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*Legislative Background

The toxicological profiles are developed in response to the Superfund Amendments and

Reauthorization Act (SARA) of 1986 (Public Law 99-499) which amended the Comprehensive

Environmental Response, Compensation, and Liability Act of 1980 (CERCLA or Superfund). Section

211 of SARA also amended Title 10 of the U. S. Code, creating the Defense Environmental

Restoration Program. Section 2704(a) of Title 10 of the U. S. Code directs the Secretary of Defense

to notify the Secretary of Health and Human Services of not less than 25 of the most commonly found

unregulated hazardous substances at defense facilities. Section 2704(b) of Title 10 of the U. S. Code

directs the Administrator of the Agency for Toxic Substances and Disease Registry (ATSDR) to

prepare a toxicological profile for each substance on the list provided by the Secretary of Defense

under subsection (b).
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1. PUBLIC HEALTH STATEMENT

This public health statement tells you about the jet fuels JP-5 and JP-8 and the effects of exposure.

The Environmental Protection Agency (EPA) identifies the most hazardous waste sites in the

nation. These sites make up the National Priorities List (NPL) and are the sites targeted for longterm

federal cleanup activities. JP-5 and JP-8 have been found in at least 22 of the 1,445 current

or former NPL sites. However, the total number of NPL sites evaluated for this substance is not

known. As more sites are evaluated, the sites at which JP-5 and JP-8 are found may increase.

This information is important because exposure to these substances may harm you and because

these sites may be sources of exposure.

When a substance is released from a large area, such as an industrial plant, or from a container,

such as a drum or bottle, it enters the environment. This release does not always lead to

exposure. You are exposed to a substance only when you come in contact with it. You may be

exposed by breathing, eating, or drinking the substance or by skin contact.

If you are exposed to JP-5 and JP-8, many factors determine whether you’ll be harmed. These

factors include the dose (how much), the duration (how long), and how you come in contact with

it. You must also consider the other chemicals you’re exposed to and your age, sex, diet, family

traits, lifestyle, and state of health.

1.1 WHAT ARE THE JET FUELS JP-5 AND JP-8?

Propellants are substances that move other objects or give thrust. JP-5 and JP-8 stand for jet

propellant-5 and jet propellant-8. They are used by the military as aircraft fuels. JP-5 is the

U.S. Navy’s primary jet fuel, and JP-8 is one of the jet fuels used by the U.S. Air Force. Both

JP-5 and JP-8 are colorless liquids and smell like kerosene. Kerosene is the primary substance in

each. Although JP-5 and JP-8 are liquids at room temperature, they can also change into gas



JP-5 AND JP-8 2

1. PUBLIC HEALTH STATEMENT

vapor. Both JP-5 and JP-8 are flammable. JP-5 and JP-8 can be made from refining crude

petroleum oil deposits found underground and under the ocean floor. They can also be made

from shale oil found in rock. Because kerosene (which is also referred to as fuel oil no. 1) is the

main part of JP-5 and JP-8, the profile sometimes uses the word kerosene and other names that it

can be called instead of the words JP-5 and JP-8. In addition to kerosene, both JP-5 and JP-8

contain various additives according to standards specified by the U.S. Air Force and U.S. Navy.

Other common names for JP-5, JP-8, and kerosene are these:

- fuel oil no. 1

- straight-run kerosene

- kerosine

- range oil

- Deobase (the trade name of a clear, white, deodorized kerosene)

- coal oil

In this profile, JP-5 and JP-8 are discussed together. More information on the chemical and

physical properties of JP-5 and JP-8 is found in Chapter 3. More information on the production

and use of JP-5 and JP-8 is found in Chapter 4.

1.2 WHAT HAPPENS TO JP-5 AND JP-8 WHEN THEY ENTER THE

ENVIRONMENT?

JP-5 and JP-8 are made up of many different substances. Some of these chemicals easily

evaporate into the air when jet fuels are spilled accidentally onto soils or surface waters (for

example, streams, rivers, lakes, or oceans). Other chemical parts of JP-5 and JP-8 are more

likely to dissolve in water following spills to surface waters or leaks from underground storage

tanks. Some of the chemicals in jet fuels may slowly move down through the soil to the

groundwater. Another group of chemicals in jet fuels readily attach to particles in the soil or

water. Once attached in water, these particles may sink down into the sediment. The chemicals

that evaporate may break down into other substances in air by reacting with sunlight

(“photooxidize”) or other chemicals in the air. The chemicals that dissolve in water may also be
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broken down into other substances by living organisms (primarily bacteria and fungi) in the soil

or water. However, this may take many years to occur, depending on the environmental

conditions. The breakdown products of JP-5 and JP-8 are not known, so it is not known whether

they are toxic. Some chemicals that attach to soil or other matter (for example, marsh sediment)

may remain in the environment for more than a decade. Although they make up only a tiny

fraction of JP-5 and JP-8, benzene, toluene, and xylenes (single-ring aromatic compounds), as

well as polycyclic aromatic hydrocarbons, are the components of JP-5 and JP-8 about which we

have the greatest amount of information. These substances are toxic to humans. You can find

this information in the Agency for Toxic Substances and Disease Registry’s (ATSDR)

toxicological profiles for these specific chemicals. See Chapters 4 and 5 for more information

on what happens to JP-5 and JP-8 when they enter the environment.

1.3 HOW MIGHT I BE EXPOSED TO JP-5 AND JP-8?

It is unlikely that you will be exposed to JP-5 or JP-8 unless you work with jet fuels or live very

close to where they are used or spilled. Exposure to JP-5 or JP-8 can occur if you have skin

contact with soil or water contaminated from a spill or leak. You may also be exposed to JP-5 or

JP-8 if you swim in waters where jet fuels have been spilled. If jet fuels have leaked from

underground storage tanks and entered underground water, you may drink contaminated water

from a well containing JP-5 or JP-8. You might breathe in some of the chemicals evaporating

from a spill or leak site if you are in an area where an accident has occurred. Exposure to some of

the components of JP-5 and JP-8 might occur from air releases if these components settle to the

ground near populated areas. There are no data on the background levels of JP-5 and JP-8 that

may be found in the environment.

Workers involved in making or transporting jet fuels or in refueling military aircraft that use JP-5

or JP-8 might breathe air containing these substances. Some workers may be exposed to JP-5 or

JP-8 through their skin if they come into contact with them without adequate protection from

gloves, boots, coveralls, or other protective clothing. For more information on how you might be

exposed to JP-5 and JP-8, see Chapter 5.
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1.4 HOW CAN JP-5 AND JP-8 ENTER AND LEAVE MY BODY?

JP-5 and JP-8 can enter and leave your body when you breathe them in the air, when you drink

water or eat food containing them, and when your skin comes into contact with them. This can

occur in the workplace or if you live near a facility where these fuels are made or near a military

base. When you use kerosene or heating oil, you are exposed to some of the same substances

that are found in JP-5 and JP-8. We do not know how much of these compounds might be taken

up by your body if you inhale JP-5 and JP-8 vapor, drink contaminated water, or come in contact

with JP-5 or JP-8. We have no information on what happens to these chemical mixtures once

they enter your body. We do know that when animals were exposed to kerosene, small amounts

were found in their brains, lungs, livers, spleens, and kidneys. It is not known whether kerosene

would be found in these parts of the body in similarly exposed people. We do not know if JP-5

and JP-8 are broken down and leave the body primarily in the urine or the feces. The

toxicological properties of JP-5 and JP-8 are very dependent upon the crude stock and batch lot.

These compounds are complex and varied mixtures, and their composition may affect their

toxicity. For more information on how JP-5 and JP-8 can enter and leave your body, see

Chapter 2.

1.5 HOW CAN JP-5 AND JP-8 AFFECT MY HEALTH?

We know very little about the human health effects caused by JP-5 and JP-8, but some health

effects might be predicted because of what we know about kerosene, the main chemical

substance in these jet fuel mixtures. Many things will determine if you will be harmed by

exposure to these substances, including how much you were exposed to; how long you were

exposed; how you came in contact with them; and your age, sex, diet, family traits, and other

factors described in the beginning of this section. Breathing in large amounts of JP-5 or JP-8

vapors or aerosol for a short time would cause you to have a suffocating feeling, and breathing

would be painful. Numerous case studies have reported accidental poisoning in children as the

result of drinking kerosene. Drinking kerosene may cause vomiting, diarrhea, swelling of the

stomach, stomach cramps, drowsiness, restlessness, irritability, and loss of consciousness.

Coughing, pneumonia, and difficult or painful breathing after drinking kerosene suggest that
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kerosene has entered the lungs. In addition, drinking large amounts of kerosene can put you into

a coma, cause convulsions, and may even cause death. When kerosene gets on your skin for

short periods, it can make your skin itchy, red, and sore. Sometimes blisters may occur and your

skin may peel.

Breathing kerosene or JP-5 vapors can also affect your nervous system. Some of the effects that

have been noted in case studies include headache, lightheadedness, anorexia (loss of appetite),

poor coordination, and difficulty concentrating.

To protect the public from the harmful effects of toxic chemicals and to find ways to treat people

who have been harmed, scientists use many tests.

One way to see if a chemical will hurt people is to learn how the chemical is absorbed, used, and

released by the body; for some chemicals, animal testing may be necessary. Animal testing may

also be used to identify health effects such as cancer or birth defects. Without laboratory animals,

scientists would lose a basic method to get information needed to make wise decisions to protect

public health. Scientists have the responsibility to treat research animals with care and

compassion. Laws today protect the welfare of research animals, and scientists must comply with

strict animal care guidelines.

Repeated contact with fuels such as JP-5 and JP-8 can cause skin cancer in mice. We do not

know if JP-5 and JP-8 can cause cancer in humans. The International Agency for Research on

Cancer (IARC) has concluded there is not enough information available to determine ifjet fuels or

distillate (light) jet fuels cause cancer (Group 3 classification). However, IARC has determined

that occupational exposures during petroleum refining are probably carcinogenic to humans

(Group 2A classification). Exposure during petroleum refining includes exposures-to substances

that are not found in JP-5 and JP-8. We do not know if JP-5 or JP-8 can cause birth defects or if

they affect reproduction. See Chapter 2 for more information on the health effects of JP-5 and

JP-8.
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1.6 IS THERE A MEDICAL TEST TO DETERMINE WHETHER I HAVE BEEN

EXPOSED TO JP-5 AND JP-8?

No medical test shows if you have been exposed to JP-5 or JP-8. Methods are available to

determine if your blood contains JP-5 and JP-8 components such as benzene, toluene, and

xylenes. However, the concentrations of these chemicals in fuels such as JP-5 and JP-8 are very

low, and if they were detected in your blood it might not necessarily indicate that you had been

exposed specifically to JP-5 and/or JP-8. In this case, it would be helpful for your doctor to know

whether you might have been exposed to other chemicals. For information on tests for measuring

exposure to individual components of JP-5 and JP-8, see the ATSDR toxicological profiles on

benzene, toluene, xylenes, and polycyclic aromatic hydrocarbons. See Chapters 2 and 6 for

information on medical tests and symptoms that suggest exposure to JP-5 and JP-8.

