes. n-Hexane is the only compound in this group that is the subject of

an ATSDR toxicological profile; some information on commercial hexane (n-hexane plus branched

and cyclic C6 alkanes) is included in the same toxicological profile (ATSDR 1999b).
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EC>6-EC8 Fraction: includes n-heptane, n-octane, some branched chain C6-C9 alkanes including

the trimethylpentanes (note that other branched chain C9 alkanes fall in the EC>8 category) and

cycloalkanes, including cyclohexane, methylcyclopentane, and methylcyclohexane, as well as some

alkenes. None of these is the subject of an ATSDR toxicological profile.

6.2.4.1 Inhalation Exposure

Inhalation exposure for acute, intermediate or chronic durations to n-hexane causes peripheral

neuropathy in humans and animals (ATSDR 1999b). The chronic MRL for n-hexane is based on this

effect in humans. Respiratory and renal effects have been seen in animals exposed to n-hexane by

inhalation at higher exposure levels than associated with peripheral neuropathy in the same studies.

Calculation of human equivalent concentrations (HECs) using EPA dosimetric methodology, however,

indicates that respiratory effects were seen in mice exposed subchronically to n-hexane at a HEC

similar to that for neurological effects in the human study used as the basis for the chronic MRL

(EPA 1998b). Thus, respiratory effects also may be sensitive, although confirmation of this in human

studies is not available. The other compounds in the EC5-EC6 fraction do not appear to cause

peripheral neuropathy (ATSDR 1999b; TPHCWG 1997c). Depression of the central nervous system

has been seen at relatively high levels of exposure to n-hexane. n-Hexane has been classified as in

weight-of-evidence Group D (not classifiable as to human carcinogenicity) (EPA 1989a).

Commercial hexane, which consists of a mixture of C6 aliphatic compounds including 20-80%

n-hexane and other straight, branched, and cyclic alkanes in the range of EC5.68-EC6.59,has been the

subject of extensive recent testing as part of a EPA Test Rule under TSCA Section 4. Commercial

hexane mixtures have the potential to represent the toxicity of the EC5-EC8 combined fraction better

than any single compound. The non n-hexane components of commercial hexane, when tested

separately as a mixture, do not cause peripheral neuropathy, whereas the commercial mixture

containing n-hexane has been demonstrated to cause peripheral neuropathy in one study in rats

(ATSDR 1999b; IRDC 1981). The commercial hexane mixtures tested under the Test Rule contained

53% n-hexane, 16% 3-methylpentane, 14% methylcyclopentane, 12% 2-methylpentane, 3%

cyclohexane, 1% 2,3-dimethylbutane, and <1% other constituents. According to the TPHCWG

(1997c), which developed an RfC for commercial hexane based on preliminary reports of these

unpublished studies, the critical effects were respiratory (mucosal irritation in nasal turbinates and
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larynx in rats) and reproductive (decreased severity and incidence of cystic uterine endometrial

hyperplasia in mice) in chronic studies. In addition, liver tumors developed in the female mice,

indicating carcinogenic potential.

Cyclohexane also has undergone testing under EPA TSCA Section 4. The TPHCWG (1997c)

summarized the preliminary report of the developmental toxicity study in rats, which indicates

neurological effects (reduced response to a sound stimulus) in the dams exposed to cyclohexane by

inhalation. Hepatic and renal effects were seen in published subchronic studies in animals. No

histopathological changes in the peripheral nervous system were seen in a chronic study in animals

(TPHCWG 1997c).

Two additional chemicals in the E>6-EC8 fraction that have been the subject of limited toxicity

testing are n-heptane and methylcyclohexane. Both appear to cause depression of the central nervous

system following relatively high inhalation exposures (EPA 1989b, 1989c). n-Heptane was suspected

to have the potential to cause peripheral neuropathy because of its structural similarity to n-hexane

and because it is metabolized, although to a much lesser extent, to the same type of metabolite (a

γ-diketone) as is thought to mediate the neurotoxicity of n-hexane. The available human occupational

and animal experimental studies, however, give no clear evidence that n-heptane causes peripheral

neuropathy (EPA 1989b). Methylcyclohexane caused renal effects (medullary mineralization and

papillary hyperplasia) in male but not in female rats or in other species exposed for 1 year by

inhalation followed by an observation period; this study is the basis for an RfC derived by EPA

(1997a). The renal effect appears to be associated with α2µ-globulin nephropathy and, therefore, may

be of questionable significance to human health. Both these compounds have been classified in Group

D (not classified as to human carcinogenicity) (EPA 1989c, 1998b).

The lowest reliable LOAEL values for n-hexane are summarized in Figure 6-12, along with the

available MRL. Because so few of the compounds in this fraction have been assessed by ATSDR,

limited additional information from EPA sources and the TPHCWG (1997c) regarding commercial

hexane, cyclohexane, and methylcyclohexane has been added. More detailed information is available

in ATSDR (1997c) and the EPA and TPHCWG sources noted above.
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6.2.4.2 Oral Exposure

Oral health effects information for the EC5-EC6 fraction is limited and is available mainly for

n-hexane. n-Hexane caused peripheral neuropathy in rats given the compound subchronically and in

chickens given the compound acutely and subchronically. The chicken is considered to be a valuable

model for human neurotoxicity of this type. 2-Methylpentane and methylcyclopentane affected nerve

conduction velocity in a subchronic study in rats, but were not as effective as n-hexane in that same

study. Reproductive (testicular) and developmental effects have been seen in animals at higher doses

of n-hexane than associated with neurological effects. No oral MRLs were derived for n-hexane

because of the incompleteness of the database (ATSDR 1999b). n-Hexane has been classified as a

Group D agent (not classifiable as to human carcinogenicity) (EPA 1989a).

An oral 90-120-day study in rats of a commercial hexane containing 40% n-hexane, 24% each of

3-methylpentane and dimethylbutane, 9% cyclopentane, 2.5% cyclohexane, and 12% 2-methylpentane

was conducted in comparison with n-hexane. This mixture includes compounds in both the EC5-EC6

and EC>5-EC8 range. Peripheral neuropathy was not seen when commercial hexane was tested at the

same dose as was effective for pure n-hexane (ATSDR 1999b), but the dose of n-hexane resulting

from this dose of commercial mixture was only 40% the effective dose of the pure n-hexane. Some

evidence of carcinogenic potential has been reported in chronic inhalation studies in mice, as

discussed in the previous section.

The lowest reliable LOAELs for n-hexane are plotted in Figure 6- 13. More detailed information,

including some information on oral toxicity of related isomers and commercial hexane, is available in

ATSDR (1997c).

6.2.4.3 Dermal Exposure

Some of the compounds in the combined EC>9-EC16 fraction are known to be irritating to the skin and

eyes, but little information is available to suggest systemic toxicity from dermal exposure.
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6.2.5 Aliphatic EC>8- EC16 Combined Fractions

EC>8-EC10 fraction: includes n-nonane, n-decane, branched-chain C9 -C10, compounds, a few

substituted cycloalkanes, and a few alkenes

EC>10- EC12 fraction: includes n-undecane, n-dodecane, and pentylcyclopentane

EC>12- EC16fraction: n-tri-, tetra-, penta-, and hexadecane (Note that EC values for a number of

branched and cyclic alkanes that potentially belong in these fractions were not listed by the TPHCWG

[1997c1; see Appendix D: Table D-l for listing).

None of the individual compounds in the combined aliphatic EC>8-EC16 fraction is the subject of an

ATSDR toxicological profile. Some petroleum products, however, are mixtures primarily of aliphatic

hydrocarbons in the range covered by this fraction. The TPHCWG (1997c) identifies JP-8 jet fuel as

a mixture containing aliphatic petroleum hydrocarbons ranging from C9-C16 and ATSDR has

developed a toxicological profile on JP-8 (ATSDR 1998b). JP-8 contains up to 20% aromatics

(C10-C11, EC10.5-EC12.99) (ATSDR 1998b; TPHCWG 1997b). Other petroleum products that are

composed primarily of C9 -C16, aliphatics are JP-5, JP-7, and kerosene (fuel oil #l). These fuels also

are the subjects of ATSDR toxicological profiles, and have at least one MRL (ATSDR 1995c, 1995g,

1998b). They contain approximately 16%, a maximum of 5%, and approximately 24% aromatic

hydrocarbons, respectively. The jet fuels contain a number of additives such as antioxidants, metal

deactivators, fuel system icing inhibitors, corrosion inhibitors, and static dissipaters. Stoddard

solvent contains primarily C9-C16, aliphatics, with approximately 14% aromatics, and is also the

subject of an ATSDR toxicological profile, but has no MRLs (ATSDR 1995b).

TPHCWG (1997c) also identifies a number of published and unpublished studies on dearomatized

petroleum streams that correspond to portions of this range, and that contain at most 1.5% aromatics

and more typically less than 0.1% aromatics. These studies on dearomatized petroleumstreams

would appear to be a better basis for the assessment of health effects of this fraction, because they

contain much smaller amounts of aromatics than do the petroleum products discussed in the previous

paragraph and no additives. Their exact compositions and EC ranges were not reported, but EC

numbers for the aliphatics tend to be close to the actual carbon numbers.
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6.2.5.1 Inhalation Exposure

Hepatic effects are the most sensitive end points for inhalation exposure to JP-5, JP-7, JP-8, and

kerosene (ATSDR 1995c, 199.58, 1998b). The available intermediate and chronic MRLs for these

fuels are based on hepatic effects in animals. Neurological effects, particularly central nervous

depression, have been seen in humans exposed acutely to JP-5 vapors, but exposure-effect

relationships have not been established. Male rat α2µ-globulin nephropathy occurred with exposure to

JP-5 and JP-7, but this effect is not considered relevant to humans. A l-year exposure to JP-7

produced a small increase in the incidence of C-cell adenomas and kidney adenomas in male rats

exposed to the vapor; the kidney adenomas may have been related to male rat α2µ-globulin

nephropathy, an effect with questionable relevance to human health.

The inhalation studies of dearomatized petroleum streams included a C10-C11 isoparaffinic solvent

(branched chain alkanes), and C7-C11 dearomatized white spirit (branched, straight and cyclic

alkanes). Subchronic toxicity studies of these streams reported male rat nephropathy of the type that

is of questionable relevance to humans health, according to the TPHCWG (1997c). In addition,

increased liver weights were observed in male rats, but were said to be not significant.

Developmental toxicity studies of these streams in rats revealed no developmental or maternal toxicity

at the same exposure levels. These unpublished studies have been used as the basis for RfCs by the

TPHCWG (1997c).

The lowest reliable LOAEL values for the jet fuels and kerosene discussed in this section are

summarized in Figure 6-14, along with the available MRLs. Because these products have a

significant aromatic component, limited additional information from the TPHCWG (1997c) regarding

dearomatized petroleum streams has been added. More detailed information is available in the

ATSDR toxicological profiles and the TPHCWG source noted above.

6.2.5.2 Oral Exposure

Oral data regarding JP-5, JP-7, JP-8, and kerosene were limited and judged inadequate for MRL

development (ATSDR 19958, 1995c, 1998b). Hepatic effects and neurological effects have been seen

from acute-duration oral exposure, but dose-effect relationships are either not well defined, or effects

occurred at doses that also were fatal. Male rat nephropathy and decreased body weight were seen in
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a 90-day oral study of JP-8 in male rats (Mattie et al. 1995) that was used by the TPHCWG (1997c)

as the basis for an RfD, but ATSDR declined to derive an intermediate oral MRL because of the

general lack of data and limitations of this study.

Subchronic studies of the dearomatized petroleum streams in rats were conducted on C9-C12, and

C10-C13 dearomatized aliphatic mixtures containing branched, straight, and cyclic alkanes, and a

C11-C17 isoparaffinic solvent containing branched and cyclic alkanes. Two of these studies reported

male rat nephropathy. All three studies reported hepatic effects including hepatocellular hypertrophy

and increased liver weight. Developmental toxicity was not seen at the same doses in a study of a

similar mixture in rats. These unpublished subchronic studies were used as the basis for RfDs by the

TPHCWG (1997c).

The lowest reliable LOAEL values for the jet fuels and kerosene discussed in this section are

summarized in Figure 6-15. Because these products have a significant aromatic component, limited

additional information from the TPHCWG (1997c) regarding dearomatized petroleum streams has

been added. More detailed information is available in the ATSDR toxicological profiles, the

TPHCWG source noted above, and Section 6.3.

6.2.5.3 Dermal Exposure

Information on the health effects of dermal exposure to JP-5, JP-7, and JP-8, and kerosene is limited.

Skin and eye irritation are well documented, but effects from systemic absorption are not (ATSDR

1995c, 19958, 1998b).

6.2.6 Aliphatic EC>16-EC35 Combined Fractions

EC>16-EC21 fraction: includes n-hepta-, n-octa-, and n-nonadecane; and n-eicosadecane

EC>21-EC35 fraction: includes n-heneicosane, n-docosane, n-tetracosane, and n-hexacosane.

(Note that aliphatic compounds other than the above straight-chain alkanes were not listed by the

TPHCWG [ 1997b] as constituents of petroleum and petroleum-based fuels that are the focus of the

fraction-selection approach. See Appendix D, Table D-l.) Petroleum products such as mineral-based

crankcase oil and mineral-based hydraulic fluids, however, contain branched and cyclic
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aliphatics within these equivalent carbon ranges, as do food-grade and medicinal-grade mineral oils.

Although ATSDR toxicological profiles are available for mineral-based used crankcase oil and

mineral-based hydraulic fluids (ATSDR 1997b, 1997c), these products contain additives and

contaminants, including substantial levels of aromatics and metals (used crankcase oil) and

organophosphate esters (hydraulic fluids). Little information is available regarding health effects of

these products. No MRLs have been derived. The TPHCWG (1997c) has reviewed data regarding

food and medicinal grade mineral oils, which are relatively pure and therefore a better choice to

represent this fraction.

6.2.6.1 Inhalation Exposure

No information was located on the potential health effects of inhalation exposure to compounds or

mixtures of petroleum hydrocarbons that fall within this fraction.

6.2.6.2 Oral Exposure

Purified mineral oils have been used medicinally and in foods. Subchronic toxicity studies of selected

mixtures of mineral oil hydrocarbons (composed primarily of branched chain alkanes or cyclic

alkanes) in F344 rats have identified the liver and the mesenteric lymph nodes as potential targets of

toxicity for these mineral oils. The TPHCWG (1997c) derived chronic RfDs for low and high

molecular weight mineral oils based on the hepatic effects (lipid granulomas) seen in these studies.

The effect on the mesenteric lymph nodes (histiocytosis), which occurred at lower exposure levels

than did the hepatic effects, was judged a nonadverse, adaptive response to the ingestion of foreign

material (TPHCWG 1997c). Subchronic oral toxicity testing has also been conducted with low- and

intermediate-molecular weight paraffin waxes, which contain a high proportion of straight chain

alkanes and also branched alkanes and small amounts of cyclic alkanes, with C ranges primarily

within this fraction range (Smith et al. 1996). Results indicate that these mixtures have toxicity

similar to that of the oils for which the RfDs were derived. Strains of rats other than F344 appeared

to be less sensitive to these mixtures.

Hepatic lipid granulomas have also been seen in humans exposed to mineral oils through the diet and

by ingestion of medicinal mineral oils, but doses associated with the effect in humans are not known.

According to TPHCWG (1997c), the granulomas in humans were circumscribed lesions with no
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inflammation, fibrosis, or significant liver dysfunction, whereas the granulomas in F344 rats were

reactive with associated inflammation and occasional parenchymal cell necrosis.

The LOAELs identified for the “low” molecular weight mineral oils (C16-C35) are plotted in

Figure 6-16. Additional information on health effects is provided in the review by TPHCWG

(1997c).

6.2.6.3 Dermal Exposure

Information regarding health effects of dermal exposure to this fraction was not encountered in the

cited source (TPHCWG 1997c).

6.3 DISCUSSION OF HEALTH EFFECTS FOR WHOLE PETROLEUM PRODUCTS

Whole petroleum products are generally complex mixtures of hydrocarbons of varying carbon number

and additives (usually representing a smaller weight percentage of the whole mixture) of varying

chemical identities that are added to impart special qualities or enhance particular functional

properties of the whole petroleum product. Additional impurities may be generated during use of the

product. Non-hydrocarbon additives and impurities are not included in the definition of TPH.

Toxicological information on important petroleum products that are the subjects of other ATSDR

toxicological profiles, and on other petroleum products that are the subject of assessment by other

agencies, is briefly reviewed in this section. Such information may be useful in characterizing acute

exposure to fresh spills of petroleum products, but its usefulness is limited because of the limited

availability of MRLs, the variability in the composition of petroleum products, and the change in

composition due to environmental fate and transport processes. The whole petroleum products that

have compositions similar to the transport fractions have been discussed in Section 6.2.

6.3.1 Jet Fuels

Jet fuels are middle distillates of petroleum crude oils that are composed of hydrocarbons generally

coming off distillation columns at temperatures between 150 and 300 ºC (ATSDR 1998b; IARC
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1989c). Kerosene-type jet fuels such as JP-5, JP-7, and JP-8 have the same basic composition as

kerosene (consisting predominately of hydrocarbons with carbon numbers in the range of C9-C16),

whereas “wide-cut” jet fuels such as JP-4 are blends of kerosene and lower-boiling naphtha streams

(C4-C16). Jet fuels are refined under more stringent conditions than kerosene and contain various

additives (anti-oxidants, dispersants and/or corrosion inhibitors) not found in kerosene. The exact

chemical composition varies depending on the source of crude oil and additives included in the

formulated product. Generally, aliphatic hydrocarbons represent the major part and aromatic

hydrocarbons represent about 10-20% of kerosene and jet fuels. The benzene content of kerosenetype

jet fuels is generally <0.02%, whereas “wide-cut” jet fuels typically contain more benzene

(normally <0.5%). PAHs, with boiling points above 300 ºC, are generally excluded from jet fuels

and kerosene.