1.7 WHAT RECOMMENDATIONS HAS THE FEDERAL GOVERNMENT MADE

TO PROTECT HUMAN HEALTH?

The federal government develops regulations and recommendations to protect public health.

Regulations a be enforced by law. Federal agencies that develop regulations for toxic

substances include the Environmental Protection Agency (EPA), the Occupational Safety and

Health Administration (OSHA), and the Food and Drug Administration (FDA).

Recommendations provide valuable guidelines to protect public health but cannot be enforced by

law. Federal organizations that develop recommendations for toxic substances include the

Agency for Toxic Substances and Disease Registry (ATSDR) and the National Institute for

Occupational Safety and Health (NIOSH).

Regulations and recommendations can be expressed in not-to-exceed levels in air, Gater, soil, or

food that are usually based on levels that affect animals; then they are adjusted to help protect

people. Sometimes these not-to-exceed levels differ among federal organizations because of

different exposure times (an 8-hour workday or a 24-hour day), the use of different animal

studies, or other factors.
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Recommendations and regulations are also periodically updated as more information becomes

available. For the most current information, check with the federal agency or organization that

provides it. Some regulations and recommendations for JP-5 and JP-8 include the following:

The Department of Transportation regulates the transport of jet fuels such as JP-5 and JP-8

because they are classified as hazardous materials that are considered to pose a risk to health,

safety, or property when moved. OSHA and the Air Force Office of Safety and Health (AFOSH)

regulate levels of petroleum products in private sector workplaces and in Air Force workplaces,

respectively. The maximum allowable amount of petroleum products in workroom air during an

&hour workday, 40-hour workweek, is 400 milligrams per cubic meter (mg/m3). ATSDR has

derived an intermediate-duration inhalation minimal risk level (MRL) of 3 mg/m3 for JP-5 and

JP-8. An MRL is an estimate of daily human exposure to a substance over a specific period that

is likely to be without an appreciable risk of adverse effects (noncarcinogenic). For more

information on regulations and guidelines, see Chapter 7.

1.8 WHERE CAN I GET MORE INFORMATION?

If you have any more questions or concerns, please contact your community or state health or

environmental quality department or:

Agency for Toxic Substances and Disease Registry

Division of Toxicology

1600 Clifton Road NE, Mailstop E-29

Atlanta, GA 30333

* Information line and technical assistance

Phone: l-800-447- 1544

Fax: (404) 639-6315 or 6324
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ATSDR can also tell you the location of occupational and environmental health clinics. These

clinics specialize in recognizing, evaluating, and treating illnesses resulting from exposure to

hazardous substances.

* To order toxicolokal wofiles. contact:

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22 16 1

Phone: (800) 553-6847 or (703) 487-4650
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2.1 INTRODUCTION

The primary purpose of this chapter is to provide public health officials, physicians, toxicologists, and other

interested individuals and groups with an overall perspective of the toxicology of JP-5 and JP-8. It contains

descriptions and evaluations of toxicological studies and epidemiological investigations and provides

conclusions, where possible, on the relevance of toxicity and toxicokinetic data to public health.

A glossary and list of acronyms, abbreviations, and symbols can be found at the end of this profile.

2.2 DISCUSSION OF HEALTH EFFECTS BY ROUTE OF EXPOSURE

To help public health professionals and others address the needs of persons living or working near hazardous

waste sites, the information in this section is organized first by route of exposure-inhalation, oral, and dermal;

and then by health effect-death, systemic, immunological, neurological, reproductive,

developmental, genotoxic, and carcinogenic effects. These data are discussed in terms of three exposure

periods-acute (14 days or less), intermediate (15-364 days), and chronic (365 days or more).

Levels of significant exposure for each route and duration are presented in tables and illustrated in figures.

The points in the figures showing no-observed-adverse-effect levels (NOAELs) or lowest-observed-

adverseeffect levels (LOAELs) reflect the actual doses (levels of exposure) used in the studies. LOAELS have

been classified into “less serious” or “serious” effects. “Serious” effects are those that evoke failure in a

biological system and can lead to morbidity or mortality (e.g., acute respiratory distress or death). “Less

serious” effects are those that are not expected to cause significant dysfunction or death, or those whose

significance to the organism is not entirely clear. ATSDR acknowledges that a considerable amount of

judgment may be required in establishing whether an end point should be classified as a NOAEL, “less

serious” LOAEL, or “serious” LOAEL, and that in some cases, there will be insufficient data to decide

whether the effect is indicative of significant dysfunction. However, the Agency has established guidelines and

policies that are used to classify these end points. ATSDR believes that there is sufficient merit in this

approach to warrant an attempt at distinguishing between “less serious” and “serious” effects. The distinction

between “less serious” effects and “serious” effects is considered to be important because it helps the users of

the profiles to identify levels of exposure at which major health effects start to appear. LOAELs or NOAELs

should also help in
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determining whether or not the effects vary with dose and/or duration, and place into perspective the possible

significance of these effects to human health.

The significance of the exposure levels shown in the Levels of Significant Exposure (LSE) tables and figures

may differ depending on the user’s perspective. Public health officials and others concerned with appropriate

actions to take at hazardous waste sites may want information on levels of exposure associated with more

subtle effects in humans or animals (LOAEL) or exposure levels below which no adverse effects (NOAELs)

have been observed. Estimates of levels posing no significant health risk to humans (Minimal Risk Levels or

MRLs) may be of interest to health professionals and citizens alike.

Minimal Risk Levels or MRLs have been established for JP-5 and JP-8. An MRL is defined as an estimate

of daily human exposure to a substance that is likely to be without an appreciable risk of adverse effects

(noncarcinogenic) over a specified duration of exposure. MRLs are derived when sufficient, reliable data

exist to identify the most sensitive health effect(s) reported for a specific duration within a given route of

exposure. MRLs are based on noncancerous health effects only and do not consider carcinogenic effects.

MRLs can be derived for acute, intermediate, and chronic duration exposures for inhalation and oral routes.

Appropriate methodology does not exist to develop MRLs for dermal exposure.

Although methods have been established to derive these levels (Barnes and Dourson 1988; EPA 1990),

uncertainties are associated with these techniques. Furthermore, ATSDR acknowledges additional

uncertainties inherent in the application of the procedures to derive less than lifetime MRLs. As an example,

acute inhalation MRLs may not be protective for health effects that are delayed in development or are acquired

following repeated acute insults, such as hypersensitivity reactions, asthma, or chronic bronchitis. As these

kinds of health effects data become available and methods to assess levels of significant human exposure

improve, these MRLs may be revised.

A User’s Guide has been provided at the end of this profile (see Appendix B). This guide should aid in the

interpretation of the tables and figures for Levels of Significant Exposure and the MRLs.

There is no single formula for JP-5 and JP-8, but within certain limits the batch-to-batch differences are

generally minor. The components of jet fuels are primarily aliphatic hydrocarbons of length C8 –C17 (NRC

1996). They are refined by a straight distillation of crude or shale oil, or by a distillation of crude or shale oil in

the presence of a catalyst. The jet fuels are refined under more stringent conditions than kerosene and
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contain various additives not found in kerosene. Typical additives to JP-5 and JP-8 include antioxidants

(including phenolic antioxidants), static inhibitors, corrosion inhibitors, fuel system icing inhibitors,

lubrication improvers, biocides, and thermal stability improvers. These additives are used in specified

amounts only, as governed by commercial and military specifications. The exact composition of the jet fuel

also varies depending on the crude from which it is refined. As a result of this variability, little information

exists on the exact chemical and physical properties of jet fuels; however, the differences among these fuels

are considered to be minor.

2.2.1 Inhalation Exposure

2.2.1.1 Death

No studies were located regarding death in humans after inhalation exposure to JP-5 or JP-8.

No deaths occurred in rats exposed to 5,000 mg/m3 kerosene (physical form not specified) for 4 hours

(Vemot et al. 199Oc), but only one concentration level was tested in this study. There was no treatment related

lethality associated with exposure to JP-8 in an aerosol/vapor mixture when male Fischer-344 rats were

exposed nose only to concentrations of either 520 mg/m3 for 1 hour per day for 7 days or 495 mg/m3 for 1 hour

per day for 28 days (Pfaff et al. 1995). No rats died during 90-day inhalation exposures to 150 or 750 mg/m3

JP-5 vapor (Air Force 1985; Cowan and Jenkins 1981a, 1981b; Gaworski et al. 1984). No mice died during a

90-day inhalation exposure to 150 or 750 mg/m3 JP-5 vapor (Cowan and Jenkins 1981 a, 1981 b; Gaworski et

al. 1984). One of 25 male rats exposed to 100 mg/m3 deodorized kerosene vapor (the maximally achievable

vapor concentration at standard temperature and pressure) for 6 hours per day, 5 days per week for 13 weeks,

died of pneumonia (Carpenter et al. 1976). Male mice continuously exposed to airborne JP-8 for 90 days (500

or 1,000 mg/m3) had a significantly higher mortality rate than the controls, although the study authors

concluded that much of the mortality was due to necrotizing dermatitis that resulted from fighting (Mattie et al.

1991).

All LOAEL values from each reliable study for death in each species and duration category are recorded in

Table 2- 1 and plotted in Figure 2-l.
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2.2.1.2 Systemic Effects

No studies were located regarding dermal effects in humans or animals after inhalation exposure to JP-5 or

JP-8 fuels. The highest NOAEL values and all LOAEL values from each reliable study for systemic

effects in each species and duration category are recorded in Table 2-l and plotted in Figure 2-1.

Respiratory Effects. There was no throat irritation in six volunteers following a 15minute exposure to

a concentration reported to be 140 mg/m3 of deodorized kerosene vapor (Carpenter et al. 1976). The study

authors used a hot nichrome wire for the volatilization of the test material and reported that the concentration

was probably the “highest attainable concentration at which vapor analysis is representative of liquid

analysis.” Air is substantially saturated with kerosene vapor at approximately 100 mg/m3 (25 º C) although this

is dependent upon the constituents of the mixture (Carpenter et al. 1976).

The effects of chronic exposure to jet fuels on Swedish factory workers were investigated by Knave et al.

(1976,1978) and Struwe et al. (1983). They found a significant increase in coughing and a feeling of

heaviness in the chests of exposed subjects when compared to unexposed controls from the same factory.

The particular jet fuels to which the workers were exposed were not specified and may not have included JP-5

and JP-8, nor did the study adjust for the possible exposure to other chemicals. Inhalation exposure was likely

since jet fuel vapor was detected by the authors; however, dermal and oral (i.e., from eating

contaminated food) exposures could not be excluded. A jet fuel vapor concentration of 128-423 mg/m3 and

an estimated time-weighted average (WA) concentration of 250 mg/m3 were detected in the breathing zones of

the workers (Knave et al. 1978; Struwe et al. 1983). However, it was not possible to associate specific

exposure concentrations with specific effects.

Limited epidemiological data suggest that chronic human inhalation exposure to kerosene vapor and/or

combustion products from cooking with kerosene stoves does not induce respiratory illness. The presence of

kerosene stoves in the homes of Malaysian children was not associated with chronic cough, persistent wheeze,

asthma, or chest illness (Azizi and Henry 199 1). Asthmatic bronchitis and frequent common colds in 3-year-

old Japanese children were not associated with the presence of kerosene stoves in their homes

(Tominaga and Itoh 1985). The latter study corrected for exposure to passive smoke. These data are of

limited usefulness because the duration of exposure was not reported and the levels of kerosene exposure

could not be quantified. Finally, it is unclear whether kerosene exposure occurred in these individuals

because it was used during cooking or because a kerosene stove was present in the home.
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Animal data on respiratory effects following acute exposure to kerosene by inhalation are limited.

Reductions in tidal volume and dynamic lung compliance, bronchoconstriction, and an increase in pulmonary

resistance occurred in rabbits following inhalation of 32,500 mg/m3 kerosene aerosol for 4-9 minutes (Casaco

et al. 1982). Bronchoconstriction was also induced in guinea pigs that were exposed to 20,400mg/m3 kerosene

aerosol for 5 minutes (Garcia et al. 1988b). No histopathological changes were noted in the respiratory system

of rats or dogs following exposures of up to 100 mg/m3 deodorized kerosene vapor for 13 weeks (Carpenter et

al. 1976).

Fischer rats exposed nose-only to approximately 497 or 520 mg/m3 JP-8 (the physical form of the airborne

JP-8 was not defined) for 1 hour per day for 7 or 28 days exhibited increased alveolar epithelial

permeability,as measured by clearance of technetium-labeled diethylenetriamine pentaacetate (99mTcDTPA)

after 7 days. No appreciable increase occurred following further exposure (days 8-28) (Air Force 1994; Chen

et al. 1992; Pfaff et al. 1995). Inspiratory dynamic compliance was also increased after 7 days, although no

specific expiratory compliance or pulmonary resistance differences were found between the exposed and

control rats after either 7 or 28 days (Air Force 1994; Pfaff et al. 1992a). In the same study, Fischer-344 rats

exposed for 28 days exhibited significantly increased levels of substance P (a neuropeptide found in the central

nervous system) and decreased levels of 6-keto-PGF1, alpha (a stable metabolite of prostacyclin) in broncho-

alveolar lavage fluid (Air Force 1994; Pfaff et al 1992b; Witten et al. 1992b). Lung epithelial permeability of

Fischer-344 rats was also evaluated at two concentrations of JP-8 (500 and 800-1,100 mg/m3; the physical

form of the airborne JP-8 was not defined) for 7,28, and 56 days (Air Force 1994; Hays et al. 1994). The 56-

day low-dose group had a significantly decreased 99mTcDTPA clearance, while the 56-day high-dose group

exhibited a significantly increased clearance. The study authors suggested that the increase at 56 days in the

high-concentration group may represent an adaptive response that may include increased fibrosis of the lungs

or repair to the alveolar capillary barrier (Hays et al. 1994). Pathological changes in rats exposed to 950 mg/m3

(range, 813-1,094 g/m3; the physical form of the airborne JP-8 was not defined) for 28 days included

disruption of epithelial and endothelial structures, convoluted airways, and alveoli filled with red blood cells

and fluid (Air Force 1994; Pfaff et al. 1993). Rats treated with capsaicin and subsequently exposed to 497

mg/m3 JP-8 (the physical form of the airborne JP-8 was not defined) 1 hour per day for 7 days had a marked

increase in sensitivity of the airways to histamine (Air Force 1994; Witten et al. 1992a). However, no useful

information was provided on methods in these studies and the results should be viewed with caution (Air

Force 1994; Chen et al. 1992; Hays et al. 1994; Pfaff et al. 1992a, 1992b, 1993; Witten et al. 1992a, 1992b).
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Cardiovascular Effects. Mild hypertension was noted for 4 days in one of two individuals following a

1 -hour exposure to JP-5 vapor that occurred while flying a small airplane, although the concentration was not

established (Porter 1990). Palpitations were noted in workers chronically exposed to jet fuel according to an

epidemiological study in Swedish workers (Knave et al. 1976, 1978). The limitations of this study were

discussed in detail under Respiratory Effects above.

Inhalation of kerosene aerosol by guinea pigs for 15 minutes daily for 2 1 days induced aortic plaques that

resembled those seen in atherosclerosis in that species (Noa and Jllnait 1987a, 1987b). Significant increases

in total serum cholesterol and decreases in high-density lipoprotein (HDL) were also noted. In these studies,

only one concentration of kerosene aerosol, within a range of 20,400-34,000 mg/m3, was tested. No significant

or treatment-related microscopic or histopathological changes were noted in the heart tissue of rats or dogs

exposed to up to 100 mg/m3 deodorized kerosene (saturation concentration) for 6 hours per day, 5 days per

week for 13 weeks (Carpenter et al. 1976).

Gastrointestinal Effects. One of two individuals that were exposed to JP-5 vapor for approximately 1

hour while flying a small airplane experienced nausea after landing (Porter 1990). The nausea subsided

within 24 hours. Whether the nausea was related to the JP-5 exposure could not be determined. Nausea was

also reported in Swedish workers chronically exposed to unspecified types of jet fuel (Knave et al. 1976).

No histopathological changes were noted in the gastrointestinal system of rats or dogs exposed to up to

100 mg/m3 deodorized kerosene vapor for 6 hours per day, 5 days per week for 13 weeks (Carpenter et al.

1976).

Hematological Effects. No studies were located regarding hematological effects in humans after

inhalation exposure to jet fuels.

No exposure-related hematological effects were noted in rats or dogs exposed to up to 100 mg/m3 deodorized

kerosene vapor for 6 hours per day, 5 days per week for 13 weeks (Carpenter et al. 1976). Beagle dogs

continuously exposed to airborne JP-5 for 90 days (750 mg/m3) exhibited a slight but statistically significant

decrease in hemoglobin and red blood cell count, significant decreases in serum albumin levels, and sporadic

changes in blood urea nitrogen (Air Force 1978b). Female rats exposed to 150 or 750 mg/m3 and male rats

exposed to 750 mg/m3 had increased levels of creatinine and blood urea nitrogen (Air Force 1978b). Female

beagles exposed to 750 mg/m3 and male beagles exposed to 150 or 750 mg/m3 exhibited an increase in red
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blood cell fragility (Air Force 1978b). It should be noted that, at least at the high dose, a significant

concentration of particulates was reported. This suggests that the exposure was to a combination of both

vapor and aerosol.

Musculoskeletal Effects. No studies were located regarding musculoskeletal effects in humans after

inhalation exposure to JP-5 or JP-8.

No histopathological changes were noted in the musculoskeletal system of rats or dogs exposed to up to

100 mg/m3 deodorized kerosene vapor for 6 hours per day, 5 days per week for 13 weeks (Carpenter et al.

1976). Only one study of this effect was located.

Hepatic Effects. No studies were located regarding hepatic effects in humans after inhalation exposure

to JP-5 or JP-8.

Decreases in blood glucose levels were noted in rats after intermediate-duration inhalation exposures to a

mean concentration of 58 mg/m3 (range, 33-75 mg/m3) kerosene vapor. Increases in blood lactate and

pyruvate levels were noted at a mean concentration of 23 1 mg/m3 (range, 183-256 mg/m3) (Starek and

Vojtisek 1986). Significant changes in blood lactate and pyruvate levels did not occur with exposures to

58 mg/m3 kerosene. The study authors speculated that the decreased circulating glucose levels may be

associated with both increased glycolysis and the inhibition of gluconeogenesis. Kerosene exposure affecting

increased glycolysis is supported by the findings of increased concentrations of lactate and pyruvate in the

blood and liver, as well as the increased lactate dehydrogenase activity in the liver. Further, the study authors

suggest that the increased glycolysis may be the result of the inhibition of cellular respiration by kerosene. It

was also noted that cellular respiration was inhibited in liver and kidney slices subsequent to the addition of

kerosene to the incubation solution. Since the air saturating concentration of kerosene is approximately 100

mg/m3, some of the exposure may have been to kerosene aerosol. Following exposure to up to 100 mg/m3

deodorized kerosene vapor for 6 hours per day, 5 days per week for 13 weeks, no histopathological changes in

the liver were noted in rats or dogs, and no liver weight changes were noted in dogs (Carpenter et al. 1976).

Rats exposed to 1,100 mg/m3 of airborne JP-5, 6 hours per day, 5 days per

week for approximately 30 days, did not exhibit any significant changes in hepatic tissue morphology (Bogo et

al. 1983). Significant lesions in the liver were noted in beagle dogs continuously exposed to airborne JP-5 for

90 days (150 or 750 mg/m3). Diffuse, mild, and cloudy swelling of hepatocytes and “foamy” cytoplasm were

seen microscopically. According to the study authors, the lesions were probably due to mild reversible
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damage to the subcellular organelles (Air Force 1978b). Vacuolization and hepatocellular fatty changes were

observed in the livers of mice exposed continuously to JP-5 at 150 mg/m3 for 90 days (Gaworski et al. 1984).

Based on this LOAEL, an intermediate-duration inhalation MRL of 3 mg/m3 was calculated as described in the

footnote to Table 2-l.

Renal Effects. Urinalyses values were within normal limits in two aviators who were exposed to JP-5

vapor for approximately 1 hour while flying a small airplane (Porter 1990).

Several studies have identified a nephropathy in male rats that is associated with exposure to hydrocarbon

vapors, including some jet fuels (Air Force 1985; Bruner 1984; Cowan and Jenkins 1981a, 1981b; Gaworski et

al. 1984). This hydrocarbon-induced nephropathy has only been demonstrated in adult male rats and has been

linked to a specific protein, α2µ-globulin, which is produced under hormonal control by the liver (Alden

1986). However, the α2µ-globulin is unique to male rats and is not present in human kidneys. Hence this

particular nephropathy has no significance for humans. When male rats are exposed to certain hydrocarbons,

including JP-5, α2µ-globulin accumulates in hyaline droplets, which can be visualized in proximal tubule cells.

This buildup of α2µ-globulin -containing hyaline droplets is thought to lead to cell necrosis; the cellular debris

accumulates at the corticomedullary junction, causing tubule dilation and mineralization of the tubules.

Studies of 90-day continuous inhalation of 150 or 750 mg/m3 JP-5 vapor (Air Force 1985; Bruner 1984;

Cowan and Jenkins 1981 a, 1981 b; Gaworski et al. 1984) have shown that a dose-response relationship exists

for multifocal tubular atrophy and focal tubular necrosis at the corticomedullary junction in male rats. Granular

cysts form from the necrotic debris, which then plug and dilate the proximal tubules, resulting in chronic

necrosis. In all cases of JP-5-induced male rat nephropathy, dose-dependent formation of cytoplasmic hyaline

droplets in the proximal tubules of the renal cortex was prominent. Increased blood urea nitrogen and

creatinine levels were found to be associated with this nephropathy in male rats following

inhalation of 150 or 750 mg/m3 JP-5 (Cowan and Jenkins 198la, 1981b). This nephropathy has also

been identified in male rats exposed to JP-5 by the oral route (see the discussion of Renal Effects in

Section 2.2.2.2).