Health effects of concern from exposure to jet fuels include eye and skin irritation from acute direct

contact; respiratory, neurotoxic and gastrointestinal effects from acute accidental ingestion; and

possible hepatic damage from inhalation exposure of intermediate duration as indicated by results

from animal studies (ATSDR 1998b).

ATSDR (1998b) derived an intermediate-duration inhalation MRL of 3 mg/m3 for jet fuels JP-5 and

JP-8, based on a LOAEL for hepatocellular fatty changes and vacuolization in mice exposed

continuously for 90 days to vapors of JP-5 at a concentration of 150 mg/m3 (Gaworski et al. 1984).

The exposure concentration was converted to a human equivalent exposure concentration (853 mg/m3)

by multiplying by the ratio of the alveolar ventilation rate divided by the body weight of mice to the

same parameters for humans. The human equivalent concentration was divided by an uncertainty

factor of 300 (10 for interspecies variability, 3 for intraspecies variability, and 10 for the use of a

LOAEL) to derive the MRL.

ATSDR (1998b) derived no other MRLs for JP-5 or JP-8 (e.g., for acute or chronic inhalation

exposures, or for oral exposures of any duration), due to the lack of data suitable for MRL

derivation.

ATSDR (1995c) derived an intermediate-duration inhalation MRL of 9 mg/m3 for JP-4 based on a

LOAEL of 500 mg/m3 for hepatic fatty degeneration in mice exposed continuously to the vapor for
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90 days. The MRL was derived from this LOAEL by dosimetrically adjusting to a human equivalent

concentration and applying an uncertainty factor of 300 (10 for the use of a LOAEL, 3 for interspecies

extrapolation, and 10 for human variability). ATSDR (199%) derived a chronic-duration

inhalation MRL of 0.3 mg/m3 for JP-7, based on a LOAEL of 150 mg/m3 for hepatic inflammation in

rats exposed to the vapor (6 hours/day, 5 days/week) for 1 year and observed for an additional year.

The MRL was calculated from this LOAEL by dosimetrically adjusting to a human equivalent

continuous exposure concentration and applying an uncertainty factor of 300 (10 for the use of a

LOAEL, 3 for interspecies extrapolation, and 10 for human variability).

ATSDR (199%) derived no other MRLs for jet fuels JP-4 and JP-7, due to the lack of additional

suitable inhalation data and the absence of data for oral exposure to these jet fuels.

ATSDR (1995c) found no studies regarding cancer in humans exposed to the jet fuels JP-4 and JP-7.

Inhalation animal studies provided no evidence that JP-7 was carcinogenic (Air Force 1991). A

l-year study of rats and mice exposed by inhalation to vapors of JP-4 was identified in which

increased tumors were found in the respiratory tract of female rats and mice, increased renal tumors

(associated with the α2µ-globulin nephropathy syndrome) were found only in male rats, and increased

liver tumors were found in female, but not male mice (Bruner et al. 1993). ATSDR (1995c)

concluded that the animal data provided equivocal evidence for the carcinogenicity of JP-4 and that

there was insufficient evidence to draw conclusions regarding the carcinogenic potential of JP-4 or

JP-7 in humans.

ATSDR (1998b) concluded from a review of several studies of mice dermally exposed to jet fuels

(including JP-5 and Jet A) that chronic dermal application of jet fuels can act as a skin carcinogen,

but noted that further investigation is needed to more fully elucidate “the impact of dermal exposure

of jet fuels on humans.”

IARC (1989d) concluded that there was inadequate evidence for the carcinogenicity of jet fuel in

humans and animals, but noted that there is limited evidence for the carcinogenicity in experimental

animals of straight-run kerosene and hydrotreated kerosene. IARC’s review included: a cohort

mortality study that found no increased cancer risk in men exposed to jet fuel, aviation kerosene, and

other fuels in the Swedish Air Force; elevated risk for kidney cancer in men exposed to jet fuel in a
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Canadian case-control study; and both positive and negative findings for skin cancer in studies of

mice dermally exposed to jet fuels.

6.3.2 Fuel Oils

Fuel oils refined from crude petroleum can be classified either as distillate fuels consisting

predominately of distilled process streams or as residual fuels consisting of residues remaining after

distillation or blends of residues and distillates (ATSDR 19958; IARC 1989b). Both types of fuel

oils are complex mixtures of aliphatic hydrocarbons (representing approximately 80-90% of these

oils) and aromatic hydrocarbons (representing 10-20%). Light distillate fuels (e.g., fuel oil #l,

straight-run kerosene) consist primarily of hydrocarbons in the C9-C16, whereas hydrocarbons in

middle distillate fuels (e.g., fuel oil #2) may range from approximately C11-C20. Diesel fuels are

similar to fuel oils with the exception that the diesel fuels contain additives. Light and middle

distillate fuels generally contain less than 5% polycyclic aromatic hydrocarbons. Heavier fuel oils

(e.g., fuel oil #4 and marine diesel fuel) may contain up to 15% distillation residues and more than

5% polycyclic aromatic hydrocarbons. Residual fuel oils are more complex in composition than

distillate fuels, and can contain significant portions of compounds with sulfur and nitrogen.

Reports of cases of accidental ingestion of kerosene identify respiratory effects (e.g., pulmonary

edema and difficulty in breathing from aspiring the liquid into the lungs), nervous system depression,

and gastrointestinal irritation as effects of concern from acute exposure to fuel oils (ATSDR 1995g).

These effects (and others including skin and eye irritation, and increased blood pressure) have been

observed in humans in a few cases after inhalation and/or dermal acute exposures. Animal studies

provide supporting data for neurological impairment from acute inhalation exposure to fuel oil #2 and

hepatic effects (including decreased blood glucose levels and hepatocellular fatty changes and

vacuolization) from intermediate-duration exposure to fuel oil #l and jet fuel JP-5.

ATSDR (19958) derived an acute-duration inhalation MRL of 0.02 mg/m3 for diesel fuel (fuel oil #2)

based on observations of mild transient ataxia and disturbed gait in mice exposed for 8 hours/day for

5 days to vapors of diesel fuel #2 at concentrations as low as 65 mg/m3 (Kainz and White 1984). The

LOAEL was adjusted to a continuous exposure basis and divided by an uncertainty factor of 1,000

(10 for intraspecies variability, 10 for interspecies variability, and 10 for the use of a LOAEL).

ATSDR (1995g) did not discuss the potential applicability of this MRL to other fuel oils.
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ATSDR (19958) derived an intermediate-duration MRL of 0.01 mg/m3 for kerosene (also called fuel

oil #l) based on a LOAEL for decreased blood glucose levels (thought to be indicative of hepatic

effects) in rats exposed 6 hours/day, 6 days/week for 14 weeks to fuel oil #l at concentrations of

58 mg/m3 (Starek and Vojtisek 1986). The LOAEL was adjusted to a continuous exposure basis and

divided by an uncertainty factor of 1,000 (10 for intraspecies variability, 10 for interspecies

variability, and 10 for the use of a LOAEL). ATSDR (19958) did not discuss the potential

applicability of this MRL to other fuel oils, but cited, as supporting data for the MRL, findings of

hepatocellular changes and vacuolization in mice exposed continuously to 150 mg/m3 IP-5 for

90 days, and findings of no systemic or neurological effects in rats or dogs exposed to a deodorized

kerosene concentration of 100 mg/m3, 6 hours/day, 5 days/week for 13 weeks.

ATSDR (1995g) did not derive chronic inhalation MRLs or any oral MRLs (for any duration of

exposure) because suitable data were not available.

From a review of available human and animal studies, ATSDR (1995g) concluded that epidemiological

studies have provided “only equivocal evidence of an association between cancer and

exposures to fuel oils” and that animal studies suggest that dermal exposure to fuel oils can produce

skin or liver cancer. ATSDR (1995g) noted that the animal studies are restricted to one species

(mice) and not all studies found carcinogenic responses. The conclusion was drawn that “further

investigation utilizing other species is required to more fully elucidate the mechanism of dermal

carcinogenesis and the impact of dermal exposure of fuel oils on humans.”

Based on their review, IARC (1989b) concluded that there was inadequate evidence for the carcinogenicity

in humans of fuel oils; sufficient evidence for the carcinogenicity in experimental animals of

residual (heavy) fuel oils; limited evidence for the carcinogenicity in experimental animals of fuel oil

#2; sufficient evidence for the carcinogenicity in experimental animals of light and heavy catalytically

cracked distillates, of light and heavy vacuum distillates and of cracked residues, all derived from the

refining of crude oil; and limited evidence for the carcinogenicity in experimental animals of straight-run

kerosene. Overall evaluations were made that residual (heavy) fuel oils are possibly carcinogenic

to humans (Group 2B), and that distillate (light) fuel oils are not classifiable as to their carcinogenicity

to humans (Group 3).
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6.3.3 Automotive Gasoline

Gasoline is a complex mixture of volatile petroleum-derived hydrocarbons, additives, and blending

agents (ATSDR 1995a; IARC 1989a). The composition of gasoline varies widely depending on the

composition of the crude oil from which it is refined, the refining processes used, the type and relative

amount of different petroleum refining streams blended in the finished product, and the types and

amounts of nonhydrocarbon compounds added to enhance or impart specific functional properties of

the gasoline. Specific market conditions, partly in response to regulations, mandate the refining and

manufacturing of certain gasolines. Gasoline contains predominately hydrocarbons in the C4-C12

range, with the following typical distributions: alkanes (4-8 wt%); alkenes (2-5 wt%); isoalkanes

(25-40 wt%); cycloalkanes (3-7 wt%); cycloalkenes (l-4 wt%); and total aromatics (20-50 wt%).

The benzene content of gasoline is 0.12-3.5% (see Table E-l .b for additional detail regarding

individual hydrocarbon constituents). Additives found in gasoline include anti-knock agents (e.g.,

tetraethyllead), lead scavengers (e.g., 1,2-dibromoethane), detergents, anti-rust agents (e.g.,

sulfonates), antioxidants (e.g., p-phenylenediamine), and anti-icing agents (e.g., alcohols). Leaded

gasoline is no longer allowed to be used by on-road vehicles, though it still is used in farm machinery

boats, competetive vehicles, and in piston engine airplanes. (EPA 1998d). A variety of products are

added to gasoline to boost octane, including ethanol and MTBE.

Acute-duration inhalation, oral, or dermal exposures to gasoline have been associated with irritation

at portals of entry in humans, and high-level inhalation or oral acute exposure produces symptoms of

transient neurological impairment such as headache, nausea, dizziness, euphoria, and drowsiness

(ATSDR 1995a). Acute ingestion of large amounts of gasoline also produces respiratory effects such

as pneumonitis and pulmonary edema due to the aspiration of gasoline. Chronic exposure to gasoline

vapors by intentional inhalation also has been associated with symptoms providing evidence for more

permanent neurological damage in humans such as postural tremor, abnormal gait, and affected

speech. The relative degrees to which hydrocarbons and additives such as lead contribute to gasoline-induced

neurological impairment are unknown. Studies with rats and mice with chronic inhalation

exposure to gasoline vapors have found hepatocellular tumors in female mice, and α2µ-globulin

nephropathy and related renal tumors in male rats. The renal tumors are believed to be unique to

male rats and of questionable relevance to humans.

ATSDR (1995a) derived no inhalation or oral MRLs for gasoline, “because of the variability in the

composition of gasoline;” the toxicity would depend on the specific composition. ATSDR (1995a)
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also commented, regarding oral exposure, that there is no “quantitative information on adverse effects

other than α2µ-globulin nephropathy in male rats,” an end point that is considered “not relevant to

human risk assessment.”

Numerous epidemiology studies have examined possible relationships between exposure to gasoline

and development of various types of cancer in humans, but none of the studies were adequate to

conclusively demonstrate that exposure to gasoline causes cancer in humans (ATSDR 1995a). The

most common problems with these studies were the failure to adequately characterize exposure and

the failure to control for confounding exposures to other fuels and exhaust emissions. In a chronic

inhalation study, exposure to whole vapors of unleaded gasoline produced an increased incidence of

renal tumors in male rats and liver tumors in female mice (MacFarland et al. 1984b). The renal

tumors in male rats were considered to arise as a result of a process involving α2µ-globulin

accumulation, a process not expected to occur in humans. ATSDR (1995a) further questioned the

relevance of the MacFarland findings, because the animals were exposed to whole vapors of gasoline

and “gasoline emissions found in the environment contain lower concentrations of hydrocarbons with

very low vapor pressures” than those found in whole vapors of gasoline.

EPA (1987c) classified gasoline as a Group B2 compound, a probable human carcinogen, based on

inadequate evidence of carcinogenicity in humans and sufficient evidence in animals. This evaluation

was made before EPA adopted a policy excluding α2µ-globulin-related renal tumors in male rats from

cancer weight-of-evidence classifications. EPA derived an inhalation unit risk of 2.1x10-3 ppm for

gasoline based on an analysis of tumor incidence data for hepatocellular adenomas and carcinomas in

female mice exposed to unleaded gasoline vapors for 2 years (MacFarland et al. 1984b). EPA has

not published a more recent classification for gasoline.

IARC (1989a) concluded that there was inadequate evidence for carcinogenicity of gasoline in

humans and limited evidence for carcinogenicity of unleaded automotive gasoline in experimental

animals (the evidence in MacFarland et al. [1984a]). IARC (1989a) classified gasoline-as “possibly

carcinogenic to humans (Group 2B),” based on the preceding conclusions and supporting data

showing that gasoline induces unscheduled DNA synthesis in mice in vivo and in mouse, rat and

human hepatocytes in vitro; that light, straight-run naphtha and light catalytically cracked naphtha

petroleum refinery streams used to blend gasoline produce skin tumors in dermally exposed mice; ant

that gasoline components such as benzene and 1,3-butadiene are known or suspected carcinogens.
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6.3.4 Various Petroleum Refinery Streams

A number of health effects studies in animals of petroleum streams that correspond with the transport

fractions have been reviewed by the TPHCWG (1997c); however, most of these are unpublished

industry studies.

6.3.5 Stoddard Solvent

Stoddard solvent is a petroleum distillate mixture of C7-Cl2 hydrocarbons, approximately 80-90%

aliphatics (30-50% linear and branched alkanes, and 30-40% cyclic alkanes) and l0-20% aromatics

(not PAHs). It is similar to white spirits, which is also included in the toxicological profile on

Stoddard solvent (ATSDR 1995b). For additional detail, see Section 3.2 and Table E-2.b. Data

regarding the health effects of Stoddard solvent in either humans or animals are limited and were

judged inadequate for MRL development. Upper respiratory irritant effects were seen in animals

exposed by inhalation for acute and intermediate durations; these appear to be the most sensitive

effects by the inhalation route. Male rat nephropathy has been reported in intermediate inhalation

studies, but is not considered relevant to human health. No oral studies were located. Information on

the potential carcinogenicity of Stoddard solvent is inadequate.

6.3.6 Mineral-Based Crankcase Oil

Mineral-based crankcase oil is a petroleum product that is a complex mixture of low and high

molecular weight (C15-C50) aliphatic and aromatic hydrocarbons, metals, and additives. The chemical

composition of mineral-based crankcase oil varies widely, depending on the original crude oil, the

processes used in refining, the types of additives included in the oil, the efficiency and type of engine

in which it is used, the type of fuel used in the engine, and the length of time the oil was used in an

engine. The hydrocarbon constituents are mainly straight and branched chain alkanes, cycloalkanes,

and aromatics (see Table E-5.b for additional detail). Additives (which can account for-up to 20% of

the weight of oil formulations) include detergents, metallic salts (e.g., molybdenum and zinc salts),

and organometallic compounds. Metals (e.g., cadmium, lead and zinc) and PAHs have been

demonstrated to increase in oil with continued use in an engine.
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Studies examining petroleum-stream stocks used to formulate mineral-based crankcase oil indicate that

these stocks are nontoxic relative to used crankcase oils; therefore, the toxicity of used oils has been

attributed to additives present in the oil or to decomposition products or contaminants that accumulate in

the oil with use (ATSDR 1997c). Studies of mechanics and auto-workers exposed to used mineral-based

crankcase oil found elevated incidence of skin rashes, anemia, headaches and tremors, but these studies do

not establish a causal relationship with exposure to used crankcase oil, due to several limitations of the

studies including the likelihood that the workers were exposed to other chemicals which may have caused

the effects. There are only a few toxicological studies of animals exposed to mineral-based crankcase oil.

Acute exposures to mists of used mineral-based crankcase oil were irritating to the eyes and upper

respiratory tract of some volunteer human subjects. Studies of rats ingesting large single doses

(9,000-22,500 mg/kg) of used mineral-based crankcase oil found no adverse health effects other than

diarrhea. Cattle that ingested an unknown amount of used mineral-based crankcase oil while grazing in

contaminated pastures exhibited several health effects including death, anemia, and neurological

dysfunction; it was postulated that the observed effects were caused by metals (molybdenum and lead) in

the oil. Long-term dermal application of used mineral-based crankcase oil to the skin of mice produced an

increased incidence of dermal papillomas and carcinomas and increased levels of DNA adducts associated

with reactive metabolites of PAHs. The carcinogenicity of used mineral-based crankcase oil has been

correlated with the PAH content of oils. ATSDR (1997e) judged that no meaningful MRL values could

be derived for used mineral-based crankcase oil, due to the limitations of the toxicological data on used

mineral-based crankcase oils and the wide compositional variance among used mineral-based crankcase

oils.