The male rat nephropathy does not appear to be induced by subchronic exposures (i.e., go-day exposures) to

deodorized kerosene. This lesion has not been noted in female rats, female mice (studies conducted on male

mice were not located), or dogs of either sex when similarly exposed to JP-5 vapor (Air Force 1985; Bruner

1984; Cowan and Jenkins 198 1 a, 198 1 b; Gaworski et al. 1984). No histopathological changes were noted in
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the renal system of rats or dogs exposed to up to 100 mg/m3 deodorized kerosene vapor 6 hours per day,

5 days per week for 13 weeks (Carpenter et al. 1976). Rats exposed to 1,100 mg/m3 of JP-5 vapor, 6 hours

per day, 5 days per week for approximately 30 days, did not exhibit any significant changes in renal tissue

morphology or urine chemistries (Bogo et al. 1983).

Male rats continuously exposed to JP-5 vapor for 90 days (150 or 750 mg/m3) exhibited a nephropathy that

was characterized by multifocal tubular atrophy and focal tubular necrosis. Tbe lesions were more severe at

the 750-mg/m3 exposure. The nephropathy was not seen in female rats or beagles similarly exposed (Air

Force 1978b). It should be noted that, at least at the high dose, a significant concentration of particulates was

reported. This suggests that the exposure was a combination of both vapor and aerosol.

Increased absolute and relative kidney weights were noted in male rats continuously exposed to airborne JP-8

for 90 days (500 or 1,000 mg/m3); however, female kidney weights were unaffected. Male rats also exhibited

an increase in urinary renal epithelial cell numbers. The exposed male rats developed three distinct renal

effects: hyaline droplet formation, granular casts in the outer medulla, and an increase in severe lesions similar

to chronic progressive nephrosis. After 2 weeks or 2 months of recovery subsequent to exposure, the hyaline

droplets were no longer discernable; however, the granular casts and the nephrosis were still prominent. After

9 or 21 months of recovery, the granular casts were no longer discernable, but the nephrosis had increased in

both severity and incidence, indicating that this lesion is progressive and irreversible (Mattie et al. 1991).

Ocular Effects. One case study describes eye irritation in two individuals exposed to JP-5 vapor for

approximately 1 hour while flying a small airplane (Porter 1990). Although the exposure concentrations

were not stated, the study author indicates that near the end of the flight, the “cockpit became overwhelmed

with the odor of JP-5 fuel.” Both individuals experienced a burning sensation in their eyes, and one had itchy,

watery eyes 1 day after the exposure. Hyperemic conjunctiva were also reported for one of the individuals; this

effect subsided after 4 days. All effects appear to have been local in nature. Eye irritation was also noted in

factory workers who were chronically exposed to jet fuel (Knave et al. 1978). The limitati&s of this study are

discussed in detail in Section 2.2.1.2 (Respiratory Effects). Eye irritation was not induced in six volunteers by

a 15minute exposure to 140 mg/m3 deodorized kerosene vapor (Carpenter et al. 1976).

No studies were located regarding ocular effects in animals after inhalation exposure to JP-5 or JP-8.
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Body Weight Effects. No studies were located regarding body weight effects in humans after inhalation

exposure to JP-5 or JP-8.

There was no change in body weight gain in rats exposed to up to 100 mg/m3 deodorized kerosene vapor

6 hours per day, 5 days per week for 13 weeks (Carpenter et al. 1976). Body weight gain was decreased 57%

in male mice exposed to 520 mg/m3 JP-8 for 1 hour per day for 7 days and 37.5% in male mice exposed to 495

mg/m3 for 1 hour per day for 28 days (Pfaff et al. 1995). There was no change in body weight gain in mice or

female rats following go-day continuous inhalation exposure to 750 mg/m3 JP-5 vapor (Air Force 1985;

Gaworski et al. 1984). The growth of male rats was retarded, but that of beagles was unaffected, subsequent to

continuous go-day exposure to 150 or 750 mg/m3 of airborne JP-5 (Air Force 1978b). It should be noted that,

at least at the high dose, a significant concentration of particulates was reported. This suggests that the

exposure was to a combination of both vapor and aerosol. Male rats continuously exposed to airborne JP-8 for

90 days (500 or 1,000 mg/m3) displayed a decrease in weight gain that persisted until the end of the study.

Female body weights were unaffected (Mattie et al. 1991).

Metabolic Effects. There were no blood chemistry changes in either of two individuals following a

1 -hour exposure to JP-5 vapor while flying a small airplane (Porter 1990).

No significant metabolic changes in blood chemistry were noted in rats continuously exposed to airborne JP-8

for 90 days (500 or 1,000 mg/m3) (Mattie et al. 1991). As indicated in the discussion of Hepatic Effects above,

decreased blood glucose levels were noted in rats after intermediate-duration inhalation exposures to a mean

concentration of 58 mg/m3 kerosene vapor. Increases in blood lactate and pyruvate levels were noted at a mean

concentration of 23 1 mg/m3 (Starek and Vojtisek 1986).

2.2.1.3 Immunological and Lymphoreticular Effects

No studies were located regarding immunological or lymphoreticular effects in humans after exposure to JP-5

or JP-8.

No significant or treatment-related microscopic or histopathological changes were noted in the spleen of rats

or dogs exposed up to 100 mg/m3 deodorized kerosene for 6 hours per day, 5 days per week, for 13 weeks

(Carpenter et al. 1976).
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2.2.1.4 Neurological Effects

Neurological effects in humans resulting from acute exposure to JP-5 vapor have been reported (Porter

1990). Coordination and concentration difficulties and fatigue were noted in two individuals following a lhour

exposure to JP-5 in the cockpit of an unpressurized aircraft. The odor of JP-5 in the cockpit at the end

of the flight was described as overwhelming. Other effects included headache, apparent intoxication, and

anorexia. Neither experienced any sensory impairment. The effects subsided within 24 hours in one of the

exposed individuals and within 4 days in the other (Porter 1990). In a study of six volunteers, slight olfactory

fatigue was induced in three, and one reported “tasting something,” following a 15-minute exposure to 140

mg/m3 deodorized kerosene vapor (Carpenter et al. 1976). An epidemiological study reported the effects of

chronic exposure to jet fuel in aircraft factory workers (Knave et al. 1976, 1978). This study found significant

increases in neurasthenia (i.e., fatigue, depressed mood, lack of initiative, dizziness, and sleep disturbances) in

the exposed subjects when compared to unexposed controls from the same factory. Neurasthenia was

associated with a TWA concentration of 250 mg/m3 of jet fuel, although exposure varied from 150 to 420

mg/m3 (Struwe et al. 1983). Also, attention and sensorimotor speed were impaired in the exposed workers, but

no effects were found on memory function or manual dexterity. Clinical signs and symptoms of

polyneuropathy were also present in the majority of individuals examined. Based on Spectral Parameter

Analysis of the electroencephalogram (EEG) signals, the study authors speculated that the effect of jet fuel

may influence thalamic control of the cortical activity with an increased time variability, decreased frequency

stability, and less widespread control of cortical neurons.

The neurotoxic effects of JP-8 exposure were examined in posture balance studies conducted on 27 U.S. Air

Force employees who had been exposed to JP-8 for at least six months (Smith et al. 1997). Exposure

concentrations could not be calculated in mg/m3 because insufficient data were provided. Eight-hour

breathing zone samples were collected for each employee. Mean exposure levels for employees in all job

categories exposed to JP-8 fuel were: benzene (5.03±1.4 ppm); toluene (6.11±1.5 ppm); xylenes

(6.04±1.4 ppm); and naphthas (419.6±108.9 ppm). The study authors noted that a statistical association

between sway length and JP-8 benzene, which implied a subtle influence on vestibular/proprioception

functionalities. The limitations of these studies, which include lack of specification of the type of jet fuel and

no adjustment for possible exposure to other chemicals, were discussed in greater detail in the Respiratory

Effects section above.
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No histopathological changes were noted in the nervous system of rats or dogs exposed to up to 100 mg/m3

deodorized kerosene vapor 6 hours per day, 5 days per week for 13 weeks (Carpenter et al. 1975, 1976). An

increase in water consumption was noted after 8 hours (lasting until the end of the study) in rats exposed to

1,100 mg/m3 of airborne JP-5,6 hours per day, 5 days per week for approximately 30 days (Bogo et al.

1983). No significant clinical signs of toxicity were evident in mice exposed continuously to airborne JP-8

(500 or 1,000 mg/m3).for 90 days, except for an increased incidence of fighting (Mattie et al. 1991).

Mice receiving a single dose of 20 µL of kerosene placed in the pharynx (followed by aspiration) exhibited

lack of coordination, drowsiness, and behavioral changes (Nouri et al. 1983). The study is limited because

only one dose was tested and the actual dose entering the lungs by aspiration cannot be determined.

The highest NOAEL values and all LOAEL values from each reliable study for neurological effects in each

species and duration category are recorded in Table 2-l and plotted in Figure 2-l.

2.2.1.5 Reproductive Effects

No studies were located regarding reproductive effects in humans or animals after inhalation exposure to JP-5

or JP-8.

2.2.1.6 Developmental Effects

No studies were located regarding developmental effects in humans or animals after inhalation exposure to

JP-5 or JP-8.

2.2.1.7 Genotoxic Effects

No studies were located regarding genotoxic effects in humans or animals after inhalation exposure to JP-5 or

JP-8. Genotoxicity studies are discussed in Section 2.5.

2.2.1.8 Cancer

There are limited epidemiological data regarding carcinogenicity in humans following chronic inhalation

exposure to kerosene. No association between the use of kerosene stoves for cooking and bronchial cancer
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was found among nonsmoking women (Chan et al. 1979). The concentrations and durations of exposures

were not reported, and it could not be ascertained whether exposures were to kerosene vapor or kerosene

aerosol. The association between the use of kerosene stoves and exposure to “petroleum products,” and oral

or pharyngeal cancer has been investigated (Zheng et al. 1992). Significantly (p≤0.00l) more male cases

(27%) used kerosene stoves than controls (14.1%). A similar effect was not observed for females. This

study is limited in that a wide range of fuels were used, the fuels were not adequately described, and no

differentiation was made between effects potentially associated with kerosene vapor and effects possibly

associated with the products of combustion.

A matched case-control study that examined risk factors for two common types of brain tumors in children,

astrocytic glioma and primitive neuroectodermal tumor (POET), found a significant association (odds ratio

[OR] = 8.9; 95% confidence interval [CI] 1.l-71.1; p=0.04) between astrocytoma and the use of kerosene

during pregnancy by income-adjusted mothers (Bunin et al. 1994). The study used 321 control group

individuals and monitored 321 cases, of which 155 were astrocytic glioma cases and 166 were PNET cases.

Limitations in this study included possible selection bias, lack of information regarding exposure duration

and concentrations, and exposure to other agents, such as alcohol, N-nitrosocompounds, and possibly

pesticides.

A population-based case-referent study was conducted in Montreal, Canada, using a cohort of 3,726 cancer

patients, of whom 43 individuals were exposed to jet fuel and 234 individuals were exposed to kerosene. A

significant association between jet fuel and kidney cancer (OR = 3.1; 90% CI 1.5-6.6) was observed after an

in-depth statistical analysis. However, some of the patients with kidney cancer who were exposed to jet fuel

had also been exposed to aviation gasoline, which may have been responsible for the development of renal

tumors (Siemiatycki et al. 1987). Limitations of this study included multiple chemical exposures and

inadequate description of the jet fuels and exposure concentrations.

A historical prospective cohort study involving 2,176 men designed to examine the risk of lymphatic

malignancies due to aircraft fuel exposure in the Swedish Air Force found no evidence of an association

between aircraft fuel and lymphatic, or any of the other malignancies examined (Selden and Ahlborg 1991).

Both cancer mortality and morbidity were examined in this study. This study was limited because the

exposure concentrations and durations were not specified.
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In a study conducted using rats, no renal tumors were observed during lifetime observation following a

90-day continuous exposure to 750 mg/ m3 JP-5 vapor (Bruner 1984). This study, however, was not designed

to specifically test carcinogenic potential.

2.2.2 Oral Exposure

2.2.2.1 Death

Numerous case studies have described death following the accidental ingestion of kerosene by children

(usually under the age of 5, but as old as 15 years). The deaths were usually attributed to lipoidal pneumonia

(Morrison and Sprague 1976; Santhanakrishnan and Chithra 1978; Zucker et al. 1986) that was probably

induced by the aspiration of the kerosene. Specific respiratory effects associated with death from kerosene

ingestion include pneumothorax (Lucas 1994; Mahdi 1988; Zucker et al. 1986), emphysema (Mahdi 1988),

and pneumonitis (Singh et al. 1981). Cardiac arrhythmia was reported as the cause of death in one child;

however, it was suspected that myocarditis and pulmonary edema may have been the cause of the rapid

deterioration and death of the child (Dudin et al. 1991). Estimated ingested doses of kerosene associated with

death are as low as 1,900 mg/kg based on the ingestion of 30 mL of kerosene by a 2-year-old child, and as

high as 16,800 mg/kg based on the ingestion of 200 mL of kerosene by a 1-year-old child (Santhanakrishnan

and Chithra 1978). An estimated oral dose of less than 5,300 mg/kg kerosene resulted in the death of a l0-

month-old girl (Zucker et al. 1986). No lethality was reported for children from 10 months to 5 years old

following ingestion of estimated doses ranging from 120 to 870 mg/kg and, in one instance, a dose as high as

1,700 mg/kg of kerosene (Dudin et al. 199 1). Although kerosene ingestion is the second leading cause of

poisoning in rural Sri Lanka, accounting for 9.5% of the total cases, no deaths due to ingestion were reported

(Hettiarachchi and Kodithuwakku 1989).

Death in rats occurred after a single dose (intragastric administration) of 12,000 mg/kg kerosene, but not

after intragastric doses of 8,000-l 1,200 mg/kg kerosene or 12,150 mg/kg deodorized kerosene (Muralidhara et

al. 1982). The study authors stated that the deodorized kerosene appeared to be safer than kerosene, but they

did not indicate the component of kerosene that resulted in the greater toxicity. No treatment-related deaths

occurred in pregnant rats treated once a day with up to 2,000 mg/kg JP-8 by gavage during gestational days 6-l

5 (Cooper and Mattie 1996). A single oral dose of 4,000 mg/kg kerosene was lethal to 10-day-old rats;

however, this dose level was not tested in adult rats, and details of how the rats were treated were not provided

(Deichmann et al. 1944). Death occurred in two out of six rats subsequent to a single gavage dose
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of 47,280 mg/kg JP-5, but none died from single doses of 18,912-29,944 mg/kg JP-5 (Parker et al. 1981).

One rat exposed to 37,824 mg/kg JP-5 died from a gavage accident. There were no other deaths in that

treatment group. An LD50 of greater than 48,000 mg/kg was noted in rats receiving a single oral dose by

gavage of 19,200,24,000,30,400,32,000, or 48,000 mg/kg of JP-5 (Bogo et al 1983). However, it should

be noted that the volumes of the doses by gavage used here were extremely large and that any amount above

20 mL (lowest dose used in this study was 24 mL/kg) is probably too high a dose for rats.

The acute oral LD50 values for kerosene in guinea pigs and rabbits have been reported to be 16,320 and

22,720 mg/kg, respectively (Deichmann et al. 1944). In guinea pigs, 1 of 10 died at a single oral dose of

3,760 mg/kg, and 7 of 10 died at a single oral dose of 19,200 mg/kg. Death in rabbits did not occur after a

single oral dose of 8,000 mg/kg, with 3 of 10 and 6 of 10 rabbits dying at single oral doses of 12,800 and

28,800 mg/kg, respectively. In guinea pigs, death occurred following a single oral dose of

3,760-19,200 mg/kg kerosene. These data for guinea pigs and rabbits are limited because the methodologies

and experimental conditions of this study were poorly described. Oral gavage of 6,400 mg/kg/day kerosene

administered for 7-10 days was lethal to 4 of 5 male calves; only one dose was tested in this study (Rowe et al.

1973).

Mortality in rats was induced by aspiration of 0.05-0.25 mL of kerosene; there was a dose-response

relationship for death in this study (Gerarde 1963). Aspiration was induced by placing the test material into

the back of the throat causing the animal to choke, which forced the test compound into the respiratory tract.

The purpose of using aspiration as a route of exposure in animals was to mimic human respiratory exposure

occurring during vomiting after ingestion of kerosene. Mortality in mice was noted following a single

exposure to 20 µL kerosene by aspiration (Nouri et al. 1983). This latter study is limited because only one dose

was tested. No treatment-related deaths were observed when groups of 10 male Sprague-Dawley rats were

administered 0,750, 1,500, or 3,000 mg/kg neat JP-8 by gavage once a day for 90 days (Mattie et al. 1995).

All LOAEL values from each reliable study for death in each species and duration category are recorded in

Table 2-2 and plotted in Figure 2-2.
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2.2.2.2 Systemic Effects

No studies were located regarding ocular or metabolic effects in humans or animals after oral exposure to

JP-5 or JP-8. The highest NOAEL and all LOAEL values from each reliable study for systemic effects in

each species and duration category are recorded in Table 2-2 and plotted in Figure 2-2.

Respiratory Effects. Even if kerosene is initially ingested (accidental ingestion of jet fuels is most often

noted in children under 5 years of age), the respiratory toxicity is usually attributable to the aspiration of

kerosene into the lungs during vomiting (Coruh and Inal 1966; Majeed et al. 1981; Nom-i and Al-Rahim

1970). Based on case studies that examined at least 50 cases of kerosene ingestion by children, the

respiratory effects that primarily occur from kerosene ingestion are bronchopneumonia, bronchitis,

pneumonitis, lung infiltrates and effusions, cough, dyspnea, and tachypnea (Akamaguna and Odita 1983;

Aldy et al. 1978; Annobil1983; Annobil and Ogunbiyi 1991; Lucas 1994; Mahdi 1988; Santhanakrishnan

and Chithra 1978; St. John 1982). Pneumonitis, pulmonary edema, and/or pneumonia were reported for

children and adults who had ingested kerosene (Subcommittee on Accidental Poisoning 1962). Hypoxia has

also been noted in some cases (Dudin et al. 1991). An epidemiological study found a significant increase in

feelings of heaviness in the chests of workers who were chronically exposed to jet fuels by the inhalation, oral,

and/or dermal exposure routes (limitations of the study are discussed in detail in Section 2.2.1.2 Respiratory

Effects) (Knave et al. 1978). A follow-up study was conducted on children who 10 years earlier had been

diagnosed with pneumonitis due to kerosene ingestion and who had abnormal chest radiographs at the time

(Tal et al. 1984). Researchers found an increase in volume of isoflow, a decrease in change in flow while

breathing helium compared to air at 50% vital capacity, and the continued presence of abnormal chest

radiographs. The study suggests that there may be long-term respiratory effects following aspiration of

ingested kerosene.

Several studies have reported estimated doses, usually based on the finding of an empty container near the

poisoned child (Agarwal and Gupta 1974; Akamaguna and Odita 1983; Aldy et al. 1978; Coruh and Inal

1966; Dudin et al. 199 1; Nouri and Al-Rahim 1970; Saksena 1969; Santhanakrishnan and Chithra 1978).

Although the effects associated with specific doses were not stated, kerosene was associated with pulmonary

complications in 11 of the 422 cases studied (the incidence of the effects, ages associated with the effects, and

doses were not reported). Pneumothorax, pneumomediastinum, and death were most frequently reported. The

Subcommittee on Accidental Poisoning (1962) estimated that ingestion of 10-30 mL results in respiratory

distress from aspiration of kerosene (Zucker et al. 1986). Respiratory distress was reported to
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have resulted in the deaths of a 2-year-old child and a l-year-old child after ingestion of 30 mL

(1,900-2,000 mg/kg) and 200 mL (15,300-16,800 mg/kg) of kerosene, respectively (Santhanakrishnan and

Chithra 1978).

Not all cases of kerosene ingestion result in toxicity. For instance, as many as 56% of the cases studied were

asymptomatic in two study populations (Mahdi 1988; Santhanakrishnan and Chithra 1978). Also, 39% of one

population of children had normal lung x-rays following kerosene ingestion (Annobil and Ogunbiyi 1991). No

doses were reported in these cases, although the study authors estimated them as small. This reinforces the

position that aspiration is the route of exposure when signs or symptoms of toxicity are seen following

ingestion.

Mononuclear and polymorphonuclear cell infiltration and unspecified pathological lesions were noted in the

lungs of guinea pigs after gavage administration of 3,200-8,000 mg/kg kerosene (Brown et al. 1974). In

mice, aspiration of 20 µL of kerosene induced pulmonary consolidation and hemorrhage, pneumonitis, a

decrease in pulmonary clearance of Staphylococcus aureus, and an increase in relative lung weight (Noari et

al. 1983). Dogs exposed to 0.5 mL/kg kerosene by aspiration exhibited increases in oxygen utilization,

intrapulmonary physiologic shunt fraction, respiratory rate, and decreases in arterial oxygen tension

(Goodwin et al. 1988). In the aspiration studies, the actual dose entering the lungs could not be determined.

No treatment-related histopathological changes in the lung or nasal turbinates were reported in a study in

which male Sprague-Dawley rats were administered up to 3,000 mg/kg neat JP-8 by gavage once a day for

90 days (Mattie et al. 1995).