EPA (1998b) and IARC (1996) have not classified used mineral-based crankcase oil as to its carcinogenicity

in humans. IARC (1984, 1987) noted that exposure to mineral oils used in a variety of

occupations (including mulespinning, metal machining, and jute processing) has been strongly and

consistently associated with increased occurrence of squamous-cell cancers of the skin, especially of the

scrotum, but that production processes have changed over time so that more modern, highly refined oils

contain smaller amounts of “contaminants, such as polycyclic aromatic hydrocarbons.” IARC (1987)

judged that there was sufficient evidence for the carcinogenicity of untreated and mildly-treated mineral

oils in humans and animals, whereas there was inadequate evidence for the carcinogenicity of highly-refined

mineral oils in humans or animals.
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6.3.7 Mineral Oil Hydraulic Fluids

Most mineral oil hydraulic fluids are made from processed petroleum crude oils that are blended with

various types of nonhydrocarbon additives to impart specific, use-related properties to the fluid (ATSDR

1997b). The carbon number range of hydrocarbons in hydraulic fluids varies depending on the intended

application of the fluid, but mostly is in the range of C15-C50. Toxicity data for mineral oil hydraulic

fluids are restricted to acute lethality studies of rats exposed by gavage or by inhalation to several types of

mineral oil hydraulic fluids, and single-dose gavage neurotoxicity tests that found no effects in chickens.

ATSDR (1997b) did not derive inhalation or oral MRLs for mineral oil hydraulic fluids for any duration

of exposure, because of the lack of suitable data.

IARC (1984) reviewed the evidence that certain types of mineral oils are carcinogenic in animals, whereas

other types are not. IARC (1984) concluded that mineral oil is not classifiable as to its carcinogenicity,

because of the apparent dependence of mineral oil’s carcinogenic activity in animals on the chemical

makeup of the crude oil starting material, the presence of additives and the conditions of use.

6.3.8 Asphalt

Asphalts are complex mixtures containing relatively high molecular weight hydrocarbons, predominantly

cyclic alkanes and aromatic compounds (IARC 1985). They also contain some sulfur-, nitrogen- and

oxygen-containing compounds and heavy metals. They are viscous liquids or solids. Inhalation studies of

these mixtures in animals have involved heating the materials to produce fumes, which is relevant to

human occupational exposure (e.g., roofing, road surfacing), but not particularly relevant to exposure

resulting from contamination at hazardous waste sites. Respiratory effects were seen in these studies.

Respiratory effects were reported in workers who were exposed to fumes of asphalts. No oral studies

were reported. IARC concluded that there is sufficient evidence that extracts of asphalts (applied to the

skin of experimental animals in solvents such as benzene or toluene or injected subcutaneously) are

carcinogenic to animals. Evidence for undiluted asphalts ranged from limited to inadequate, depending on

type of asphalt. IARC (1985) concluded that there is inadequate evidence that asphalts alone are

carcinogenic to humans
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6.3.9 Crude Oil

ATSDR has not prepared a toxicological profile on crude oil. IARC (1989c) prepared a monograph on

crude oils, from which the following information is summarized. Crude oils are exceedingly complex

mixtures that vary greatly depending on their source. The bulk of chemicals in crude oils are

hydrocarbons: straight, branched and cyclic alkanes; and aromatics including benzene, alkylbenzenes,

naphthalenes and PAHs. Non-hydrocarbon constituents of crude oil include sulfur-, nitrogen-, oxygen-and

metal-containing compounds.

No studies of potential health effects from inhalation exposure were located. Acute oral administration of

crude oil to animals has resulted in hepatic effects and development effects. Aspiration of crude oil by a

laborer resulted in pneumonia and hepatic and renal effects. Petroleum field workers who had direct

dermal contact with crude oil developed adverse dermal effects, including dryness and hyperkeratosis.

A number of studies of the carcinogenicity of dermal application of crude oil to animals have been

reviewed by IARC (1989c), which concluded that there is limited evidence for the carcinogenicity of crude

oil to experimental animals. A cohort study of U.S. petroleum-producing and pipeline workers, and case

control studies that included exposure during crude oil exploration and production, were evaluated by

IARC (1989c), which concluded that there is inadequate evidence for the carcinogenicity of crude oil in

humans.

An additional monograph on occupational exposures in petroleum refining (IARC 1989e) concluded that

there is limited evidence that working in petroleum refineries entails a risk of skin cancer and leukemia.

Exposures during refining, however, are not particularly relevant to exposures resulting from

contamination of hazardous waste sites with crude oil.

6.4 TOXICOKINETICS

Overview. Because TPH is a broadly defined entity consisting of complex mixtures of hydrocarbons of

varying chemical composition (due to differences in original petroleum products and differential, time-dependent,

fate and transport of components within any particular TPH mixture), this section discusses

available information for absorption, distribution, metabolism and excretion of components and petroleum

products corresponding to the transport fractions of TPH. Limited additional information regarding the
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more heterogenous whole petroleum products can be found in the ATSDR toxicological profiles and other

assessments of these products referenced in Section 6.3. In general, however, there is little information

regarding toxicokinetics of these heterogeneous products and the discussions often deal with the individual

constituents, including additives and impurities that are not petroleum hydrocarbons, and hydrocarbon

mixtures that are similar to portions of the product.

Hydrocarbons in the aromatic EC>9 –EC16, fraction may be readily absorbed following inhalation or oral

exposure, based on studies with humans and animals exposed to the BTEXs. BTEXs are absorbed by the

skin to a lesser extent, especially with exposure to vapors. BTEXs and their metabolites are widely

distributed throughout tissues and organs following absorption. BTEXs are metabolized (via oxidative

metabolic pathways involving cytochrome P-450 oxidases and conjugation reactions with glucuronides,

sulfates, glutathione, or amino acids) to more water-soluble metabolites that are excreted predominately in

urine. Metabolism represents a toxification pathway for some effects of certain BTEXs (e.g., cancer and

hematopoietic effects appear to be caused by reactive metabolic intermediates of benzene) and a

detoxification pathway for other effects (e.g., neurological effects from acute exposure to toluene). In

addition to urinary excretion of metabolites, BTEXs are eliminated by exhalation of unchanged parent

compound and fecal excretion (ATSDR 1994, 1995d, 1997a, 1999a).

Hydrocarbons in the aromatic EC>9 –EC16 fraction may be absorbed following inhalation, oral, or dermal

exposure, based on studies of humans and animals exposed to cumene, naphthalene or monomethyl-naphthalenes,

but data concerning the rate and extent of absorption are limited. Animal studies indicate

that these indicator compounds and their metabolites are widely distributed following absorption and that

urinary excretion of metabolites is the primary route of elimination. Metabolism of cumene, naphthalene,

and methyl naphthalenes involves aromatic ring oxidation (especially for naphthalene)-forming epoxide,

alcohol, dihydrodiol, and quinone derivatives that can be conjugated to glutathione, glucuronic acid, or

sulfate-and oxidation of the alkyl side groups (i.e., in cumene or methyl naphthalenes)-forming alcohol

and carboxylic acid derivatives that can be conjugated to glucuronic acid or amino acids (ATSDR 1995e;

EPA 1987a, 1997b).

Hydrocarbons in the aromatic EC>16 –EC35 fraction may be absorbed to varying extents following

inhalation, oral, or dermal exposure, depending on the lipophilicity and molecular size of the compound

and the vehicle of administration, as indicated by studies of humans exposed to workplace-air complex
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mixtures containing PAHs (i.e., hydrocarbons with more than two 5- or 6-carbon aromatic rings) and

studies of animals exposed to individual PAHs by inhalation, oral administration, or dermal application.

Increasing lipophilicity of vehicles or of the PAH compound tends to increase absorption, whereas

adsorption to particles of increasing size (especially for inhalation exposure) or increasing molecular

weight of the PAH compound tends to decrease absorption. Following absorption, PAHs are widely

distributed to tissues and organs and eliminated by urinary and biliary excretion of metabolites.

Metabolism of PAHs involves the production of arene oxides, phenols, quinones, dihydrodiols (i.e., diols),

phenol-diols, and diol-epoxides, and the conjugation of these oxidized intermediates to glutathione,

glucuronic acid or sulfate. Reactive metabolic intermediates, including stereospecific isomers of arene

oxides and diol-epoxides, are thought to cause the genotoxic and carcinogenic effects produced by

carcinogenic PAHs (ATSDR 1995f).

Hydrocarbons in the aliphatic EC5 –EC8 fraction may be readily absorbed in the lungs, as indicated by

studies of humans and animals exposed to n-hexane, but absorption by the oral and dermal route is not

well characterized. Aspiration to the lungs can occur following ingestion of hydrocarbons in this fraction.

Absorbed n-hexane, based on determined partition coefficients in human and animal tissues, is expected to

be widely distributed to tissues and organs with preferential partitioning into fatty tissues and well

perfused tissues. Studies with humans and animals indicate that n-hexane is oxidatively metabolized to

alcohol, ketone, carboxylic acid, dihydrodiol, and diketone derivatives, predominately in the liver. Urinary

excretion of metabolites and, to a lesser extent, exhalation of unchanged n-hexane are the predominant

means of elimination with low-level exposure, whereas exhalation of unchanged compound becomes a

more important elimination pathway with high exposures (ATSDR 1999b).

Hydrocarbons in the aliphatic EC>8 –EC16 fraction may be readily absorbed in the lungs, widely

distributed to tissues with preferential distribution and accumulation occurring in fatty tissues, and slowly

eliminated from fatty tissue, as indicated by studies of humans exposed by inhalation to a mixture of

C10-C12 alkanes (“white spirit”) and studies of rats exposed by inhalation to single alkanes or cycloalkanes

in the C6-C10 range. Results from these studies suggest that metabolism of hydrocarbons in this fraction,

especially following distribution to fatty tissue, may be slow relative to aromatic hydrocarbons.

Aspiration to the lungs may occur following ingestion of hydrocarbons in this fraction, especially those at

the lower end of the ranges of molecular weight and viscosity for the fraction. Studies with rats indicate
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that percentage absorption of ingested aliphatic hydrocarbons decreases with increasing carbon number

from about 60% for Cl4 compounds to 5% or less for hydrocarbons with 228 carbons.

Hydrocarbons in the aliphatic EC>16 –EC35 fraction may be poorly absorbed, regardless of the route of

exposure, preferentially distributed to the liver and fatty tissues, slowly metabolized to fatty acids or

triglycerides, and slowly excreted in the feces via the bile and as urinary metabolites, as indicated by

studies with animals exposed to food-grade mineral oil or motor oil (ATSDR 1997b). The common

presence of lipogranulomata in human autopsies (benign structures in human liver and spleen tissue which

are composed of lipoid droplets surrounded by lymphocytes and macrophages and caused by dietary

exposure to mineral oils) is consistent with the concept that aliphatic hydrocarbons in this fraction are

slowly metabolized.

6.4.1 Absorption

6.4.1.I Inhalation Exposure

Aromatic EC5 –EC9Fraction. Studies with humans and animals are available for each of the

BTEXs; these studies indicate that BTEX compounds are rapidly and efficiently absorbed following

inhalation exposure. Published retention percentages for inspired BTEXs in human studies range from

approximately 30% to 70-80% (see ATSDR 1994, 1995d, 1997a, 1999a).

Aromatic EC>9 –EC16 Fraction. Studies measuring the rate and extent of absorption in humans or

animals following inhalation exposure to naphthalene or the monomethyl naphthalenes were not available,

but observations of systemic health effects in humans and animals provide qualitative evidence of

absorption of these indicator compounds (ATSDR 1995e). Studies of humans following inhalation

exposure to isopropylbenzene (cumene) indicated a retention percentage of about 50% (EPA 1987a,

1997b).

Aromatic EC>16 –EC35 Fraction. Studies directly measuring the rate and extent of absorption in

humans or animals following inhalation exposure to PAHs were not available, but measurement of the

appearance of radioactivity in blood, tissues, and excreta within hours of exposure of animals to airborne,

radioactively labeled benzo(a)pyrene indicate that rapid absorption can occur. Particle size and vehicle are

expected to influence the absorption of inhaled PAHs, as indicated by measurements of lung clearance
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following inhalation exposure of rats to benzo(a)pyrene adsorbed onto particles of differing sizes and

measurements of excretion rates in rats following intratracheal instillation of benzo(a)pyrene in various

vehicles (ATSDR 1995f)

Aliphatic EC5 –EC8 Fraction. Studies with humans exposed to vapors of n-hexane indicate that

20-25% of inhaled compound is absorbed and retained (ATSDR 1999b). In studies with rats exposed by

inhalation, 12 hours/day for 3 days, to 100 ppm single hydrocarbons in the C6-C10 alkane series (n-hexane

through n-decane) and a C6-C10, naphthene series (cyclohexane, methylcyclohexane, dimethylcyclohexane,

trimethylcyclohexane and t-butylcyclohexane), absorption was demonstrated by the measurement of

concentrations of hydrocarbons in blood, brain, liver, kidneys, and fat (Zahlsen et al. 1992). Within each

series, tissue concentrations (µmol/kg) generally increased with increasing carbon number.

Aliphatic EC>8 –EC16 Fraction. Hydrocarbons in this fraction may be readily absorbed following

inhalation, as indicated by studies of humans exposed to airborne mixtures of mostly C10-C12

hydrocarbons and by the studies of rats exposed to single hydrocarbons conducted by Zahlsen et al.

(1992).

For human volunteers exposed by inhalation to 100 ppm white spirit for 3 hours, a mean pulmonary

uptake of 392 mg white spirit was measured, based on concentrations of white spirit in inspiratory and

expiratory air (Pedersen et al. 1987). Following exposure to the same concentration, 6 hours/day for

5 consecutive days, the mean pulmonary uptake was 3,464 mg white spirit. The test material was a

mixture of aliphatic hydrocarbons containing 99% linear and branched alkanes (0.99% C8-C9, 15% C10,

39% C11, and 44% C12 ), and 1% C9-C10 cycloalkanes.

Absorption of inhaled hydrocarbons in the lower range of this fraction was demonstrated by detection of

hydrocarbons in blood, brain, liver, kidneys, and fat in rats following exposure to single hydrocarbons

(C6 -C10, n-alkanes [n-hexane through n-decane] and C6-C10, naphthenes [cyclohexane, methylcyclohexane,

dimethylcyclohexane, trimethylcyclohexane, and t-butylcyclohexane]) at 100 ppm, 12 hours/day, for

3 days (Zahlsen et al. 1992).

Aliphatic EC>16 –EC35 Fraction. Studies measuring the rate and extent of absorption of aliphatic

hydrocarbons in this fraction were not located, but animal studies with mineral oil aerosols suggest that
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absorption is not rapid and lung clearance may be mediated by macrophages. Mice, rats, and rabbits

exposed to aerosols of diesel-engine lubricating oil for up to 343 days showed oil in alveolar macrophages,

mediastinal lymph nodes, lymphatic channels of the lungs, and the pleura; in mice, concentrations (w/w) of

oil were 0.13% in lungs and 0.03% in livers (ATSDR 1999b).

6.4.1.2 Oral Exposure

Aromatic EC5 –EC9  Fraction. Animal studies are available for each of the BTEXs, indicating that

these compounds are rapidly and efficiently absorbed following oral exposure. Published absorption

percentages for oral doses of BTEXs in animal studies range from about 80% to 97% (see ATSDR 1994,

1995d, 1997a, 1999a).

Aromatic EC>9 –EC16  Fraction. No data regarding the extent or rate of absorption of ingested

naphthalene or monomethyl naphthalenes were available, except for a report that 80% of an oral dose of

2-methyl naphthalene was recovered as metabolites in the urine of rats within 24 hours (ATSDR 1995e).

Studies with animals indicate that orally administered isopropylbenzene (cumene) rapidly appeared in the

blood and that 90% of the administered dose was accounted for in urinary metabolites (EPA 1987a,

1997b).

Aromatic EC>16 –EC35 Fraction. Studies with animals following oral exposure to benzo(a)pyrene and

other PAHs indicate that the extent of oral exposure to PAHs can vary depending on lipophilicity of the

PAH compound and lipophilicity of the vehicle in which it is administered (ATSDR 1995f).

Aliphatic EC5 –EC8, EC>8 –EC16, and EC>16 –EC35  Fractions. No studies were located regarding

absorption of hydrocarbons in these fractions after oral exposure in humans. Studies in rats show that

absorption of ingested aliphatic hydrocarbons (n-alkanes, isoparaffins, and naphthenes) is inversely related

to molecular weight, ranging from complete absorption at the lower end of the molecular weight range to

about 60% for C14 hydrocarbons, 5% for C28 hydrocarbons, and essentially no absorption for aliphatic

hydrocarbons with >32 carbons (Albro and Fishbein 1970; Miller et al. 1996)
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6.4.1.3 Dermal Exposure

Aromatic EC5 –EC9 Fraction. Studies with animals indicate that BTEXs are dermally absorbed, but

to a lesser extent than absorption via inhalation or oral exposure, especially when exposure is to vapors of

these compounds (as opposed to the liquids or liquid solutions) (see ATSDR 1994, 1995d, 1997a, 1999a).

Aromatic EC>9 –EC16 Fraction.  Data regarding the rate and extent of dermally administered

isopropylbenzene (cumene), naphthalene, or monomethyl naphthalenes were restricted to observations of

systemic effects in humans and animals following dermal exposure to these compounds (ATSDR 1995e;

EPA 1987a, 1997b).

Aromatic EC>16 –EC35 Fraction.  Studies that monitored radioactivity in rat tissues, organs, and

excreta following the dermal application of individual radiolabeled PAHs in an organic solvent measured

absorption percentages in the approximate range of 50-80% (% of applied dose that was absorbed), but

found that absorption percentages declined to less than 20% when soil particles were included in the

applied material (ATSDR 1995f).

Aliphatic EC5 –EC8 Fraction. In vitro studies with human skin indicate that the permeability of

n-hexane through skin was about l00-fold lower than the permeability of benzene, suggesting that

hydrocarbons in this fraction may have a low potential for skin absorption (ATSDR 1999b).

Aliphatic EC>8 –EC16 Fraction. No studies were located regarding absorption of hydrocarbons in this

fraction after dermal exposure in humans or animals.

Aliphatic EC>16 –EC35 Fraction. No studies were located that measured the rate or extent of dermal

absorption of hydrocarbons in mineral oil or similar materials in animals or humans. Dermal absorption

of hydrocarbons in this fraction, however, may be expected to be slow, based on studies with monkeys

administered subcutaneous doses of radiolabeled mineral oil in an aqueous emulsion. Radioactivity

remaining at the sites of injection accounted for 85-99% and 25-33% of the administered radioactivity, at

1 week and 10 months following injection, respectively (ATSDR 1997b).
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6.4.2 Distribution

Aromatic EC5 –EC9 Fraction. Studies with humans and animals exposed predominately to vapors of

individual BTEXs (there are fewer data for oral and dermal exposure) indicate that, following absorption,

compounds in this fraction are widely distributed, especially to lipid-rich and highly perfused tissues (see

ATSDR 1994, 1995d, 1997a, 1999a). Studies of rats exposed by inhalation to single hydrocarbons at

100 ppm, 12 hours/day, for 3 days found that C6-C10 aromatics (benzene, toluene, xylene, trimethylbenzene,

and t-butylbenzene), compared with C6-C10, n-alkanes (n-hexane through n-decane) and C6-C10,

naphthenes (cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, and

t-butylcyclohexane), showed high concentrations (µmol/kg) in blood, low concentrations in organs, and a

lower potential for accumulation in fat and other organs presumably due to faster metabolic disposition

(Zahlsen et al. 1992).

Aromatic EC>9 –EC16 Fraction. Studies of swine after oral exposure to naphthalene, rats after

dermal exposure to naphthalene, and guinea pigs after oral exposure to 2-methyl naphthalene indicate that

these compounds, and their metabolites, are distributed throughout tissues and organs following absorption

(ATSDR 1995e). Studies with rats exposed to isopropylbenzene (cumene) by inhalation, oral

administration, or intravenous injection indicated that absorbed isopropylbenzene (cumene) is distributed

to many tissues and organs with some preferential distribution in fatty tissues (EPA 1987a, 1997b).

Aromatic EC>16 –EC35 Fraction. Studies with animals exposed to individual radiolabeled PAHs by

inhalation, oral administration, or dermal administration indicate that, following absorption, PAHs are

widely distributed to tissues and organs (ATSDR 1995f). Studies with pregnant animals found that,

following oral exposure to radiolabeled benzo(a)pyrene, placental levels of radioactivity were higher than

levels in embryonic tissue, suggesting that benzo(a)pyrene does not readily cross the placental barrier

(ATSDR 199%).

Aliphatic EC5 –EC8 Fraction. Determination of partition coefficients (blood:air and tissue:air) for

n-hexane in human and rat tissues indicates that hydrocarbons in this fraction, once absorbed, will be

widely distributed to tissues and organs with preferential distribution to fatty tissues and well perfused

tissues (ATSDR 1999b). Asphyxia and chemical pneumonitis can be a health concern from ingestion of

hydrocarbons in this fraction, due to aspiration to the lungs. The aspiration potential of ingested
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hydrocarbons increases with decreasing viscosity; within the alkane series, C6-C10, viscosity decreases

with decreasing molecular weight (Cavender 1994).

Studies of rats exposed by inhalation to single hydrocarbons at 100 ppm, 12 hours/day, for 3 days found

that C6-C10 n-alkanes (n-hexane through n-decane) and C6-C10 naphthenes (cyclohexane, methylcyclohexane,

dimethylcyclohexane, trimethylcyclohexane, and t-butylcyclohexane), compared with C6-C10

aromatics (benzene, toluene, xylene, trimethylbenzene, and t-butylbenzene), generally showed low

concentrations (µmol/kg) in blood, high concentrations in brain and other organs, and a high potential for

accumulation in fat (Zahlsen et al. 1992). Within any of these three categories of hydrocarbons,

hydrocarbon concentrations in tissues (blood, brain, kidney, liver and fat) generally increased with

increasing carbon number (Zahlsen et al. 1992). Twelve hours after cessation of exposure, concentrations

of alkanes and naphthenes in fat and brain were 2- to 3-fold higher than concentrations of aromatics,

suggesting faster metabolic disposition for the aromatics.

Aliphatic EC>8 –EC16 Fraction. Studies of rats exposed by inhalation to individual C6-C10, n-alkanes

and cycloalkanes indicate that hydrocarbons in this fraction are distributed widely to tissues and organs

after absorption and can accumulate in fat (Zahlsen et al. 1992). Aspiration to the lungs can occur

following ingestion of hydrocarbons in this fraction (Cavender 1994). Following absorption from the

gastrointestinal tract, smaller molecular weight aliphatic hydrocarbons and/or their metabolites are

transported in the body via the blood and the lymph system, whereas larger molecular weight aliphatic

hydrocarbons may be distributed predominately via the lymph system (see for review Albro and Fishbein

1970; Miller et al. 1996).

Aliphatic EC>16 –EC35 Fraction. Lung accumulation of hydrocarbons from this fraction is of concern

with prolonged or high-level exposure to aerosols or ingestion, as indicated by numerous case reports of

lipoid pneumonia in humans exposed to mineral oil through intranasal application of liquid petrolatum in

medicinal nose drops and by a case of lipoid pneumonia in a child who ingested a 5-10 mL dose of

mineral oil automobile transmission fluid (ATSDR 1997b). Following absorption, hydrocarbons in this

fraction may be expected to accumulate to some degree in liver and fatty tissues, as indicated by the

observation that, 24 hours after administration of an oral dose of tritiated mineral oil to rats, concentrations

of tritiated mineral oil were about 7-fold greater in fatty tissues and liver than in kidney and brain

(ATSDR 1997b). Lipogranulomata (clusters of lipoid droplets surrounded by lymphocytes and
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macrophages) are commonly found in human autopsies, particularly in liver, spleen, and abdominal lymph

nodes (Miller et al. 1996; Wanless and Geddie 1985). These structures are associated with dietary

exposure to mineral oils and waxes, and are considered a benign response without adverse consequences

(Miller et al. 1996; Wanless and Geddie 1985).

6.4.3 Metabolism

Aromatic EC5 –EC9 Fraction. As indicated by studies with humans and animals exposed to

individual BTEXs, compounds in this fraction may be expected to be metabolized via cytochrome P-450

oxidases, either at carbons in the aromatic ring or in alkyl side groups, to metabolic intermediates that can

be conjugated with glucuronides, sulfates, glutathione, or ammo acids (e.g., cysteine or glycine). The

resultant oxidated metabolites or conjugated metabolites are more water-soluble than parent compounds

and are subject to urinary or, in some cases, biliary excretion. Metabolism of the BTEXs can represent

both a detoxification process (e.g., enhancement of the formation and excretion of hippuric acid can

counteract the acute neurotoxicity of toluene in animals) and a toxification process (e.g., cancer and

hematopoietic effects from chronic exposure to benzene appear to be caused by reactive metabolic

intermediates) (see ATSDR 1994, 1995d, 1997a, 1999a).

Aromatic EC>9 –EC16 Fraction. Studies with animals following oral, intraperitoneal, or subcutaneous

administration of naphthalene or 2-methyl naphthalene indicate that ring oxidation occurs via an initial

epoxide intermediate that subsequently is converted to alcohol, dihydrodiol and quinone derivatives, some

of which are conjugated to glutathione, glucuronic acid, or glycine, and that the presence of alkyl side

groups presents another site for oxidation and conjugation (ATSDR 1995e). Naphthol and

naphthoquinone derivatives have been detected in the urine of humans following exposure to naphthalene

(ATSDR 1995e). Studies with animals exposed to isopropylbenzene (cumene), and with in vitro animal

preparations, indicate that cumene is predominately oxidized at the l- or 2-carbon of the propyl side group

to form alcohol or carboxylic acid derivatives that are conjugated predominately to glucuronic acid (EPA

1987a, 1997b). A study that analyzed urinary metabolites in humans following acute inhalation exposure

to cumene provided supporting data (EPA 1987a).

Aromatic EC>16 –EC35 Fraction. In vitro studies with human tissues and in vitro and in vivo animal

studies with benzo(a)pyrene and other PAHs indicate that compounds in this TPH fraction will undergo

oxidative metabolism involving the production of arene oxides, phenols, quinones, dihydrodiols (i.e., diols),
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phenol-diols, and diol-epoxides (catalyzed by enzyme systems including cytochrome P-450 oxidases and

epoxide hydrolase), and the conjugation of these intermediates to glutathione, glucuronic acid, or sulfate

(ATSDR 1995f). Metabolism of PAHs facilitates both the elimination of more water soluble metabolites

and the production of reactive intermediates (e.g., stereospecific isomers of arene oxides and diol-epoxides)

thought to be responsible for the mutagenic and carcinogenic activity of carcinogenic PAHs (ATSDR

1995f).

Aliphatic EC5 –EC8 Fraction. Examination of urinary metabolites in humans and rats after exposure

to n-hexane indicates that hydrocarbons in this fraction may be oxidatively metabolized via cytochrome

P-450 oxidases to several alcohol, ketone, and carboxylic acid derivatives. Based on studies of urinary

metabolites after exposure to n-hexane, proposed metabolites include l-, 2-, and 3-hexanol, 2-hexanone,

5-hydroxy-2-hexanone, 2,5-hexanedione, and hexanoic acid (ATSDR 1999b).

Aliphatic EC>8 –EC16 Fraction. Hydrocarbons in this fraction are oxidatively metabolized to fatty

acids and alcohols, apparently mediated by cytochrome P-450 isozymes (see Miller et al. 1996 for review).

Studies regarding the metabolism of hydrocarbons in this fraction in humans or animals provide suggestive

evidence that metabolism may be slow. In a study of humans exposed to 100 ppm white spirit

6 hours/day for 5 days (white spirit is a mixture comprised predominately of C10-C12, linear and branched

alkanes), only minor differences were observed in the GC-MS spectrum of hydrocarbons in biopsied fatty

tissue, than in the spectrum of hydrocarbons in the test material (Pedersen et al. 1984). In rats exposed by

inhalation to single C6-C10, alkanes, cycloalkanes, or aromatic hydrocarbons at 100 ppm, 12 hours/day for

3 days, concentrations of alkanes and cycloalkanes were 2- to 3-fold higher than concentrations of

aromatics 12 hours after cessation of exposure, suggesting that aliphatic hydrocarbons in this fraction may

be metabolized more slowly than aromatic hydrocarbons of equivalent molecular weight (Zahlsen et al.

1992).

Aliphatic EC>16 –EC35 Fraction. Aliphatic hydrocarbons in this fraction are not expected to undergo

extensive metabolism in animals or humans. In monkeys, 2 days after intramuscular injection of a mineral

oil emulsion with a radiolabeled C16 hydrocarbon (n-hexanedecane), substantial portions (30-90s) of

radioactivity in various tissues existed as unmetabolized n-hexanedecane. The remainder of the

radioactivity was found as phospholipids, free fatty acids, triglycerides, and sterol esters. No radioactivity

was found in water-soluble fractions (ATSDR 1997b). The common presence of lipogranulomata in
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human autopsies and the widespread dietary exposure to mineral oils and waxes (Wanless and Geddie

1985) are consistent with the concept that aliphatic hydrocarbons in this fraction are slowly metabolized.

6.4.4 Elimination and Excretion

Aromatic EC5 –EC9 Fraction. Studies with humans and animals exposed by various routes to

BTEXs, indicate that compounds in this fraction may be expected to be eliminated predominately by

urinary excretion of metabolites and to lesser degrees by exhalation of unchanged parent compound or

biliary excretion of metabolites (see ATSDR 1994, 1995d, 1997a, 1999a).

Aromatic EC>9–EC16 Fraction. Data from studies with animals exposed by several routes to

naphthalene, monomethyl naphthalenes and isopropylbenzene (cumene) indicate that urinary excretion of

metabolites represents the predominant pathway of elimination for these compounds. Detection of urinary

metabolites in humans exposed to naphthalene or cumene provide supporting evidence (ATSDR 1995e;

EPA 1987a, 1997b).

Aromatic EC>16 –EC8 Fraction. Studies with animals exposed by inhalation, and by oral, dermal, or

parenteral administration, indicate that PAHs are eliminated by urinary and biliary excretion of

metabolites (ATSDR 1995f).

Aliphatic EC5 –EC8 Fraction. Studies with humans and animals exposed to n-hexane suggest that

hydrocarbons in this fraction, under low-exposure conditions, may be eliminated predominately as urinary

metabolites and to a lesser extent in exhaled air as unchanged compound. Studies with rats indicate that

the importance of exhalation of unchanged hexane as an elimination pathway increased from about 12% to

62% of body burden after inhalation exposure to 500 ppm and 10,000 ppm, respectively (ATSDR 1999b).

Aliphatic EC>8 –EC16 Fraction. Results from studies with humans exposed by inhalation to white

spirit (a mixture of C10-C12 aliphatic hydrocarbons) suggest that hydrocarbons in this fraction are slowly

eliminated following distribution to fatty tissues (Pedersen et al. 1984). Immediately after 5 consecutive

days of 6-hour daily exposure to 100 ppm white spirit, the mean concentration of white spirit in fatty

tissue was 41.1 mg/kg fat; approximately 60 exposure-free hours later, mean fatty tissue concentrations

had declined by only 23% to 3 1.7 mg/kg fat. No studies were located regarding the routes of excretion for

hydrocarbons in this fraction in humans or animals.
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Aliphatic EC>16 –EC35 Fraction. Hydrocarbons in this fraction may be expected to be eliminated

predominately in the feces, based on experiments with rats given oral or intraperitoneal doses of tritiated

mineral oil. With oral exposure, 90% of administered radioactivity appeared rapidly (within 2 days) in the

feces, predominately as unchanged mineral oil; less than 10% of administered radioactivity appeared in the

urine within 2 days of administration. With intraperitoneal exposure, radioactivity appeared more slowly

in the feces (11% of administered radioactivity appeared in the feces within 8 days of dosing); urinary

excretion of metabolites, within 8 days of dosing, represented about 8% of administered radioactivity

(ATSDR 1997b).

6.4.5 Physiologically Based Pharmacokinetic (PBPK)/Pharmacodynamic (PD) Models

No studies were located regarding the development of PBPK/PD models for complex mixtures of TPH in

general.

Verhaar et al. (1997), however, recently reported on progress in developing PBPK/PD models for use in

assessing human health risks from exposure to JP-5, a Navy Jet petroleum fuel containing a complex

mixture of hydrocarbons in the C9C18, range. Verhaar et al. (1997) noted that their in-progress

development of a PBPK/PD model for JP-5 is focused on the prediction of kinetics of JP-5 components in

relevant tissues after acute inhalation exposure and the resultant toxicity (neurological effects linked to the

dissolution of xenobiotic chemicals in the membrane of nerve cells). Verhaar et al. (1997) discussed how

the development of PBPK/PD model(s) for complex mixtures involves:

(1) determining a lumping scheme to be used (in which similar mixture components are grouped

[i.e., lumped] into a pseudocomponent for which necessary chemical parameters such as tissue

partition coefficients are estimated), based on knowledge of the mixture’s chemical composition,

the route and duration of exposure that is of interest, and the mixture’s toxicological effect(s) and

mechanism of action (a lumping scheme based on the octanol-water partition coefficients of

components was chosen for JP-5);

(2) formulating PBPK/PD model(s) with physiological compartments, reaction kinetic equations,

and mass transfer equations that are appropriate to the toxicological effect(s) of concern (a brain

compartment, including a pharmacodynamic subroutine, was proposed to be included in the

PBPK/PD model for JP-5);
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(3) determining whether there is enough information to include interactive effects between

pseudocomponents in the model(s); and

(4) using quantitative structure-activity relationships (QSAR) to estimate necessary model

parameters for pseudocomponents such as tissue-blood and air-blood partition coefficients, and

metabolic rate constants.

The approach discussed by Verhaar et al. (1997) suggests that development of PBPK/PD models to use in

assessing health risks from TPH will require similar focusing on relevant lumping schemes, exposure

pathways and durations, and toxicological effects and mechanisms of action. Thus, it is likely that a

PBPK/PD model developed to aid in the assessment of potential cancer risk from chronic exposure to TPH

may substantially differ from a PBPK/PD model for assessing risk for potential neurological effects from

acute exposure to TPH.

6.5 MECHANISM OF ACTION

Because TPH is a broadly defined entity consisting of complex mixtures of hydrocarbons of varying

chemical composition (due to differences in original petroleum products and differential, time-dependent,

fate and transport of components within any particular TPH mixture), this section discusses available

information for components and petroleum products corresponding to the transport fractions of TPH.

Limited additional information regarding the more heterogenous whole petroleum products can be found in

the ATSDR toxicological profiles and other assessments of these products referenced in Section 6.3. In

general, however, there is little information regarding mechanisms for these heterogenous products. The

discussions of mechanisms in these documents often deal with the individual constituents, including

additives and impurities that are not petroleum hydrocarbons, and with hydrocarbon mixtures that are

similar to portions of the product.

6.5.1 Pharmacokinetics Mechanisms

Absorption. Available data suggest that hydrocarbons in the aliphatic EC5-EC5 and aromatic

EC5-EC9 fractions may be more readily absorbed by the lungs, gastrointestinal tract, and skin than

hydrocarbons in the aliphatic or aromatic hydrocarbons in larger molecular weight fractions. This



TOTAL PETROLEUM HYDROCARONS 160

6. HEALTH EFFECTS

difference is due to their smaller molecular size and the presumed dependence of absorption of

hydrocarbons on diffusion or facilitated diffusion.