Cardiovascular Effects. Tachycardia was noted in children following acute ingestion of kerosene

(Akamaguna and Odita 1983; Coruh and Inal 1966). In one case study cardiomegaly, but not heart failure,

occurred in 20% of the cases of kerosene poisoning (Akamaguna and Odita 1983). An epidemiological study

found a significant increase in cardiac palpitations in workers who were chronically exposed to jet fuels by the

inhalation, oral, and/or dermal exposure routes (Knave et al. 1978). The limitations of the study are discussed

in detail in Section 2.2.1.2 (Respiratory Effects).

There were no histopathological changes and no change in relative heart weight in rats following exposure by

gavage to single doses of up to 12,000 mg/kg kerosene or 12,150 mg/kg deodorized kerosene (Muralidhara et

al. 1982). Data for deodorized kerosene are limited because effects were reported for only one dose.
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Decreases in heart rate and mean arterial blood pressure occurred in dogs following aspiration of 0.5 mL/kg

kerosene, and these values returned to the control values within 60 minutes (Goodwin et al. 1988). The

actual dose entering the lungs by aspiration cannot be determined. This study is limited, however, because

only one dose was tested.

No treatment-related histopathological effects on the heart were observed when male Sprague-Dawley rats

were treated with neat JP-8 at doses of up to 3,000 mg/kg once a day for 90 days (Mattie et al. 1995).

Gastrointestinal Effects. The most commonly reported gastrointestinal effect in children following

acute ingestion of kerosene is vomiting (Akamaguna and Odita 1983; Aldy et al. 1978; Lucas 1994; Mahdi

1988; Majeed et al. 1981; Nouri and Al-Rahim 1970; Saksena 1969; St. John 1982), including bloody vomit

(Nom-i and Al-Rahmin 1970). Other effects noted have been abdominal pain and/or distension (Akamaguna

and Odita 1983; Mahdi 1988; Majeed et al. 1981; Nouri and Al-Rahim 1970; Saksena 1969), gastroenteritis

(Saksena 1969), and diarrhea (Majeed et al. 1981).

No diarrhea was noted in rats following exposure by gavage to single doses of up to 12,000 mg/kg kerosene

or 12,150 mg/kg deodorized kerosene (Muralidhara et al. 1982). Stomach irritation and hyperplasia were

observed in male Sprague-Dawley rats treated with 750, 1,500, or 3,000 mg/kg JP-8 by gavage once a day

for 90 days (Mattie et al. 1995). The incidence and severity of the gastritis and hyperplasia were increased at

all doses compared to controls, but there was an inverse relationship between these findings and dose. These

effects may result from contact irritation of the JP-8, since it was administered to the animals without a

vehicle. No histopathological changes in the intestine were observed in this study, but anal dermatitis and

hyperplasia were also reported (Mattie et al. 1995).

Hematological Effects. Several case studies reported hematological effects in children following acute

ingestion of kerosene. Increases in leukocyte counts were reported for 37-80% of the respective study

populations (Dudin et al. 1991; Majeed et al. 1981; Nouri and Al-Rahim 1970). These studies do not state

how long after exposure this effect was observed.

In rats exposed by gavage to single doses of up to 12,000 mg/kg kerosene or 12,150 mg/kg deodorized

kerosene, there was no change in relative spleen weight, and no histopathological changes of the spleen

occurred (Muralidhara et al. 1982). Rats had increased hematocrit, decreased white blood cell counts, and
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increased erythrocyte counts following exposure by gavage to a single dose of 189 12 mg JP-S/kg (Parker et

al. 1981). It has been suggested that dehydration might be the cause of hemoconcentration in these animals.

Hematological effects were observed in male Sprague-Dawley rats treated with 0,750, 1,500, or 3,000 mg/kg

neat JP-8 by gavage for 90 days (Mattie et al. 1995). No significant changes were found in red blood cell

count, but significant increases in neutrophils and significant decreases in lymphocytes were observed in all

treated groups compared to controls. The increase in neutrophil count was probably a response to the renal

nephropathy observed in this study, but the cause of the decrease in lymphocytes was unclear. Platelets were

increased at high dose compared to controls.

Musculoskeletal Effects. No studies were located regarding musculoskeletal effects in humans after

oral exposure to JP-5 or JP-8.

Male Sprague-Dawley rats treated with up to 3,000 mg/kg neat JP 8 for 90 days showed no histopathological

changes in the sternum or in skeletal muscle (Mattie et al. 1995).

Hepatic Effects. No studies were located regarding hepatic effects in humans after oral exposure to JP-5

or JP-8.

There was no change in the relative organ weight of the liver in rats following single doses (gavage) of up to

12,000 mg/kg kerosene or 12,150 mg/kg deodorized kerosene (Muralidhara et al. 1982). In the same study,

histopathological examination revealed slight cellular infiltration and mild vacuolization of the liver, but the

doses of kerosene and deodorized kerosene that induced these effects were not specified. A single gavage dose

of 18,912–47,280 mg/kg JP-5 induced necrosis in the hepatocytes of rats (Parker et al. 198 1).

Similarly, a single dose of 18,912 mg JP-S/kg induced vacuolization of the periportal hepatocytes within 2

days of gavage, as well as statistically significant increases in serum glutamic pyruvic transaminase (SGPT),

serum glutamic oxaloacetic transaminase (SGOT), and lactate dehydrogenase levels (Parker et al. 1981). Rats

that died subsequent to receiving a single oral dose by gavage of 24,30,38,40, or 60 mL/kg of JP-5 exhibited

livers that were swollen and mottled. Liver lesions consisted of cytoplasmic vacuolization of

hepatocytes and hepatocellular degeneration. Necrosis of individual hepatocytes was indicated by pyknosis

and karyorrhexis (Bogo et al. 1983). Rats receiving a single dose of 24 mL JP-5/kg by gavage exhibited a

transient increase in serum levels of SGOT and SGPT (Bogo et al. 1983; Mehm and Feser 1984). It was

noted that the elevated levels of SGOT and SGPT occurred as early as 6 hours post-treatment and lasted up
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to 5 days post-treatment (Mehm and Feser 1984). Liver sections revealed mitotic figures and increased

numbers of binucleated cells. Normal tissue was observed after 5 days (Bogo et al. 1983; Mehm and Feser

1984). Male Sprague-Dawley rats that received 750, 1,500, or 3,000 mg/kg JP-8 without a vehicle by gavage

once a day for 90 days showed significant increases in levels of aspartate aminotransferase and alanine

aminotransferase compared to controls (Mattie et al. 1995). However, the changes were not dose related.

Relative liver weight was increased and total bilirubin was increased in a dose-dependent manner at all doses

compared to controls in this study. Triglycerides were significantly decreased at high dose. No effects were

observed upon histopathological examination of the liver.

Renal Effects. Urinalysis tests in children were generally reported to be normal following acute ingestion

of kerosene (Dudin et al. 1991; Mahdi 1988; Nouri and Al-Rahim 1970), although albuminuria was

occasionally noted (Dudin et al. 1991; Nouri and Al-Rahim 1970).

No changes in relative kidney weights were noted in rats following single doses (gavage) of up to 12,000

mg/kg kerosene or 12,150 mg/kg deodorized kerosene (Muralidhara et al. 1982). Histopathological

examination revealed slight cellular infiltration and mild vacuolization of kidney tissues and slight dilation of

the kidney tubules in rats “poisoned” with kerosene and deodorized kerosene. From the study authors’

description of the results, it is not possible to determine at which dose the histopathological changes in the

kidneys were observed.

 Hyaline droplets were detected in the kidneys of two male rats that died 48 hours after a single exposure to

47,280 mg/kg JP-5 by gavage (Parker et al. 1981). This effect was not apparent in male rats that died less than

48 hours after exposure to 47,280 mg/kg or in rats that survived for 14 days following exposures to  18,912–

37,824 mg/kg JP-5. However, hyaline droplets were apparent in rats that were killed within 2-3 days of

exposure to 18,912 mg/kg JP-5. Thus, the effect appears to be induced within a specific period following

exposure and also appears to be transient. A single gavage exposure to 18,912 mg/kg JP-5 also induced a

statistically significant increase in creatinine levels (Parker et al. 1981). The most consistent renal change

noted in rats that died subsequent to receiving a single oral dose by gavage of 19,200,24,000, 30,400, 32,000,

or 48,000 mg/kg of JP-5 was the formation of eosinophilic hyaline droplets in the cytoplasm of epithehal cells

in the proximal tubules (Bogo et al 1983). Renal tissue sections from rats receiving a single gavage dose of

19,200 mg/kg JP-5 exhibited cytoplasmic droplets in the proximal tubules. The presence of the droplets

correlated with elevated levels of serum creatinine and blood urea nitrogen (Bogo et al 1983).
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These effects are considered to be unique to male rats and are not expected to occur in humans (see

discussion in Section 2.2.1.2 under Renal Effects).

A 90-day study using male Sprague-Dawley rats treated by gavage with 750, 1,500, or 3,000 mg/kg neat

JP-8 also demonstrated this effect (Mattie et al. 1995). An α2µ-globulin nephropathy was observed at all

doses and a significant increase in the incidence and severity of chronic progressive nephrosis was observed in

high-dose animals. Neither of these lesions is considered relevant for human health risk assessment. Values for

urinalysis parameters were comparable to controls with the exception of urinary pH, which was significantly

decreased at mid and high dose. Blood creatinine was significantly increased compared to controls only at low

and mid dose. No treatment-related histopathological changes were found in the urinary bladder.

Endocrine Effects. No studies were located regarding endocrine effects in humans after oral exposure to

JP-5 or JP-8.

There were no histopathological changes in the adrenal glands and no changes in the relative adrenal gland

weights in rats following the administration of single doses, by gavage, of up to 12,000 mg/kg kerosene or

12,150 mg/kg deodorized kerosene (Muralidhara et al. 1982). No histopathological changes were observed

in the adrenal glands or pancreas of male Sprague-Dawley rats treated by gavage with up to 3,000 mg/kg

JP-8 (Mattie et al. 1995).

Dermal Effects. Large blisters, erythema, and peeling skin were reported in two cases of apparent oral

exposure to kerosene (Annobil1988). However, the strong odor of kerosene on one of the individuals and

the kerosene-stained clothing of the other indicate that dermal exposure may have also occurred in these

cases. Exposure levels were not reported.

Alopecia and congestion of the subcutis were noted in rats following gavage administration of single doses of

19,200 mg JP-S/kg (Parker et al. 1981). Anal irritation and hyperplasia were observed in a 90-day study in

male Sprague-Dawley rats administered 750, 1,500, or 3,000 mg/kg undiluted JP-8 by gavage (Mattie et al.

1995). There was an increase in incidence and severity of anal hyperplasia and in the incidence of anal

dermatitis in all treated groups compared to controls; the severity of the hyperplasia increased in a dose-

dependent manner.
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Male Sprague-Dawley rats that were treated with 750, 1,500, or 3,000 mg/kg neat JP-8 by gavage once a day

for 90 days showed decreases in body weight compared to controls at low (6%), mid (13%), and high (43%)

dose (Mattie et al. 1995). There is some question, however, regarding whether this effect was directly due to

administration of JP-8 or whether it was due to decreased food consumption induced by gastric irritation.