Distribution, Storage and Excretion. Hydrocarbons in each of the aliphatic and aromatic fractions

are expected to be distributed throughout tissues and organs following absorption. Preferential

distribution to fatty tissues occurs especially with aliphatic hydrocarbons. Ingested or inhaled volatile

aliphatic and aromatic hydrocarbons in the EC5-EC8 and EC5-EC9 fractions can be eliminated in exhaled

breath as unchanged parent compound. Metabolic elimination of aromatic hydrocarbons in each EC

fraction predominately occurs via oxidative metabolic pathways involving initial oxidation by cytochrome

P-450 isozymes and conjugation to more water-soluble compounds such as glutathione and glucuronic

acid. Some studies in animals suggests that aliphatic hydrocarbons (especially in the EC>8-EC16 and

EC>16-EC35 fractions) may be metabolized more slowly than aromatic hydrocarbons. Metabolites of both

aliphatic and aromatic hydrocarbons are excreted in urine and in feces via biliary excretion.

Route-dependent Toxicity. Ingested aliphatic hydrocarbons in the EC5-EC8 and EC>8-EC16

fractions are aspirated to the lungs and can lead to pulmonary irritation, edema, and pneumonia.

Materials with low viscosity (in the range of 30-35 centipoise) present an extreme aspiration risk, whereas

those with high viscosity (150-250 centipoise) present very low aspiration risk (Snodgrass 1997).

6.5.2 Mechanisms of Toxicity

Central nervous system (CNS) depression caused by acute inhalation exposure to volatile aliphatic and

aromatic petroleum hydrocarbons is generally thought to occur when the lipophilic parent hydrocarbon

dissolves in nerve cell membranes and disrupts the function of membrane proteins by disrupting their lipid

environment or by directly altering protein conformation. Oxidative metabolism of CNS-depressing

hydrocarbons reduces their lipophilicity and represents a process that counteracts CNS-depression

toxicity. More detailed information on this mechanism of toxicity can be found in ATSDR profiles on

toluene (ATSDR 1994), ethylbenzene (ATSDR 1999a), and xylene (ATSDR 1995d).

Pulmonary irritation and pneumonia from inhalation and oral exposure to complex mixtures of petroleum

hydrocarbons such as gasoline and kerosene are thought to involve direct parent hydrocarbon interaction

with nerve cell membranes resulting in bronchoconstriction and dissolution into membranes of lung
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parenchyma resulting in a hemorrhagic exudation of proteins, cells, and fibrin into alveoli (ATSDR

1998b; Klaassen 1996).

In contrast, metabolic bioactivation, mediated by pathways involving cytochrome P-450 isozymes, is

thought to be responsible for hemolytic anemia and leukemia from exposure to benzene (ATSDR 1997a)

genotoxic effects and cancer from exposure to carcinogenic PAHs (ATSDR 19950; hemolytic anemia,

ocular effects, and lung effects from naphthalene and methyl naphthalenes (ATSDR 1995e); peripheral

neuropathy from n-hexane (ATSDR 1999b); lung effects from ethylbenzene (ATSDR 1999a); and

α2µ-globulin nephropathy (which is unique to male rats) from hydrocarbons in gasoline (ATSDR 1995a).

6.5.3 Animal-to-Human Extrapolations

Rats and mice are much less sensitive than humans to the hemolytic effects of naphthalene. The dog

appears to be a better model for humans for this effect (ATSDR 1995e).

Inhalation or oral exposure to a number of the individual constituents of the TPH fractions (particularly

branched-chain alkanes) and also the petroleum products whose composition is similar to these fractions

(e.g., JP-5, JP-7, and the dearomatized streams) induces a hydrocarbon-related nephropathy unique to

male rats (ATSDR 1995c, 1995g, 1998b; TPHCWG 1997c). This lesion involves the formation of

hyaline droplets in the cytoplasm of the proximal tubule cells of the cortex. The hyaline droplets contain

high concentrations of the protein α2µ-globulin, a protein found in male rats but not in humans. A likely

mechanism for this accumulation is the slowing of the degradation of α2µ-globulin as a result of binding

with specific substances, such as petroleum hydrocarbons or their metabolites. Single cell necrosis and

exfoliation of the proximal tubular epithelium occurs, and the tubules near the cortico-medullary junction

become dilated and are eventually filled with coarsely granular casts and necrotic debris. Regenerative

tubule cell proliferation and mineralization of the renal papillar tubules occurs with continued exposure.

The nephropathy induced by accumulation of this protein has not been noted in female rats, in male rats

that lack the ability to synthesize α2µ-globulin, or in other species. Thus, it does not appear that the

nephrotoxicity attributable to the α2µ-globulin syndrome observed in male rats is relevant to humans.

Food grade and medicinal mineral oils which correspond to the aliphatic EC>16-EC35 fraction of TPH

produce liver granulomas in F344 rats. These granulomas are reactive, with associated inflammation and

occasional parenchymal cell necrosis. The inflammatory effects are not seen in dogs, mice, or Long-Evans
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or Sprague-Dawley rats fed comparable doses of similar mineral oils, according to TPHCWG (1997c). In

addition, humans, who are exposed to mineral oils in the diet and by intentional ingestion of medicinal

mineral oils, develop granulomas, but without evidence of inflammation or significant liver dysfunction.

Whether the exposure levels for humans are comparable to those tested in experimental animals is not

known. Nevertheless, the issue has been raised that F344 rats may be uniquely predisposed to the

development of inflammatory granulomatous lesions, and that this difference in sensitivity may justify use

of a smaller uncertainty factor in extrapolating from the F344 rat to humans (TPHCWG 1997c).

6.6 SELECTION OF FRACTION-SPECIFIC HEALTH EFFECTS CRITERIA

6.6.1 Overview

The focus of this section is the selection, when possible, of appropriate MRLs for the assessment of health

effects of the aromatic and aliphatic fractions of TPH. Approaches to cancer assessment are also

discussed. The TPH fractions are environmental transport fractions, as suggested by the TPHCWG

(1997c), with a slight modification to include all the BTEXs in a redefined aromatic EC5-EC9 fraction.

Other agencies have addressed the problem of selection of health effects criteria for fractions or

representative constituents of TPH (ASTM 1995; Hutcheson et al. 1996; TPHCWG 1997c), and their

approaches were carefully evaluated during the preparation of this profile, as discussed in Sections 6.1

and 6.2. Nevertheless, ATSDR’s concerns and mandate encompass a broader range of exposure periods

than those of the other agencies, and ATSDR health criteria are developed somewhat differently and for a

slightly different purpose. These issues were discussed in Section 6.1 and 6.2.

Tables 6-l and 6-2 summarize the suggested fraction-specific MRLs for inhalation and oral exposure.

These fraction-specific MRLs are provisional values, reflecting the uncertainty inherent in this approach

(see Section 6.6.2 for a more complete discussion). As with any ATSDR MRL, the MRLs in Tables 6-l

and 6-2 are intended to serve as health guidance values and are not to be used to define clean-up or action

levels. Information listed in brackets in Table 6-2 is from sources other than ATSDR toxicological

profiles. This information indicates potentially sensitive end points but does not have the same level of

confidence as information from the ATSDR toxicological profiles. Additional details and tables listing all

the candidate MRLs and relevant cancer assessments are presented in Section 6.6.2. Chapter 7 also







TOTAL PETROLEUM HYDROCARONS 165
6. HEALTH EFFECTS

presents MRLs for constituents and whole petroleum products and health effects criteria developed by

other agencies (EPA and TPHCWG RfDs and RfCs).

6.6.2 Minimal Risk Levels, Critical Effects, and Cancer Assessments for Fractions of

TPH

The information in the following text is taken from the references cited in the tables that accompany the

text. For the sake of readability, the references will not be cited in the text. Additional health effects

information is available in the pertinent toxicological profiles (ATSDR 1994, 1995c, 1995d, 1995e,

1995f, 1995g, 1997a, 1998b, 1999a, 1999b), TPHCWG (1997c), EPA references cited in the tables

including EPA (1998b), and in Section 6.2. In order to fill data gaps, some compounds, representative

mixtures, or studies that have not been assessed in ATSDR toxicological profiles are listed, with the

critical or sensitive effects as evaluated by other agencies (EPA and TPHCWG) shown in brackets. This

was done to give a more complete picture of the potential health effects of fraction constituents, to aid in

judging whether the available MRLs may be useful in assessing health effects of the entire fraction.

Aromatic EC5-9 Fraction: Indicator Compounds. This fraction consists of benzene, toluene,

ethylbenzene and the xylenes (the BTEXs).

Inhalation Exposure. The available inhalation MRLs for each of the BTEXs, and the EPA cancer risk

for benzene, can be used to assess the potential for health effects for each of these indicator compounds

individually. This is consistent with current practice. These MRLs and their associated effects, as well as

the EPA cancer assessments, are summarized in Table 6-3. Health effects that are common to the BTEXs

are neurological effects. Developmental effects appear to be a sensitive effect of inhalation exposure to

ethylbenzene and xylene. Benzene has hematological and immunological/lymphoreticular effects and is

classified in EPA Group A (human carcinogen).

Oral Exposure. The oral MRLs for each of the BTEXs, and the EPA cancer risk for benzene, can be

used to assess the potential for health effects for each of these compounds individually. No oral MRLs

exist for ethylbenzene, but the limited oral data for this compound are reasonably similar to those for

toluene. These MRLs and their associated effects, and the available EPA cancer assessments, are

summarized in Table 6-4. Effects of oral exposure to these compounds are similar to those of inhalation

exposure. In addition, renal and hepatic effects appear to be sensitive effects of xylene exposure.
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Aromatic EC>9-EC16 Combined Fraction. The combined fraction consists of the following three

fractions:

EC>9-EC10 : a variety of alkylbenzenes (propyl-, methylethyl, trimethyl, and branched-chain butyl)

EC>10-EC12: a few alkylbenzenes (n-butyl-, n-pentyl-, a trimethyl-, and other multisubstituted), indans,

and naphthalene

EC>12-EC16: a few longer chain and multi-substituted alkylbenzenes; biphenyls, methyl naphthalenes,

and some smaller PAHs.

Inhalation Exposure. A chronic inhalation MRL is available for naphthalene; this MRL is listed in

Table 6-5. There are no other inhalation MRLs for this fraction. All of the compounds in this fraction

that have EPA carcinogenicity assessments have been classified in group D (not classifiable as to human

carcinogenicity). Given the few health effects benchmarks available for the constituents of this fraction,

and the general paucity of inhalation data for this fraction (see Section 6.2.2.1), selection of surrogate

values for the combined fraction is problematic. Health effects that appear to be common to the

compounds in this fraction are respiratory irritant effects, neurological effects, and renal effects, but it is

not clear that they are common to all, or even that adequate investigation of respiratory or neurological

effects was conducted for all compounds in the table. Based on some commonality of effect, the chronic

MRL of 0.002 ppm for naphthalene could be adopted as a surrogate value for the combined fraction as a

provisional measure. Great uncertainties are attendant on this selection, but the alternative is to disregard

the potential for health effects of much of the mass of this fraction.

Oral Exposure. The only MRLs available for this fraction are acute and subchronic MRLs for

naphthalene, an intermediate MRL for acenaphthene, and a chronic MRL for l-methyl naphthalene; these

MRLs are listed in Table 6-6. Although more health effects data are available for oral exposure than for

inhalation exposure to the constituents of this fraction, selection of surrogate values to use for oral

exposure to this fraction is problematic. The acute and intermediate MRLs for naphthalene, 0.05 and

0.02 mg/kg/day, are equivalent to or lower than any other MRLs for this fraction, including the chronic

MRL for l-methyl naphthalene. The compounds in this fraction tend to cause hepatic and renal effects.

Naphthalene and l-methyl naphthalene have respiratory effects following oral exposure; it is expected that







TOTAL PETROLEUM HYDROCARONS 171

6. HEALTH EFFECTS

2-methyl naphthalene will as well. Neurological effects have been seen from acute exposure to

naphthalene, and would also be expected with the alkyl benzenes, based on the inhalation data. Thus,

there is some commonality in the health effects. Naphthalene appears to be one of the more toxic

constituents of this fraction, so adoption of the MRLs for naphthalene as surrogate values for the entire

mass of this fraction should be relatively protective. There is no chronic MRL for naphthalene, however,

and the chronic MRL for l-methyl naphthalene (0.07 mg/kg/day) is similar to, but slightly higher than the

intermediate MRL for naphthalene.

Aromatic EC>16- EC35 Combined Fraction. The combined fraction consists of the following two

fractions:

EC>16- EC21: anthracene, fluorene, phenanthrene, pyrene and other less well-known PAHs

EC>21- EC35: benz(a)anthracene; benzo(b)-, benzoCj)- and benzo(k)fluoranthene; benzo(g,h,i)perylene;

benzo(a)- and benzo(e)pyrene; chrysene; dibenz(a,h)anthracene; fluoranthene; and indeno( 1,2,3-

c,d)pyrene, and other less well-known PAHs.

Inhalation Exposure. Very few health effects data for inhalation exposure and no inhalation MRLs are

available for this fraction. Given the nonvolatile nature of these compounds, inhalation exposure as a

result of contamination at hazardous waste sites would be anticipated to occur only through exposure to

dust or particles containing PAHs.

Oral Exposure. The limited oral data for these PAHs indicate that hepatic effects are a common sensitive

effect; renal effects have been seen with some. Intermediate MRLs of 0.4 mg/kg/day have been derived

for fluorene and fluoranthene and of 10 mg/kg/day for anthracene; these are listed in Table 6-7. All of the

commonly studied PAHs in the EC>16-EC21 portion of the combined fraction have been classified in Group

D (not classifiable as to human carcinogenicity). Many of the commonly studied PAHs in the EC>21-EC35

portion of the combined fraction have been classified in Group B2 (probable human carcinogen). An

intermediate MRL of 0.4 mg/kg/day was selected as a surrogate value for the combined fraction and

should be applied to the non-carcinogenic PAHs in this fraction. A method for assessing the potential

carcinogenic effects of these PAHs would be to use the EPA cancer risk levels for benzo(a)pyrene and the

relative potency factors for the individual PAHs (Table 6-7).
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Aliphatic EC5-EC8 Combined Fraction. The combined fraction consists of the following two

fractions:

EC5- EC6: n-pentane, n-hexane, dimethylbutanes, and methylpentanes, cyclopentane, some alkenes

EC>6- EC8: n-heptane, n-octane, some branched chain C6-C9 alkanes including trimethylpentanes,

cyclohexane, methylcyclohexane, other cycloalkanes, some alkenes.

Inhalation Exposure. Only one inhalation MRL, a chronic MRL for n-hexane, is available for this

combined fraction; this is listed in Table 6-8. n-Hexane produces a characteristic peripheral nephropathy

in humans and animals; the chronic MRL is based on this effect in humans. Commercial hexane, which

contains n-hexane plus other C6 branched chain and cyclic alkanes (see Table 6-8), also has been shown to

cause this effect in animals, due to its content of n-hexane (IRDC 1981) (see Section 6.2.4.1). The non

n-hexane portion of the mixture does not. In addition, the non n-hexane constituents of this combined

fraction do not appear to cause peripheral neuropathy when tested singly although, like n-hexane, they do

cause neurological effects (depression of the central nervous system). n-Hexane and commercial hexane

are respiratory irritants. Commercial hexane has undergone extensive recent testing as part of an EPA

Test Rule under TSCA Section 4. However, until the database for commercial hexane can be more fully

evaluated, the chronic MRL for n-hexane has been determined to be the most appropriate surrogate for a

health guidance value for this fraction.

Oral Exposure. Health effects data regarding oral exposure to this fraction are limited and available

mainly for n-hexane. n-Hexane caused peripheral neuropathy in two species of animals, indicating that

effects by the oral route may be similar to those by the inhalation route. ATSDR concluded that the

incompleteness of the oral database precluded derivation of oral MRLs for this compound.

Aliphatic EC>8-EC16 Combined Fraction. The combined fraction consists of the following three

fractions:

EC>8- EC10: n-nonane, n-decane, branched chain C9C10 alkanes, substituted cycloalkanes, a few alkenes
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EC>10- EC12 and EC>12- EC16: longer chain n-alkanes; probably larger branched and cyclic alkanes, but

EC values not provided (TPHCWG 1997a).

Inhalation Exposure. Health effects data are available for inhalation exposure to some petroleum

products corresponding to this combined fraction. Intermediate MRLs of 3 mg/m3 for JP-5 and JP-8 and

0.01 mg/m3 for kerosene, and a chronic MRL of 0.3 mg/m3 for JP-7 have been derived; these are listed in

Table 6-9. These four fuels are similar in composition, consisting primarily of aliphatics in the C9-C16

range. All contain some significant aromatic components. In addition, health effects data from studies of

two dearomatized petroleum streams have been evaluated by the TPHCWG (1997c). The sensitive effect

for exposure to all these products is hepatic. The effect for kerosene, however, was a decrease in blood

glucose levels, attributed to hepatic effects. The MRL for kerosene, based on this effect, appears to

involve greater uncertainty as to the toxicological significance of the effect. As a result, the intermediate

MRL of 3 mg/m3 and chronic MRL of 0.3 mg/m3 for the jet fuels have been determined to be the most

appropriate surrogate values for the assessment of health effects due to exposure to this fraction.

Oral Exposure. Limited data are available for health effects of oral exposure to this combined fraction.

Three studies of dearomatized petroleum streams have been evaluated by the TPHCWG (1997c) for use in

RfD derivations, but these studies are unpublished and unreferenced. In addition, a study of JP-8 (Mattie

et al. 1995) was used for RfD derivation by the TPHCWG (1997c). The critical effects are listed in Table

6-10. There are no MRLs relevant to this fraction. The sensitive effect of the dearomatized streams was

hepatic. Some slight indications of hepatic effects were also seen in the study of JP-8, but no

histopathological effects or changes in absolute organ weight.