Body Weight Effects. No studies were located regarding body weight effects in humans after oral

exposure to JP-5 or JP-8.

Maternal body weight gain was significantly decreased by 3 l%, 70%, and 85% (at 1,000,1,500, and 2,000

mg/kg, respectively) compared to controls when pregnant rats were treated with 0,500, 1,000, 1,500, or 2,000

mg/kg JP-8 once a day by gavage during gestational days 6–15 (Cooper and Mattie 1996).

Adjusted maternal body weight (the maternal body weight minus the gravid uterine weight) was significantly

decreased compared to controls at 1,500 and 2,000 mg/kg.

Metabolic Effects. Fever has been reported in children following ingestion of kerosene (Akamaguna and

Odita 1983; Aldy et al. 1978; Dudin et al. 1991; Lucas 1994; Mahdi 1988; Majeed et al. 1981; Nouri and

Al-Rahim 1970; Saksena 1969; St. John 1982). In one study, fever and pulmonary complications were

reported in children and adults who had ingested kerosene (Subcommittee on Accidental Poisoning 1962). It is

not known whether the fever was secondary to the pulmonary effects.

No studies were located regarding metabolic effects in animals after oral exposure to JP-5 or JP-8.

2.2.2.3 Immunological and Lymphoreticular Effects

No studies were located regarding immunological or lymphoreticular effects in humans or animals after oral

exposure to JP-5 or JP-8.

Gavage administration of up to 3,000 mg/kg of neat JP-8 to Sprague-Dawley rats once/day for 90 days

caused no histopathological changes in lymph nodes or spleen, although relative spleen weight was increased

at this dose, but not at 1,500 mg/kg, compared to controls (Mattie et al. 1995).
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2.2.2.4 Neurological Effects

Lethargy, semicoma, and/or coma were reported in children and adults who had ingested kerosene. Estimated

exposure levels of 10-30 mL kerosene were associated with complications of the central nervous system in 18

of 422 study participants (Subcommittee on Accidental Poisoning 1962). These effects also occurred at doses

beyond this range, but the exact exposure levels are not known. Incidences of the effects, the ages associated

with the effects, and the ingested doses were not reported. Several case studies have reported neurological

effects in children following acute ingestion of kerosene. In studies that examined 50-205 kerosene poisoning

cases, the neurological effects noted most frequently were unconsciousness or

semiconsciousness, drowsiness, restlessness, and irritability (Akamaguna and Odita 1983; Aldy et al. 1978;

Coruh and Inal 1966; Dudin et al. 199 1; Lucas 1994; Mahdi 1988; Majeed et al. 1981; Nouri and Al-Rahim

1970; Saksena 1969; Santhanakrishnan and Chithra 1978; St. John 1982). Coma and convulsions were also

noted in numerous studies but were usually evident in only one or two individuals per study population (Coruh

and Inal 1966; Dudin et al. 1991; Majeed et al. 198 1; Nouri and Al-Rahim 1970; Saksena 1969;

Santhanakrishnan and Chithra 1978). Of 78 children (aged 1l-48 months) known to have ingested kerosene, 2

developed coma, convulsions, and then died after ingesting a quantity of kerosene estimated to be between 30

mL (1,890 mg/kg) and 50 mL (4,255 mg/kg) (Dudin et al. 1991). The cause of death was not neurological for

these children, but death was attributable in one case to severe metabolic acidosis associated with hypoxia and

in the second case to arrhythmia as well as myocarditis and pulmonary edema. Neither coma nor convulsions

occurred in 76 children aged 10 months to 5 years after ingesting 3-20 mL of kerosene (equivalent to 126–l

,754 mg/kg). However, in the majority of the cases of kerosene ingestion, neurological effects were not

associated with specific reported quantities. There are limited data that suggest that the central nervous system

effects following ingestion of kerosene are due to hypoxia from kerosene-induced respiratory impairment

(Majeed et al. 1981). Significant increases in neurasthenia (i.e., fatigue, depressed mood, lack of initiative,

dizziness, and sleep disturbances) have been reported in workers who were chronically exposed to jet fuels by

inhalation, oral, and/or dermal exposure. Also, attention and sensorimotor speed were impaired, but no effects

were found on memory function or manual dexterity. The study authors speculated, based on Spectral

Parameter Analysis of the EEG signal, that jet fuel may influence thalamiccontrol of the cortical activity with

an increased time variability, decreased frequency stability, and less widespread control of cortical neurons

(Knave et al. 1978). The limitations of this study are discussed in detail in Section 2.2.1.2 under Respiratory

Effects.
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Single exposures to 12,000 mg/kg kerosene and 12,150 mg/kg deodorized kerosene by oral gavage induced

unsteady gait and drowsiness in rats; however, no neurological effects occurred from exposure to

8,000 mg!kg kerosene (Muralidhara et al. 1982). These data are limited since statistical analysis was not

conducted and effects in the controls were not described. Also, a dose-response relationship cannot be

identified from the deodorized kerosene data since only one dose was tested. For the first 2 days posttreatment,

a significant reduction in food and water intake and a significant increase in cage activity were noted in rats

that received a single dose (by gavage) of 19,200 mg/kg JP-5 (Bogo et al. 1983).

No clinical signs of neurotoxicity were found in pregnant Sprague-Dawley rats treated orally with 0,500,

1,000, 1,500, or 2,000 mg/kg JP-8 during gestational days 6–15 (Cooper and Mattie 1996). Similarly, no

clinical signs of neurotoxicity and no treatment-related histopathological changes were found in the brain or

sciatic nerve of male Sprague-Dawley rats administered 0,750, 1,500, or 3,000 mg/kg neat JP-8 by gavage for

90 days (Mattie et al. 1995).

The highest NOAEL and all LOAEL values from each reliable study for neurological effects in each species

and duration category are recorded in Table 2-2 and plotted in Figure 2-2.

2.2.2.5 Reproductive Effects

No studies were located regarding reproductive effects in humans after oral exposure to JP-5 or JP-8.

Male Sprague-Dawley rats were administered 0,750, 1,500, or 3,000 mg/kg undiluted JP-8 by gavage for

90 days (Mattie et al. 1995). Although relative testes weight was increased at high dose, no histopathological

changes were observed in these organs.

2.2.2.6 Developmental Effects

No studies were located regarding developmental effects in humans after oral exposure to JP-5 or JP-8.

Pregnant Sprague-Dawley rats were treated orally by gavage with 0,500, 1,000, 1,500, or 2,000 mg/kg JP-8

during gestational days 6–l 5 (Cooper and Mattie 1996). Decreases were found in the body weight of fetuses of

both sexes (15% males, 13% females) compared to controls at 1,500 mg/kg JP-8. These changes in fetal body

weight were found in conjunction with significant decreases in maternal body weight gain at
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1,000 m/kg and in adjusted maternal body weight at 1,500 mg/kg. No other signs of toxicity were observed

in either dams or fetuses in this study.

2.2.2.7 Genotoxic Effects

No studies were located regarding genotoxic effects in humans or animals after oral exposure to JP-5 or JP-8.

Genotoxicity studies are discussed in Section 2.5.

2.2.2.8 Cancer

No studies were located regarding cancer in humans after oral exposure to JP-5 or JP-8.

A thymus sarcoma was found in 1 of 10 male Sprague-Dawley rats treated with 3,000 mg/kg neat JP-8 by

gavage for 90 days (Mattie et al. 1995). No other tumors were observed in this study, which used doses of

0,750,1,500, or 3,000 mg/kg JP-8. Because this lesion may be incidental, it is not shown in Table 2-2 or

Figure 2-2.

2.2.3 Dermal Exposure

2.2.3.1 Death

No studies were located regarding death in humans after dermal exposure to JP-5 or JP-8.

Daily dermal exposures to 0.1 mL kerosene for 1 week were not lethal to male mice. The skin at the exposure

site was rough and swollen (Upreti et al. 1989). Death in mice occurred after dermal administration of 30,000–

40,000 mg/kg JP-5 daily for 14 consecutive days, but not after daily dermal administration of 5,000–20,000

mg/kg JP-5 for 14 days (NTP/NIH 1986). Dermal application of 2,000–8,000 mg JP-5/kg 5 days per week for

13 weeks (NTPLNIH 1986), or 42.2 mg JP-5 three times per week for 40 weeks or twice weekly for 60 weeks

(Schultz et al. 1981), was also lethal to mice. Conversely, dermal application of 500 or 1,000 mg JP-5/kg 5

days a week for 13 weeks (NTP/NIH 1986), or 21.1 mg JP-5 two or three times a week for 40 or 60 weeks

(Schultz et al. 1981), was not lethal to mice. Statistically significant increases in mortality were noted in

female mice following chronic exposure (five dermal applications per week for 103 weeks) to JP-5 at doses of

250 and 500 mg/kg when compared to controls. Incidence of death in females due to
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treatment was 15/50 at 250 mg/kg and 33/50 at 500 mg/kg, compared to deaths in 4/50 controls. Excessive

irritation and ulceration were seen at the site of the application (NTP/NIH 1986). Although the number of

deaths in males under these conditions was increased over that of the controls, the increase in mortality was

not statistically significant. This suggests that female mice may be more susceptible to exposure by this

route. At 500 mg/kg, deaths were observed as early as week 2 of exposure to JP-5. It was not specified

whether the animals were protected against oral exposure through grooming/fur licking behavior. In addition,

the toxicity caused by the loss of skin integrity due to application of petroleum products at this level in mice

can substantially affect the study results.

The highest NOAEL and all LOAEL values from each reliable study for death in each species and duration

category are recorded in Table 2-3.

2.2.3.2 Systemic Effects

The highest NOAEL and all LOAEL values from each reliable study for systemic effects in each species and

duration category are recorded in Table 2-3. No studies regarding metabolic effects in humans or animals

following dermal exposure to JP-5 or JP-8 were located.

Respiratory Effects. A significant increase in feelings of “thoracic oppression” (no description

provided) was found in workers who were chronically exposed to jet fuels by the inhalation, oral, and/or

dermal exposure routes (Knave et al. 1976, 1978). The limitations of the study are discussed in detail in

Section 2.2.1.2 (Respiratory Effects).

No histopathological or organ weight changes were noted in the respiratory system of male mice following

daily dermal exposures to 0.1 mL kerosene for 1 week (Upreti et al. 1989), 13-week exposures to

2,000-8,000 mg JP-5/kg (five applications per week), or chronic exposures (five dermal applications per

week for 103 weeks) to 250 or 500 mg JP-5/kg (NTP/NIH 1986).

Cardiovascular Effects. An epidemiological study found a significant increase in heart palpitations in

workers who were chronically exposed to jet fuels by inhalation, oral, and/or dermal exposure routes (Knave et

al. 1976, 1978). The limitations of the study are discussed in detail in Section 2.2.1.2 (Respiratory Effects).
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No histopathological changes were noted in the cardiovascular system of mice dermally exposed to

2,000–8,000 mg JP-5/kg for 13 weeks (five applications per week) or mice chronically exposed (five

applications per week for 103 weeks) to 250 or 500 mg JP-5/kg (NTP/NIH 1986).