Aliphatic EC>16- EC35 Combined Fraction. The combined fraction consists of the following

fractions:

EC>16- EC21: n-hepta-, n-octa-, and n-nonadecane, n-eicosadecane, and probably branched and cyclic

alkanes

EC>21- EC35: longer chain n-alkanes and probably branched and cyclic alkane
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Inhalation Exposure. No information was located on the health effects of inhalation exposure to

compounds or mixtures of petroleum hydrocarbons that fall within this fraction.

Oral Exposure. No pertinent assessments by ATSDR exist, but studies of mixtures of mineral oil

hydrocarbons have been evaluated by the TPHCWG (for use in deriving RfDs for this fraction).

Table 6-l 1 summarizes the pertinent information. The critical effect of these mineral oils was judged to

be hepatic.

6.7 RELEVANCE TO PUBLIC HEALTH

This profile covers total petroleum hydrocarbons (TPH), which is defined as the measurable amount of

petroleum-based hydrocarbon in an environmental medium (Chapter 2). TPH is measured as the total

quantity of hydrocarbons without identification of individual constituents. Sources of TPH contamination

in the environment range from crude oil, to fuels such as gasoline and kerosene, to solvents, to mineral-    based

crankcase oil and mineral-based hydraulic fluids. These products contain not only a large number

and variety of petroleum hydrocarbons, but also other chemicals that, strictly speaking, are not the subject

of this profile, such as non-hydrocarbon additives and contaminants. The TPH issue is further

complicated by the number of petroleum-derived hydrocarbons that have been identified-more than

250-and the variability in composition of crude oils and petroleum products (see Section 3.2 and

Appendices D and E for details).

Following a spill, leak, or other release of a petroleum product into the environment, changes occur in the

location and composition of the released hydrocarbons, as described in Section 5.3. The smaller molecular

weight hydrocarbons, which tend to have relatively high vapor pressures and/or water solubilities, tend to

volatilize into the air, dissolve into infiltrating rainwater or groundwater and migrate away from the

release area, and biodegrade. The larger molecular weight constituents tend to sorb to soil or sediment and

remain relatively immobile.

Because TPH is a complex and highly variable mixture, assessment of health impacts depends on several

factors, assumptions, and circumstances. Of prime importance is the specific exposure scenario. For

example, immediately following a large release of a “lighter” petroleum product (e.g., automotive

gasoline), central nervous system depression could occur in people in the immediate vicinity of the spill if
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they inhaled the volatilized components. In a confined or poorly ventilated area, asphyxiation would even

be a concern. Contamination of groundwater and surface water with the soluble components (e.g., the

BTEXs) could impact drinking water sources. Exposure to a contaminated water supply may take place

over a period of weeks or years, and raises concerns for more subtle nervous system effects,

developmental effects, and cancer. The less volatile or soluble constituents (such as benzo(a)pyrene) may

tend to remain in the area of the release for extended periods. Even during the early stages of this release

scenario, exposures will tend to be to fractions of the product (the more volatile or more soluble

compounds) rather than to the whole product. Therefore, public health assessments for TPH require

knowledge of the specific fractions and/or chemicals at the point of exposure (e.g., drinking water well,

soil, air). These data are summarized in this toxicological profile (particularly Sections 3.2 and 6.3) and

provided in more detail in the toxicological profiles on the individual components and whole products.

A central tool in ATSDR assessment of public health impacts is the minimal risk level (MRL) health

guidance value. MRLs have been developed by ATSDR for many hazardous waste constituents, though

no new MRLs have been developed for TPH. A limited number of existing MRLs can be applied to TPH

assessment. Most are MRLs for individual TPH components (e.g., benzene); however, a few MRLs are

available for whole petroleum products. MRLs for substances that represent the fractions defined by the

ATSDR approach to assessing TPH health impacts are provided and discussed in this profile. In recognition

of the likelihood that even acute exposures to fresh releases will be to fractions of a product, the

information on pertinent fractions of TPH should also be consulted (particularly Sections 2.3, 6.1, 6.2

and 6.6).

In the case of weathered releases, the fraction approach is likely to be the most useful. Analytical methods

that support the fraction approach should be chosen to characterize exposures (Section 3.3, TPHCWG

approach). The identity of the original contaminating product(s) need not be known. Health effects data

for these fractions are discussed in Section 6.2 and recommendations for fraction-specific MRLs and for

cancer assessment are presented in Section 6.6.

The issue of exposure to complex mixtures was introduced and briefly discussed in Section 6.1.1. In

Sections 6.1.2 and 6.1.3 other related TPH approaches are discussed. The ATSDR fraction approach

preferentially adopts MRLs for petroleum products that are similar in composition to the transport

fraction. When no such data are available, a surrogate MRL from a representative constituent of the
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fraction is adopted for the entire mass of the fraction, a practice which implicitly assumes that the toxicity

of the constituents of a fraction is additive. This approach is consistent with existing ATSDR and EPA

guidance (ATSDR 1992; De Rosa et al. 1996; EPA 1986; Johnson and De Rosa 1995; Mumtaz et al.

1994).

Additional refinements to the fraction approach for assessing health effects include estimation of an index

of concern (IOC) for the indicator compounds (the BTEXs) of the aromatic EC5-EC9 fraction, or to

account for exposure to more than one fraction. This approach is also based on the assumption of

additivity, and is reasonable for compounds or fractions that affect the same system or target organ. The

IOC is the sum of the ratios of the monitored level of exposure to the accepted level of exposure for each

of the constituents of a mixture:

IOC = E1,/AL1 + E2AL2… + Ei/ALi

where:

EI = the actual exposure level to the ith component

AL, = the acceptable exposure level for the ith component

The accepted levels of exposure for ATSDR assessments would be inhalation MRLs, or soil or water

concentrations calculated from oral MRLs. For example, the IOC method could be applied to acute oral

exposures to the aromatic EC5-EC9 fraction (toluene, p-xylene) and the aromatic EC>9-EC16 fraction, for

which the critical effects are neurological (Table 6-2).

Other refinements could be provided by implementing the target-organ toxicity dose approach, which

attempts to estimate the plausible critical effect and IOC that would have been calculated had the

particular mixture been tested (Mumtaz et al. 1994, 1997). This approach is complicated, and would be

suggested only when additional assessment is needed, perhaps to resolve differences between expected and

actual health effects outcomes, or where critical effects are different across constituents or fractions that

make up the “mixture.”

Another complicated mixtures assessment method under investigation by ATSDR is the weight-of- evidence

method for interactions (De Rosa et al. 1996; Johnson and De Rosa 1995; Mumtaz et al. 1994;
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Mumtaz and Durkin 1992). This method provides adjustments to the IOC to take into account

interactions between the constituents of the mixture. Application to the BTEXs, particularly benzene and

toluene, for which interactions have been reasonably well characterized, may be fruitful if needed to

resolve issues in a health assessment.

Regardless of the circumstances and methods, TPH health assessments are limited by data gaps in the

toxicology for many of the compounds, transport fractions, and mixtures of petroleum products and

wastes. The limitations of the analytical method(s) used to generate the TPH data must be understood

(e.g., whether the analytical method identified transport fractions or specific compounds) (see Section 3.3).

As long as the uncertainties and data limitations are recognized, the method described in Section 6.1.3 and

the health effects information in Sections 6.2 and 6.3 provide general guidance for health assessments for

TPH.

6.8 BIOMARKERS OF EXPOSURE AND EFFECT

Biomarkers are broadly defined as indicators signaling events in biologic systems or samples. They have

been classified as markers of exposure, markers of effect, and markers of susceptibility (NAS/NRC 1989).

Due to a nascent understanding of the use and interpretation of biomarkers, implementation of biomarkers

as tools of exposure in the general population is very limited. A biomarker of exposure is a xenobiotic

substance or its metabolite(s), or the product of an interaction between a xenobiotic agent and some target

molecule(s) or cell(s) that is measured within a compartment of an organism (NAS/NRC 1989). The

preferred biomarkers of exposure are generally the substance itself or substance-specific metabolites in

readily obtainable body fluid(s) or excreta. However, several factors can confound the use and

interpretation of biomarkers of exposure. The body burden of a substance may be the result of exposures

from more than one source. The substance being measured may be a metabolite of another xenobiotic

substance (e.g., high urinary levels of phenol can result from exposure to several different aromatic

compounds). Depending on the properties of the substance (e.g., biologic half-life) and environmental

conditions (e.g., duration and route of exposure), the substance and all of its metabolites may have left the

body by the time samples can be taken. It may be difficult to identify individuals exposed to hazardous

substances that are commonly found in body tissues and fluids (e.g., essential mineral nutrients such as
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copper, zinc, and selenium). Biomarkers of exposure to total petroleum hydrocarbons are discussed in

Section 6.8.1.

Biomarkers of effect are defined as any measurable biochemical, physiologic, or other alteration within an

organism that, depending on magnitude, can be recognized as an established or potential health impairment

or disease (NAS/NRC 1989). This definition encompasses biochemical or cellular signals of tissue

dysfunction (e.g., increased liver enzyme activity or pathologic changes in female genital epithelial cells),

as well as physiologic signs of dysfunction such as increased blood pressure or decreased lung capacity.

Note that these markers are not often substance specific. They also may not be directly adverse, but can

indicate potential health impairment (e.g., DNA adducts). Biomarkers of effects caused by total petroleum

hydrocarbons are discussed in Section 6.8.2.

A biomarker of susceptibility is an indicator of an inherent or acquired limitation of an organism’s ability

to respond to the challenge of exposure to a specific xenobiotic substance. It can be an intrinsic genetic or

other characteristic or a preexisting disease that results in an increase in absorbed dose, a decrease in the

biologically effective dose, or a target tissue response. Biomarkers of susceptibility are discussed in

Section 6.10, Populations That Are Unusually Susceptible.

More information on biomarkers of exposure and effect to specific petroleum hydrocarbons can be found

in ATSDR toxicological profiles on benzene (ATSDR 1997a), toluene (ATSDR 1994), ethylbenzene

(ATSDR 1999a), xylenes (ATSDR 1995d), hexane (ATSDR 1999b), naphthalene (ATSDR 1995e) and

polycyclic aromatic hydrocarbons (ATSDR 1995f); information for specific petroleum products can be

found in ATSDR profiles on automotive gasoline (ATSDR 1995a), fuel oils (ATSDR 1995g), jet fuels

(ATSDR 1995c 1998b), mineral-based crankcase oils (ATSDR 1997c), hydraulic fluids (ATSDR

1997b), and Stoddard solvent (ATSDR 1995b).

6.8.1. Biomarkers Used to Identify or Quantify Exposure to TPH

Because of the compositional complexity of TPH, detection of specific hydrocarbons or their metabolites

in biological fluids or tissues cannot be expected to provide a reliable biomarker of exposure to petroleum-derived

hydrocarbons in general. However, detection of specific hydrocarbons (or their metabolites) from

several aromatic and/or aliphatic fractions in biological fluids or tissues can provide reliable evidence of

exposure. Examples of proposed biomarkers of exposure to petroleum products include: benzene in
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exhaled air and phenol in urine to indicate exposure to gasoline (IARC 1989a), the odor of kerosene on the

breath or clothing to indicate oral or dermal exposure to kerosene, and radiological findings of lung

infiltrations to indicate oral or inhalation exposure to kerosene or other petroleum products (ATSDR

199.58; Snodgrass 1997). Lipid granulomatas found in autopsied livers and spleens (i.e., lipoid droplets

surrounded by lymphocytes and macrophages) are thought to be caused by dietary exposure to mineral oils

and waxes (Wanless and Geddie 1985; Miller et al. 1996); their detection in autopsied tissues may be

useful as an index of exposure to petroleum hydrocarbons, especially hydrocarbons in the aliphatic

EC>16-EC35 fractions.

6.8.2 Biomarkers Used to Characterize Effects Caused by TPH

Symptoms of neurological dysfunction, such as ataxia, poor coordination and gait irregularities, are

potential biomarkers of effect from acute or repeated high-level exposure to petroleum-derived

hydrocarbons in the aliphatic EC5-EC8 and aromatic EC5-EC9 fractions (see ATSDR 1994, 1995a,

1995c, 1995d, 1995f, 1997a, 1998b, 1999a, 1999b). Such symptoms, while shared by many

hydrocarbons in these fractions, are not specific to petroleum hydrocarbons and could indicate exposure to

other substances such as halogenated hydrocarbons or neurotoxic metals. Such symptoms, however, are

not expected from the low-level exposure to hydrocarbons in these fractions that is likely to be experienced

by people residing in the vicinity of disposal sites contaminated with petroleum hydrocarbons.

Measurements of motor and sensory nerve conduction velocities and action potential amplitudes have been

proposed as sensitive preclinical biomarkers of peripheral neuropathy in workers repeatedly exposed to

n-hexane (ATSDR 1999b), but this effect is specific to n-hexane (and perhaps a few other aliphatic

hydrocarbons in the EC5-EC8 fraction) among petroleum hydrocarbons.

Many, but not all, PAHs (aromatic EC>16-EC35 hydrocarbons) are genotoxic in various test systems and

carcinogenic in animal test systems. The measurement of benzo(a)pyrene-DNA adducts in human body

tissues or fluids has been proposed as a biomarker of effect from exposure to combustion or pyrolytic

products containing genotoxic and carcinogenic PAHs, of which benzo(a)pyrene is the most extensively

studied (see ATSDR 1995f). These measurements, however, are specific to benzo(a)pyrene and do not

identify the source of the benzo(a)pyrene (PAHs are ubiquitous in the environment because they are

produced by the pyrolysis or combustion of any material containing hydrocarbons).
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Hematological effects from exposure to hydrocarbons in the aromatic EC5-EC9 and EC>9-EC16 fractions

include hemolytic anemia from naphthalene exposure and decreased hematopoiesis and leukemia from

benzene exposure. Because these effects are not specific to these hydrocarbons, frequent monitoring of

blood cell counts in benzene-exposed workers has been used as a biomarker of hematotoxic effects (see

ATSDR 1997a).

6.9 INTERACTIONS WITH OTHER SUBSTANCES

Individuals exposed to TPH in the environment are exposed to complex mixtures that are not generally

restricted to hydrocarbons alone. It is reasonable to expect that components of such complex mixtures

may interact to produce additive effects that do not influence the toxicity of individual components, and

synergistic or antagonistic effects that do. Studies with the BTEXs (see ATSDR 1994, 1995d, 1997a,

1999a), with naphthalene and methylnaphthalenes (see ATSDR 1995e), with PAHs (ATSDR 1995f), and

with hexane (ATSDR 1999b) indicate that competitive or non-competitive inhibitory interactions with

active sites of cytochrome P-450 isozymes, epoxide hydrolases, or other enzymes can influence

metabolism of individual hydrocarbons. This can lead to antagonism of toxic effects mediated by

metabolic intermediates (e.g., hematopoietic and cancer effects from benzene, cancer, or genotoxic effects

from carcinogenic PAHs such as benzo(a)pyrene or dibenz(a,h)anthracene; peripheral neuropathy from

hexane) or synergism or potentiation of toxic effects mediated by the parent hydrocarbon (e.g., acute CNS

depression from the BTEXs). In addition, inductive or enhancing effects on enzyme activities can increase

metabolic rate or capacity leading to potential non-additive interactive effects on hydrocarbon toxicities:

potential synergism or potentiation toxic effects with induction of enzymes catalyzing the production of

toxic intermediates, and potential antagonism of toxic effects with induction of detoxifying enzymes.

Given the compositional complexity of TPH mixtures that may be found in the environment, it is difficult,

if not impossible, to make reliable statements predicting the magnitude and direction of specific

interactions that may occur. In the face of such large uncertainty, assuming that chemicals in complex

mixtures interact in an additive manner at a particular target organ may be the most reasonable approach

because it is the most simple.
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6.10 POPULATIONS THAT ARE UNUSUALLY SUSCEPTIBLE

A susceptible population will exhibit a different or enhanced response to petroleum hydrocarbons than will

most people exposed to the same level of petroleum hydrocarbons in the environment. Reasons may

include genetic makeup, age, health and nutritional status, and exposure to other toxic substances (e.g.,

cigarette smoke). These parameters may result in reduced detoxification or excretion of petroleum

hydrocarbons, or compromised function or organs affected by petroleum hydrocarbons.

Factors that inhibit or alter the activity of the mixed function oxidase enzymes may increase the risk from

exposure to the indicator compounds in the aromatic EC5-EC9 fraction (the BTEXs), the aromatic

EC>16-EC35 fraction (the carcinogenic PAHs in this fraction) and a constituent of the aliphatic EC5-EC8

fraction (n-hexane). For example, concurrent alcohol consumption may increase the risk of central

nervous system depression from the BTEXs, ototoxicity from toluene, and hematotoxicity from benzene.

Acetone exposure may increase the risk of peripheral neuropathy of n-hexane. People who take

haloperidol, acetaminophen, or aspirin, or who have a nutritionally inadequate diet, may also be more

susceptible to the toxicity of these agents. ATSDR (1995f) noted that a substantial percentage of children

consume less than the recommended dietary allowances of certain nutrients.

Other populations are unusually susceptible to the aromatic EC5-EC9 fraction. People with l3-thalassemia

may be at risk for benzene exposure because some forms of β-thalassemia may exacerbate the adverse

effects of benzene on the hematopoietic system. Children and fetuses may be at increased risk to benzene

toxicity because their hematopoietic cell populations are expanding and dividing cells are at a greater risk

than quiescent cells. Developmental effects in animals are the basis for intermediate inhalation MRLs for

ethylbenzene and mixed xylene, indicating that the embryo/fetus may be particularly sensitive to these two

BTEXs. People with subclinical and clinical epilepsy are considered at increased risk of seizures from

xylene because of its central nervous system effects.

Person with inherited erythrocyte G6PD deficiency have an enhanced susceptibility to the hemolytic effects

of naphthalene, a constituent of the aromatic EC>9-EC16 fraction. Infants appear to be more sensitive than

adults to this effect, and infants are more prone to permanent neurological damage as a consequence of the

jaundice that results from the hemolysis. Naphthalene has been shown to cross the human placenta to
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cause hemolysis and hemolytic anemia in the newborn infants of mothers who consumed naphthalene

during pregnancy (ATSDR 1995e).

People with aryl hydrocarbon hydroxylase (AHH) that is particularly susceptible to induction may be

more susceptible to the carcinogenic PAHs found in the aromatic EC>16-EC35 fraction. Individuals

undergoing rapid weight loss that includes loss of body fat are anticipated to be at risk because of the

systemic release and activation of PAHs that had been stored in fat. People with genetic diseases that are

associated with DNA-repair deficiencies (e.g., xeroderma pigmentosum, ataxia telangiectasia, familial

retinoblastoma, Down’s syndrome) may be more susceptible to PAH-related malignancy. Individuals who

have significant exposure to ultraviolet radiation, as from sunlight, may be at increased risk of developing

skin cancer from PAH exposure. The human fetus may also be particularly susceptible to PAH toxicity

because of increased permeability of the embryonic/fetal blood-brain barrier and a decreased liver-enzyme

conjugating function. Based on studies of benzo(a)pyrene in animals, women may be at increased risk of

reproductive dysfunction following exposure to high levels of PAHs.

Individuals with impaired pulmonary function may be more susceptible to the respiratory irritant effects of

the volatile petroleum hydrocarbons (primarily the aromatic EC5-EC9 and aliphatic EC5-EC9 fractions).

Additional information regarding populations unusually susceptible to the aliphatic EC5-EC8, EC>8-EC16,

and EC>16-EC35, fractions is limited. Factors that alter the function of mixed function oxidase enzymes

may increase the risk of peripheral neuropathy from exposure to n-hexane, a constituent of the EC5-EC8

fraction. A single animal study indicates that susceptibility to the neuropathic effects of n-hexane was

more severe in young adults than in weanlings. A single study of kerosene (EC>8-EC16) in rats showed

that younger animals, and particularly preweanlings, were more susceptible than older rats to the lethality

of kerosene, but whether these findings for n-hexane and kerosene can be extrapolated to humans is

uncertain. Case reports of accidental poisoning through ingestion indicate that children 5 years old or

younger often mistakenly drank kerosene because it was accessible. The applicability of this scenario to

hazardous waste sites is questionable.

More detailed information regarding populations that are unusually susceptible to petroleum hydrocarbons

can be obtained from the ATSDR toxicological profiles (ATSDR 1994, 1995d, 1995e, 1995f, 1997a,
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1998b, 1999a, 1999b) on which this section was based. Other pertinent toxicological profiles (ATSDR

1995b, 1995c, 1995g) noted a lack of information on susceptible populations.

6.11 METHODS FOR REDUCING TOXIC EFFECTS

This section will describe clinical practice and research concerning methods for reducing toxic effects of

exposure to petroleum hydrocarbons. However, because some of the treatments discussed may be

experimental and unproven, this section should not be used as a guide for treatment of exposures to

petroleum hydrocarbons. When specific exposures have occurred, poison control centers and medical

toxicologists should be consulted for medical advice. The following texts provide specific information

about treatment following exposures to petroleum hydrocarbons:

Snodgrass, W.R. 1997. Clinical Toxicology. In: Cassarett and Doull’s Toxicology. The Basic

Science of Poisons. Fifth Edition. pp. 969-986. C.D. Klaassen, M.O. Amdur, and J. Doull, eds

McGraw-Hill, New York.

Friedman, P.A. 1987. Poisoning and Its Management. In: Harrison’s Principles of Internal

Medicine. Eleventh Edition. pp. 838-850. J.D. Jeffers, E.J. Scott and M. Ramos-Englis, eds.

McGraw-Hill. New York.

Klaasen, C.D. 1996. Nonmetallic Environmental Toxicants. Air Pollutants, Solvents and Vapors,

and Pesticides. In: Goodman and Gilman’s The Pharmacological Basis of Therapeutics. Ninth

Edition. J.G. Hardman and L.E. Limbird, eds. McGraw-Hill, New York.

Information on methods that may be effective in reducing absorption, reducing body burdens, or

interfering with mechanisms of toxic action of specific petroleum hydrocarbons can be found in ATSDR

profiles on the BTEXs (ATSDR 1994, 1995d, 1997a, 1999a), hexane (ATSDR 1999b), naphthalene

(ATSDR 1995f), and PAHs (1995f). Additional information for petroleum products can be found in

ATSDR profiles on automotive gasoline (ATSDR 1995a), fuel oils (ATSDR 19958) jet fuels (ATSDR

199512, 1998b), mineral-based crankcase oils (ATSDR 1997c) hydraulic fluids (1997b), and Stoddard

solvent (ATSDR 1995b).



TOTAL PETROLEUM HYDROCARONS 189

6. HEALTH EFFECTS

6.11.1 Reducing Peak Absorption Following Exposure

It is commonly recognized that, in the treatment of poisoning from ingestion of low viscosity, aliphatic or

aromatic hydrocarbons found in petroleum products such as gasoline and kerosene, care must be taken to

prevent aspiration into the respiratory tract (Friedman 1987; Klaassen 1996; Snodgrass 1997). Emesis,

gastric lavage, and treatment with activated charcoal are often avoided unless large amounts have been

ingested (>l00 mL) or there is a known risk of absorption of non-hydrocarbon additives (e.g., metals,

pesticides) that may produce systemic effects. If gastric lavage is applied, an endotracheal tube with

inflatable cuff is often used to prevent aspiration. Viscous, large molecular weight aliphatic hydrocarbons

such as those in mineral oil, heavy lubricants, and Vaseline are not aspirated to the lung and have cathartic

properties; removal treatments are not usually used. Absorption of petroleum hydrocarbons by the skin

following dermal exposure can be reduced by washing with a mild soap or detergent and water, taking

care not to abrade the skin.

6.11.2 Reducing Body Burden

Petroleum-derived hydrocarbons and their metabolites (e.g., fatty acids), especially those in the aliphatic

and aromatic EC>16-EC35 fractions, tend to accumulate in the liver, spleen, and adipose tissues. There are

no known clinical methods to facilitate or accelerate removal of petroleum hydrocarbons or their

metabolites from these tissues.

6.11.3 Interfering with the Mechanism of Action for Toxic Effects

Acute inhalation or aspiration of ingested aliphatic or aromatic petroleum hydrocarbons of low viscosity

can lead to pulmonary irritation and hydrocarbon pneumonia, an acute hemorrhagic necrotizing disease.

To counteract secondary bacterial infections and pulmonary edema, antibiotics and oxygen therapy are

often applied when indicated by symptoms in particular patients (Klaassen 1996; Snodgrass 1997).

Specific aliphatic and aromatic hydrocarbons found in petroleum products are known to be-metabolized

via cytochrome P-450 pathways to reactive metabolic intermediates that are thought to cause non-cancer

and cancer effects from chronic exposure (e.g., peripheral neuropathy from 2,5-hexadione, a metabolite of

hexane, and cancer effects from various intermediary metabolites of benzene and carcinogenic PAHs).

There are no known clinical methods to interfere with these mechanisms of action. However, current

research programs are studying the basis of how the consumption of cruciferous vegetables may protect
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against chemical carcinogenesis, and examining the protective role that may be played by dietary

antioxidants and the induction of Phase II enzymes (enzymes involved in the detoxification of products of

cytochrome P-450 enzymes) (see Prochaska and Talalay 1992; Zhang et al. 1992; Talalay 1992; Fahey et

al. 1997). Results from this type of research may lead to clinical methods counteracting the toxic effects

of chronic exposure to bioactivated hydrocarbons.

6.12 ADEQUACY OF THE DATABASE

The adequacy of the database for many of the constituents of TPH and for petroleum products has been

fully discussed in the corresponding toxicological profiles. This section will briefly discuss adequacy of

the database to support a fraction-based assessment of TPH.

The database for the aromatic EC5-EC9 fraction is that for the individual BTEXs; the recommendation in

this profile is to assess each of these compounds individually as indicator compounds. The database for

inhalation exposure is more adequate than for oral exposure. Details are provided in the respective

ATSDR profiles (ATSDR 1994, 1995d, 1997a, 1999a).

The database for the aromatic EC>9-EC16 fraction lacks information on a mixture or mixtures that could

represent the entire combined fraction. Limited inhalation data are available on a mixture of C9 aromatics

(high flash aromatic naphtha, primarily EC9.47-EC9.84). Health effects data from these mixtures and from

potential representative chemicals, including naphthalene, suggest some commonality of effect among

constituents of this fraction. MRLs are available for chronic inhalation exposure and all three periods of

oral exposure. Surrogate MRL values are suggested for chronic inhalation exposure and acute and

intermediate oral exposure to this fraction. Nevertheless, the data do not strongly support a surrogate

approach. Additional information on the database for naphthalene, 1- and 2-methyl naphthalene,

acenaphthylene and acenaphthene is discussed in ATSDR (1995e, 1995f).

The adequacy of the database for the aromatic EC>16-EC35 fraction, which consists of PAHs, is discussed

in ATSDR (1995f). Data for suitable mixtures were not identified. Inhalation data for the individual

constituents were particularly limited; no MRLs were available. The oral data support the selection of a

surrogate MRL for intermediate exposure to the noncarcinogenic constituents of this fraction, but it is

uncertain whether this value is appropriate to represent the noncancer effects of the carcinogenic PAHs.
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The database for inhalation exposure to the aliphatic EC5-EC8 fraction includes data for a representative

mixture, commercial hexane, but many of the studies were performed under a TSCA test rule and have

been published only as abstracts (TPHCWG 1997c). ATSDR (1999b) briefly discussed commercial

hexane in the toxicological profile on n-hexane, but did not consider MRL derivation for commercial

hexane, as it was not the subject of the profile. The only compound or petroleum product corresponding

to this fraction that has been the focus of MRL derivation by ATSDR is n-hexane, for which a chronic

inhalation MRL is available. The data were considered inadequate for the derivation of oral MRLs for

this compound (ATSDR 1999b). Details of the adequacy of the database for n-hexane are provided by

ATSDR (1999b).

For the aliphatic EC>8-EC16 fraction, the database includes a number of studies of petroleum products

whose major constituents fall within the EC range of this fraction. These included dearomatized petroleum

streams and fuels (JP-5, JP-7, JP-8, kerosene). Studies of the dearomatized petroleum streams are largely

unpublished, include oral studies in animals, and have been reviewed by the TPHCWG (1997c). The

critical effects were judged to be hepatic. MRLs were available for intermediate and chronic inhalation

exposure to JP-7 and JP-5 and JP-8; these are based on hepatic effects. The MRLs for these jet fuels

appeared suitable to represent the health effects of the fraction. Detailed analyses of the adequacy of the

database for the fuels are provided by ATSDR (1995c, 1995g), 1998).

Mineral oils, which are petroleum products similar in composition to the aliphatic EC>16-EC35 fraction,

have been tested by the oral route, as reviewed by the TPHCWG (1997c); the TPHCWG based its

derivation of health effects criteria on these studies. Issues regarding the TPHCWG’s derivation include

the classification of histiocytosis as a nonadverse effect and the suitability of the F344 rat to serve as a

model for humans for this class of compounds (Section 6.2.6.2). ATSDR has not considered the health

effects of these products in a toxicological profile, and there are no other petroleum products or

constituents corresponding to this fraction that have MRLs.

Ongoing studies of interest are the studies performed under a Section 4 TSCA test rule of commercial

hexane and of cyclohexane mentioned by the TPHCWG (1997c). In addition, the Verhaar et al. (1997)

describe a proposed approach and ongoing research to develop PBPK/PD models for use in assessing

human health risks from exposure to JP-5.
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The international, national, and state regulations and guidelines regarding total petroleum hydrocarbons

(TPH) in air, water, and other media are summarized in Table 7-1. No health or environmental

benchmarks have been developed for TPH as a general category, though many exist for individual

petroleum chemicals or products, such as gasoline.

Benzene is on the list of chemicals in “The Emergency Planning and Community Right-to-Know Act of

1986” (EPA 1988c, 1989c, 1989d). Section 313 of Title III of the Superfund Amendments and

Reauthorization Act (SARA) requires owners and operators of certain facilities that manufacture, import,

process, or otherwise use the chemicals on this list to report annually any release of those chemicals to any

environmental media over a specified threshold level.

OSHA requires employers of workers who are occupationally exposed to petroleum distillates to institute

engineering controls and work practices to reduce and maintain employee exposure at or below permissible

exposure limits (PEL). The PEL for petroleum distillates is 500 ppm (OSHA 1974).

TPH as oil is regulated by the Clean Water Act as stated in Title 40, Sections 109-l 14 and Section 112

of the Code of Federal Regulations. Sections 109-l14 address oil pollution prevention and spill response.

Section 112 pertains to stormwater discharge permitting under the National Pollutant Discharge

Elimination System. Underground injection control is regulated according to 40 CFR Sections 144

and 146.

Under Subtitle C of the Resource Conservation and Recovery Act (RCRA), certain wastes containing

designated TPH compounds and petroleum-related industrial wastes are listed as hazardous. However,

RCRA excludes some TPH-related wastes from regulations (e.g., certain exploration, well development,

and productions wastes). The RCRA-listed wastes are also controlled under the Comprehensive

Environmental, Response, Compensation, and Liability Act (CERCLA) for accidental releases to the

environment.

The American Society for Testing and Materials (ASTM) developed a guide for the community of

engineering firms, environmental and risk assessment scientists, and governmental agencies to deal with
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petroleum contaminated sites. In 1995 ASTM published its Standard Guide for Risk-Based Corrective

Action Applied at Petroleum Release Sites partly in response to Subtitle I of the Resource Conservation

and Recovery Act (RCRA) (ASTM 1995). RCRA directed the U.S. Environmental Protection Agency

(EPA) establish programs to prevent, detect, and clean up releases from underground storage tank systems

(UST). ASTM’s risk-based corrective action (RBCA) is a widely used, decision-making process for the

assessment and response to chemical releases, with particular emphasis on petroleum release, based on the

protection of human health and the environment. RBCA integrates site assessment, remedial action

selection, and monitoring with risk and exposure assessment practices suggested by the EPA. The RBCA

process is implemented in a tiered approach that involves increasingly sophisticated levels of data

collection and analysis. Site assessment is followed by site classification whereby sites are classified by

the urgency of initial response action based on information collected during the site assessment. Section

5.3.3.3, Transport Models, in Chapter 5 presents a brief overview of the tiered RBCA approach and also

provides the basic flow chart of the RBCA approach, Figure 5-2.
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Absorption-The taking up of liquids by solids, or of gases by solids or liquids.

Acute (Exposure)- Exposure to a chemical for a duration of 14 days or less, as specified in the
Toxicological Profiles.

Adsorption-The adhesion in an extremely thin layer of molecules (as of gases, solutes, or liquids) to the
surfaces of solid bodies or liquids with which they are in contact.

Adsorption Coefficient (Koc)-The ratio of the amount of a chemical adsorbed per unit weight of organic
carbon in the soil or sediment to the concentration of the chemical in solution at equilibrium.

Adsorption Ratio (Kd)-The amount of a chemical adsorbed by a sediment or soil (i.e., the solid phase)
divided by the amount of chemical in the solution phase, which is in equilibrium with the solid phase, at a
fixed solid/solution ratio. It is generally expressed in micrograms of chemical sorbed per gram of soil or
sediment.

Benchmark Dose (BMD)-is usually defined as the lower confidence limit on the dose that produces a
specified magnitude of changes in a specified adverse response. For example, a BMD10 would be the dose
at the 95% lower confidence limit on a 10% response, and the benchmark response (BMR) would be 10%.
The BMD is determined by modeling the dose response curve in the region of the dose response
relationship where biologically observable data are feasible.

Benchmark Dose Model-is a statistical dose-response model applied to either experimental toxicological
or epidemiological data to calculate a BMD.

Bioconcentration Factor (BCF)-The quotient of the concentration of a chemical in aquatic organisms at
a specific time or during a discrete time period of exposure divided by the concentration in the surrounding
water at the same time or during the same period.

Biomarkers-are broadly defined as indicators signaling events in biologic systems or samples. They
have been classified as markers of exposure, markers of effect, and markers of susceptibility.

Cancer Effect Level (CEL)-The lowest dose of chemical in a study, or group of studies, that produces
significant increases in the incidence of cancer (or tumors) between the exposed population and its
appropriate control.

Carcinogen-A chemical capable of inducing cancer.

Case-Control Study-A type of epidemiological study which examines the relationship between a
particular outcome (disease or condition) and a variety of potential causative agents (such as toxic
chemicals). In a case-controlled study, a group of people with a specified and well-defined outcome is
identified and compared to a similar group of people without outcome.

Case Report-describes a single individual with a particular disease or exposure. These may suggest
some potential topics for scientific research but are not actual research studies.
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Case Series-describes the experience of a small number of individuals with the same disease or
exposure. These may suggest potential topics for scientific research but are not actual research studies.

Ceiling Value-A concentration of a substance that should not be exceeded, even instantaneously.

Chronic Exposure-Exposure to a chemical for 365 days or more, as specified in the Toxicological
Profiles.

Cohort Study-A type of epidemiological study of a specific group or groups of people who have had a
corm-non insult (e.g., exposure to an agent suspected of causing disease or a common disease) and are
followed forward from exposure to outcome. At least one exposed group is compared to one unexposed
group.

Cross-sectional Study-A type of epidemiological study of a group or groups which examines the
relationship between exposure and outcome to a chemical or to chemicals at one point in time.

Data Needs-substance-specific informational needs that if met would reduce the uncertainties of human
health assessment.

Developmental Toxicity-The occurrence of adverse effects on the developing organism that may result
from exposure to a chemical prior to conception (either parent), during prenatal development, or
postnatally to the time of sexual maturation. Adverse developmental effects may be detected at any point
in the life span of the organism.

Dose-Response Relationship-the quantitative relationship between the amount of exposure to a toxicant
and the incidence of the adverse effects.

Embryotoxicity and Fetotoxicity-Any toxic effect on the conceptus as a result of prenatal exposure to a
chemical; the distinguishing feature between the two terms is the stage of development during which the
insult occurs. The terms, as used here, include malformations and variations, altered growth, and
in utero death.

Environmental Protection Agency (EPA) Health Advisory-An estimate of acceptable drinking water
levels for a chemical substance based on health effects information. A health advisory is not a legally
enforceable federal standard, but serves as technical guidance to assist federal, state, and local officials.

Epidemiology-refers to the investigation of factors that determine the frequency and distribution of
disease or other health-related conditions within a defined human population during a specified period.

Equivalent Carbon Number Index-an index based on the boiling point of a chemical normalized to the
boiling point of n-alkanes or its retention time in a boiling point gas chromatographic column (GC).

Genotoxicity-a specific adverse effect on the genome of living cells that, upon the duplication of affected
cells, can be expressed as a mutagenic, clastogenic or carcinogenic event because of specific alteration of
the molecular structure of the genome.

Half-life-a measure of rate for the time required to eliminate one half of a quantity of a chemical from
the body or environmental media.
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Human Equivalent Concentration--the test concentration from an animal study adjusted for continuous
exposure and dosimetric differences in humans and the test animal.

Immediately Dangerous to Life or Health (IDLH)-The maximum environmental concentration of a
contaminant from which one could escape within 30 minutes without any escape-impairing symptoms or
irreversible health effects.

Incidence-The ratio of individuals in a population who develop a specified condition to the total number
of individuals in that population who could have developed that condition in a specified time period.

Index of Concern-the ratio of exposure to the minimal risk level (MRL). A value greater than one
indicates that there may be some concern for potential noncancer effects.

Intermediate Exposure-Exposure to a chemical for a duration of 15-364 days, as specified in the
Toxicological Profiles.

Immunological Effects-are functional changes in the immune response.

Immunologic Toxicity-The occurrence of adverse effects on the immune system that may result from
exposure to environmental agents such as chemicals.

In Vitro-Isolated from the living organism and artificially maintained, as in a test tube.

In Vivo-Occurring within the living organism.

Lethal Concentration(LO) ( LCLO)-The lowest concentration of a chemical in air which has been reported
to have caused death in humans or animals.

Lethal Concentration(50) (LC50)-A calculated concentration of a chemical in air to which exposure for a
specific length of time is expected to cause death in 50% of a defined experimental animal population.

Lethal Dose(LO) ( LDLO)-The lowest dose of a chemical introduced by a route other than inhalation that
has been reported to have caused death in humans or animals.

Lethal Dose(50)( LD50)-The dose of a chemical which has been calculated to cause death in 50% of a
defined experimental animal population.

Lethal Time(50) (LT50)-A calculated period of time within which a specific concentration of a chemical is
expected to cause death in 50% of a defined experimental animal population.

Lowest-Observed-Adverse-Effect Level (LOAEL)-The lowest exposure level of chemical in a study,
or group of studies, that produces statistically or biologically significant increases in frequency or severity
of adverse effects between the exposed population and its appropriate control.

Lymphoreticular Effects-represent morphological effects involving lymphatic tissues such as the lymph
nodes, spleen, and thymus.
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Malformations-Permanent structural changes that may adversely affect survival, development, or
function.

Minimal Risk Level (MRL) -An estimate of daily human exposure to a hazardous substance that is
likely to be without an appreciable risk of adverse noncancer health effects over a specified route and
duration of exposure.

Modifying Factor (MF)-A value (greater than zero) that is applied to the derivation of a minimal risk
level (MRL) to reflect additional concerns about the database that are not covered by the uncertainty
factors. The default value for a MF is 1.

Morbidity-State of being diseased; morbidity rate is the incidence or prevalence of disease in a specific
population.

Mortality-Death; mortality rate is a measure of the number of deaths in a population during a specified
interval of time.

Mutagen-A substance that causes mutations. A mutation is a change in the DNA sequence of a cell’s
DNA. Mutations can lead to birth defects, miscarriages, or cancer.

Necropsy-The gross examination of the organs and tissues of a dead body to determine the cause of
death or pathological conditions.

Neurotoxicity-The occurrence of adverse effects on the nervous system following exposure to a
chemical.

No-Observed-Adverse-Effect Level (NOAEL)-The dose of a chemical at which there were no
statistically or biologically significant increases in frequency or severity of adverse effects seen between
the exposed population and its appropriate control. Effects may be produced at this dose, but they are not
considered to be adverse.

Octanol-Water Partition Coefficient (KOW)-The equilibrium ratio of the concentrations of a chemical in
n-octanol and water, in dilute solution.

Odds Ratio-a means of measuring the association between an exposure (such as toxic substances and a
disease or condition) which represents the best estimate of relative risk (risk as a ratio of the incidence
among subjects exposed to a particular risk factor divided by the incidence among subjects who were not
exposed to the risk factor). An odds ratio of greater than 1 is considered to indicate greater risk of disease
in the exposed group compared to the unexposed.

Organophosphate or Orgauophosphorus Compound-a phosphorus containing organic compound and
especially a pesticide that acts by inhibiting cholinesterase.

Permissible Exposure Limit (PEL)-An Occupational Safety and Health Administration (OSHA)
allowable exposure level in workplace air averaged over an 8-hour shift of a 40 hour workweek.

Pesticide-general classification of chemicals specifically developed and produced for use in the control
of agricultural and public health pests.
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Pharmacokinetics-is the science of quantitatively predicting the fate (disposition) of an exogenous
substance in an organism. Utilizing computational techniques, it provides the means of studying the
absorption, distribution, metabolism and excretion of chemicals by the body.

Pharmacokinetic Model-is a set of equations that can be used to describe the time course of a parent
chemical or metabolite in an animal system. There are two types of pharmacokinetic models: data-based
and physiologically-based. A data-based model divides the animal system into a series of compartments
which, in general, do not represent real, identifiable anatomic regions of the body whereby the
physiologically-based model compartments represent real anatomic regions of the body.

Physiologically Based Pharmacodynamic (PBPD) Model-is a type of physiologically-based dose-     response
model which quantitatively describes the relationship between target tissue dose and toxic end
points. These models advance the importance of physiologically based models in that they clearly describe
the biological effect (response) produced by the system following exposure to an exogenous substance.

Physiologically Based Pharmacokinetic (PBPK) Model-is comprised of a series of compartments
representing organs or tissue groups with realistic weights and blood flows. These models require a
variety of physiological information: tissue volumes, blood flow rates to tissues, cardiac output, alveolar
ventilation rates and, possibly membrane permeabilities. The models also use biochemical information
such as air/blood partition coefficients, and metabolic parameters. PBPK models are also called
biologically based tissue dosimetry models.

Prevalence-The number of cases of a disease or condition in a population at one point in time.

Prospective Study--a type of cohort study in which the pertinent observations are made on events
occurring after the start of the study. A group is followed over time.

q1*-The upper-bound estimate of the low-dose slope of the dose-response curve as determined by the
multistage procedure. The q1* can be used to calculate an estimate of carcinogenic potency, the
incremental excess cancer risk per unit of exposure (usually µg/L. for water, mg/kg/day for food, and
µg/m3 for air).

Recommended Exposure Limit (REL)-A National Institute for Occupational Safety and Health
(NIOSH) time-weighted average (TWA) concentrations for up to a l0-hour workday during a 40-hour
workweek.

Reference Concentration (RfC)-An estimate (with uncertainty spanning perhaps an order of magnitude)
of a continuous inhalation exposure to the human population (including sensitive subgroups) that is likely
to be without an appreciable risk of deleterious noncancer health effects during a lifetime. The inhalation
reference concentration is for continuous inhalation exposures and is appropriately expressed in units of
mg/m3 or ppm.
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Reference Dose (RFD)-An estimate (with uncertainty spanning perhaps an order of magnitude) of the
daily exposure of the human population to a potential hazard that is likely to be without risk of deleterious
effects during a lifetime. The RfD is operationally derived from the No-Observed-Adverse-Effect Level
(NOAEL- from animal and human studies) by a consistent application of uncertainty factors that reflect
various types of data used to estimate RfDs and an additional modifying factor, which is based on a
professional judgment of the entire database on the chemical. The RfDs are not applicable to nonthreshold
effects such as cancer.

Reportable Quantity (RQ)-The quantity of a hazardous substance that is considered reportable under
the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Reportable
quantities are (1) 1 pound or greater or (2) for selected substances, an amount established by regulation
either under CERCLA or under Section 311 of the Clean Water Act. Quantities are measured over a
24-hour period.

Reproductive Toxicity-The occurrence of adverse effects on the reproductive system that may result
from exposure to a chemical. The toxicity may be directed to the reproductive organs and/or the related
endocrine system. The manifestation of such toxicity may be noted as alterations in sexual behavior,
fertility, pregnancy outcomes, or modifications in other functions that are dependent on the integrity of this
system.

Retrospective Study-A type of cohort study based on a group of people known to have been exposed at
some time in the past. Data are collected from routinely recorded events, up to the time the study is
undertaken. Retrospective studies are limited to casual factors that can be ascertained from existing
records and/or examining survivors of the cohort.

Risk-the possibility or chance that some adverse effect will result from a given exposure to a chemical.

Risk Factor-An aspect of personal behavior or lifestyle, an environmental exposure, or an inborn or
inherited characteristic, that is associated with an increased occurrence of disease or other health-related
event or condition.

Risk Ratio-The ratio of the risk among persons with specific risk factors compared to the risk among
persons without risk factors. A risk ratio greater than 1 indicates greater risk of disease in the exposed
group compared to the unexposed.

Short-Term Exposure Limit (STEL)-The American Conference of Governmental Industrial Hygienists
(ACGIH) maximum concentration to which workers can be exposed for up to 1.5 min continually. No
more than four excursions are allowed per day, and there must be at least 60 min between exposure
periods. The daily Threshold Limit Value - Time Weighted Average (TLV-TWA) may not be exceeded.

Target Organ Toxicity-This term covers a broad range of adverse effects on target organs or
physiological systems (e.g., renal, cardiovascular) extending from those arising through a single limited
exposure to those assumed over a lifetime of exposure to a chemical.

Teratogen-A chemical that causes structural defects that affect the development of an organism.
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Threshold Limit Value (TLV)-An American Conference of Governmental Industrial Hygienists
(ACGIH) concentration of a substance to which most workers can be exposed without adverse effect. The
TLV may be expressed as a Time Weighted Average (TWA), as a Short-Term Exposure Limit (STEL), or
as a ceiling limit (CL).

Time-Weighted Average (TWA)-An allowable exposure concentration averaged over a normal 8-hour
workday or 40-hour workweek.

Toxic Dose(50) (TD50)-A calculated dose of a chemical, introduced by a route other than inhalation,
which is expected to cause a specific toxic effect in 50% of a defined experimental animal population.

Toxicokinetic-The study of the absorption, distribution and elimination of toxic compounds in the living
organism.

Uncertainty Factor (UF)-A factor used in operationally deriving the Minimal Risk Level (MRL) or
Reference Dose (RfD) or Reference Concentration (RfC) from experimental data. UFs are intended to
account for (1) the variation in sensitivity among the members of the human population, (2) the
uncertainty in extrapolating animal data to the case of human, (3) the uncertainty in extrapolating from
data obtained in a study that is of less than lifetime exposure, and (4) the uncertainty in using Lowest-
Observed-Adverse-Effect Level (LOAEL) data rather than No-Observed-Adverse-Effect Level (NOAEL)
data. A default for each individual UF is 10; if complete certainty in data exists, a value of one can be
used; however, a reduced UF of three may be used on a case-by-case basis, three being the approximate
logarithmic average of 10 and 1.

Xenobiotic-any chemical that is foreign to the biological system.
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APPENDIX A

MRLS AND CANCER CLASSIFICATION FOR TPH COMPONENTS AND

WHOLE PRODUCTS

MRLs listed in Table A-l are found in Appendix A of the individual Toxicological Profile referenced.
Appendix A of each profile describes the basis for ATSDR MRL’s derivation and use and includes
worksheets showing calculations used to derive each MRL.
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APPENDIX B

USER’S GUIDE

Chapter 1

Public Health Statement

This chapter of the profile is a health effects summary written in non-technical language. Its intended
audience is the general public especially people living in the vicinity of a hazardous waste site or chemical
release. If the Public Health Statement were removed from the rest of the document, it would still
communicate to the lay public essential information about the chemical.

The major headings in the Public Health Statement are useful to find specific topics of concern. The
topics are written in a question and answer format. The answer to each question includes a sentence that
will direct the reader to chapters in the profile that will provide more information on the given topic.

Chapter 6

Tables and Figures for Fraction-Specific Critical Effects

Tables (6-l through 6-l 1) and Figures (6-l through 6-16) summarize health effects and illustrate
graphically levels of exposure associated with those effects. These levels cover health effects observed at
increasing dose concentrations and durations, differences in response by species, minimal risk levels
(MRLs) to humans for noncancer end points, and EPA’s estimated range associated with an upper- bound
individual lifetime cancer risk of 1 in 10,000 to 1 in 10,000,000. Use these tables and figures for a quick
review of the health effects and to locate data for a specific exposure scenario. The Critical Effects tables
and Exposure Assessment figures in Chapter 6 should always be used in conjunction with the text. All
entries in these tables and figures represent studies that provide reliable, quantitative estimates of No-
Observed-Adverse-Effect Levels (NOAELs), Lowest-Observed-Adverse-Effect Levels (LOAELs), or
Cancer Effect Levels (CELs).

Chapter 6 (Section 6.7)

Relevance to Public Health
The Relevance to Public Health section provides a health effects summary based on evaluations of existing
toxicologic, epidemiologic, and toxicokinetic information. This summary is designed to present
interpretive, weight-of-evidence discussions for human health end points by addressing the following
questions.

1 . What effects are known to occur in humans?

2 . What effects observed in animals are likely to be of concern to humans?

3 . What exposure conditions are likely to be of concern to humans, especially around hazardous
     waste sites?

The carcinogenic potential of the profiled substance is qualitatively evaluated, when appropriate, using
existing toxicokinetic, genotoxic, and carcinogenic data. ATSDR does not currently assess cancer potency
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or perform cancer risk assessments. Minimal risk levels (MRLs) for noncancer end points (if derived) and
the end points from which they were derived are indicated and discussed.

Limitations to existing scientific literature that prevent a satisfactory evaluation of the relevance to public
health are identified in the Data Needs section.

Interpretation of Minimal Risk Levels

Where sufficient toxicologic information is available, minimal risk levels (MRLs) for inhalation and oral
routes of entry at each duration of exposure (acute, intermediate, and chronic) are provided. Though no
new MRLs are derived for TPH, all available MRLs for TPH components and petroleum products are
reviewed in Chapter 6 and presented in Appendix A. These MRLs are not meant to support regulatory
action; but to acquaint health professionals with exposure levels at which adverse health effects are not
expected to occur in humans. They should help physicians and public health officials determine the safety
of a community living near a chemical emission, given the concentration of a contaminant in air or the
estimated daily dose in water. MRLs are based largely on toxicological studies in animals and on reports
of human occupational exposure.

MRL users should be familiar with the toxicologic information on which the number is based. In
particular, the user should review the profile of the specific substance of concern (see Appendix A).
Section 6.7, “Relevance to Public Health,” contains basic information known about the substance. Other
sections such as 6.9, “Interactions with Other Substances,” and 6.10, “Populations that are Unusually
Susceptible” provide important supplemental information.

MRL users should also understand the MRL derivation methodology. MRLs are derived using a modified
version of the risk assessment methodology the Environmental Protection Agency (EPA) provides (Barnes
and Dourson 1988) to determine reference doses for lifetime exposure (RfDs).

To derive an MRL, ATSDR generally selects the most sensitive end point which, in its best judgement,
represents the most sensitive human health effect for a given exposure route and duration. ATSDR cannot
make this judgement or derive an MRL unless information (quantitative or qualitative) is available for all
potential systemic, neurological, and developmental effects. If this information and reliable quantitative
data on the chosen end point are available, ATSDR derives an MRL using the most sensitive species
(when information from multiple species is available) with the highest NOAEL that does not exceed any
adverse effect levels. When a NOAEL is not available, a lowest-observed-adverse-effect level (LOAEL)
can be used to derive an MRL, and an uncertainty factor (UP) of 10 must be employed. Additional
uncertainty factors of 10 must be used both for human variability to protect sensitive subpopulations
(people who are most susceptible to the health effects caused by the substance) and for interspecies
variability (extrapolation from animals to humans). In deriving an MRL, these individual uncertainty
factors are multiplied together. The product is then divided into the inhalation concentration or oral
dosage selected from the study. Uncertainty factors used in developing a substance-specific MRL are
provided in the footnotes of the LSE Tables in the profiles listed in Appendix A.

The section covers end points in the same order they appear within the Discussion of Health Effects by
Route of Exposure section, by route (inhalation, oral, dermal) and within route by effect. Human data are
presented first, then animal data. Both are organized by duration (acute, intermediate, chronic). In vitro
data and data from parenteral routes (intramuscular, intravenous, subcutaneous, etc.) are also considered
in this section. If data are located in the scientific literature, a table of genotoxicity information is
included.
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