Gastrointestinal Effects. No studies were located regarding gastrointestinal effects in humans after

dermal exposure to JP-5 or JP-8.

No histopathological changes were noted in the gastrointestinal tract of mice subsequent to five dermal

applications of JP-5 for 13 weeks (2,000-8,000 mg/kg) or in mice chronically exposed (five applications per

week for 103 weeks) to 250 or 500 mg/kg JP-5 (NTP/NIH 1986).

Hematological Effects. No studies were located regarding hematological effects in humans after dermal

exposure to JP-5 or JP-8.

A decrease in the splenic relative weight that was not accompanied by histopathological changes was noted in

male mice following daily dermal exposures to 0.1 mL kerosene for 1 week (Upreti et al. 1989). In addition,

decreases in hemoglobin concentration, increases in erythrocyte and white blood cell counts, and increased

incidence of polymorphonuclear leukocyte concentrations were reported. Females were not tested in this study

(Upreti et al. 1989). Hematopoiesis by the spleen (extramedullary hematopoiesis) was noted in mice receiving

500-8,000 mg JP-5/kg by dermal administration 5 days per week for 13 weeks (NTP/NIH 1986).

Extramedullary hematopoiesis is indicative of a response to a hematological effect.

Musculoskeletal Effects. No studies were located regarding musculoskeletal effects in humans after

dermal exposure to JP-5 or JP-8.

No histopathological changes were noted in the musculoskeletal system of mice following dermal application

of 250 or 500 mg JP-5/kg 5 days per week for 103 weeks (NTP/NIH 1986).

Hepatic Effects. No studies were located regarding hepatic effects in humans after dermal exposure to

JP-5 or JP-8.

No histopathological or organ weight changes were noted in the livers of male mice following daily dermal

exposures to 0.1 mL kerosene for 1 week (Upreti et al. 1989). Slight hepatic karyomegaly was noted in mice
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receiving 500-8,000 mg JP-5/kg dermally five times per week for 13 weeks. Amyloidosis of the liver

occurred in mice following the dermal administration of 500 mg JP-5/kg, five times per week for 103 weeks,

but not in those treated with 250 mg/kg (NTP/NIH 1986).

Renal Effects. No studies were located regarding renal effects in humans after dermal exposure to JP-5

or JP-8.

No histopathological or organ weight changes were noted in the kidneys of male mice following daily dermal

exposures to 0.1 mL kerosene for 1 week (Upreti et al. 1989), or following exposure to 2,000–8,000 mg JP-

5/kg five times per week for 13 weeks (NTP/NIH 1986). Renal lesions were produced in at least one sex and at

one or both dose levels (100% or 50%) in mice dermally treated three times per week for 60 weeks with JP-5

(Easley et al. 1982). However, the lesions could not be duplicated in mice injected intraperitoneally with 100

mg/kg (using a corn oil vehicle) three times per week for up to 60 days or in mice injected intraperitoneally

with 25 µL of JP-5 for 2-8 weeks (Easley et al. 1982). In contrast to the study reported by Barrientos et al.

(1977) in which oliguria was manifested as a symptom of acute diesel fuel toxicity, the dermally treated test

animals in the Easley et al. (1982) study demonstrated increased urine output, increased insensitive water loss,

and increased water consumption. The inability to reproduce the lesions and the increased water consumption

and loss led the study authors to speculate that dermal application may be the necessary route of exposure to

cause the renal toxicity (Easley et al. 1982). It should be noted that only abbreviated results were reported.

Intermediate and chronic exposures to petroleum oils were reported to induce a nodular appearance of the

kidney as well as tubular atrophy of the renal cortex in mice (Schultz et al. 1981). However, it was not

reported which petroleum fuels induced the kidney injury, although JP-5 was among those studied. From

calculations of the kidney-to-body-weight ratios in mice exposed to 21.1 or 42.2 mg JP-5 for 40 weeks, dose-

related trends were noted in female mice for increased relative kidney weights (right kidney only) (Schultz et

al. 198 1). There were no dose-response trends for the changes in relative kidney weights in males exposed to

JP-5. Statistical analysis was not conducted on the changes in kidney-to-body-weight ratios. Therefore, the

significance of the dose-response trends cannot be confirmed. Amyloidosis of the kidney was found to be

secondary to dermatitis in mice chronically exposed (five dermal applications per week for 103 weeks) to 500

mg JP-5/kg (NTP/NIH 1986).
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Endocrine Effects. No studies were located regarding endocrine effects in humans after dermal

exposure to either JP-5 or JP-8.

There were no histopathological changes, or changes in the weights of adrenal glands of male mice following

daily dermal exposure to 0.1 mL kerosene for 1 week (Upreti et al. 1989).

Dermal Effects. Experimental data regarding dermal exposure of humans to jet fuels are limited. In one

study, there was a dose-dependent increase in dermatitis from acute exposures to 55-85% solutions of

kerosene (1.5 mL of a solution applied to “midback” for 24 hours) (Tagami and Ogino 1973). No effects

were noted in these subjects from exposure to the 40% solution of kerosene. This study is limited because no

vehicle controls were used. Also, each subject was exposed to all test solutions (i.e., four different

concentrations of kerosene), but the chronological spacing of the four treatments is not known. Therefore, it

is not known if some of the observed effects were a result of sensitization, rather than a direct effect of the

kerosene. Topical application of 1.0 mL of kerosene impaired protein synthesis, but not deoxyribonucleic

acid (DNA) replication or collagen synthesis in the epidermis (Lupulescu and Birmingham 1975).

Hyperemia, cellular damage of the epidermis, and mild edema also occurred following acute exposure to

1.0 mL kerosene (Lupulescu and Birmingham 1976; Lupulescu et al. 1973). Histological changes included

disorganization of the cells, cytolysis, and enlarged intercellular spaces in the stratum comeum and spinous

cells of the epidermis (Lupulescu and Birmingham 1976). Effects had subsided within 72 hours in some

individuals (Lupulescu et al. 1973). These studies are limited because each tested only one dose.

Dermal effects of jet fuels from known or suspected short-term dermal exposures are described in several

case studies. Erythema, bullae, burning, and itching were reported in a 45-year-old man following a

20minute dermal exposure to kerosene (Mosconi et al. 1988). Three males (2-l 5 years old) and one female

(2 years old) exhibited blisters, reddening, flaccid bullae, pustules, soreness, burning, swelling, and

denudation of the skin following dermal exposures to unknown volumes of kerosene (Tagami and Ogino

1973). Large blisters, erythema, and peeling skin were reported in two cases of apparent oral exposure to

kerosene (Annobil 1988); however, the strong odor of kerosene on one of the individuals and the kerosene-

stained clothing of the other strongly indicate that dermal exposure may have also occurred in these cases.

Exposure levels were not specified. Dermatosis and erythema were evident in factory workers who were

exposed to kerosene for up to 5 hours daily by handling kerosene-soaked steel parts; exposure levels were not

reported (Jee et al. 1985).
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        Male mice treated dermally daily for 1 week with 0.1 mL kerosene exhibited rough skin, edema, and

inflammation at the exposure sites (Upreti et al. 1989). Females were not tested in this study. Female mice

treated dermally for 6 weeks with middle distillates, including straight-run kerosene, developed hyperplasia

and necrosis in the epidermis (Ingram et al. 1993) and increased sebocyte counts (Lesnik et al. 1992). Skin

irritation was not induced in male rabbits following a single application (0.5 mL) of undiluted JP-5 or JP-8

(Schultz et al. 1981). Alternatively, New Zealand White rabbits that received JP-8 on both intact and

abraded skin exhibited a slight irritation (Kinkead et al. 1992a), while JP-5 elicited no such response

(Kinkead et al. 1992b). Acute dermal exposures to unspecified concentrations of JP-5 induced dermatitis

(acanthosis, scaly skin, hair loss, inflammation, parakeratosis, and/or hyperkeratosis of the skin) in mice

(NTP/NJH 1986). Intermediate exposure (five dermal applications per week for 14 weeks) to 500-8,000 mg

JP-5/kg induced slight-to-moderate dermatosis, which increased with dose in mice. Chronic dermal

application (five times per week for 103 weeks) of 250 or 500 mg JP-5/kg induced dermatitis and ulcerations

of the skin in mice (NTP/NIH 1986). The severity, but not the incidence, of dermatitis induced by JP-5 was

dose dependent; the doses were possibly too high and may have caused a chemical bum. Similarly, the

incidence of ulcers induced by the chronic application of JP-5 was dose dependent. However, dose

fractionation, which allows some recovery time, can alter the response of the total dose. In some cases, dose

fractionation can cause more severe dermal effects than the same dose applied once. Dermatitis was noted in

mice that were chronically exposed dermally to JP-5, although effective doses were not reported (Easley et al.

1982).

Ocular Effects. Eye irritation has been noted in factory workers who were chronically exposed to jet

fuels (Knave et al. 1978). The limitations of this study are discussed in detail in Section 2.2.1.2 (Respiratory

Effects).

Ocular irritation was not induced in rabbits by JP-5 in several studies (Cowan and Jenkins 1981 a, 1981 b;

Schultz et al. 198 1). although Draize scores were not reported by some of the investigators (Cowan and

Jenkins 198 la, 1981b). Similarly, neither JP-5 (Kinkead et al. 1992b) nor JP-8 (Kinkead et al. 1992b)

induced ocular irritation in New Zealand White rabbits.

Body Weight Effects. No studies were located regarding body weight effects in humans after dermal

exposure to JP-5 or JP-8.



JP-5 AND JP-8 56

2. HEALTH EFFECTS

There was no change in body weight of male mice following daily dermal exposures to 0.1 mL kerosene for 1

week (Upreti et al. 1989). Acute exposure to at least 10,000 mg JP-5/kg, but not 5,000 mg/kg, induced

decreases in body weight in mice. Mice treated dermally with JP-5 (at 500, 1,000,2,000,4,000, or

8,000 mg/kg) five times per week for 13 weeks exhibited relatively small changes in weight gain. Male mice

treated with 8,000 mg/kg displayed a 7% decrease in body weight, while a 3% increase was observed in

females treated with 8,000 mg/kg (NTP/NIH 1986). Although an analysis of the weight data was not

included, the data suggest that weight was unaffected by the dermal treatment with JP-5 in this study. Derrnal

application three times per week for 40 weeks (total weekly doses of 126.6 and 63.3 mg of JP-5) produced

significant weight reduction in mice (Schultz et al. 1981); however, the study authors failed to fully describe

the methods and doses used. Chronic exposures (dermal application five times per week for 103 weeks) to 500

mg JP-5/kg induced decreases in body weight relative to controls (NTP/NIH 1986).

Other Systemic Effects. No studies were located regarding other systemic effects in humans after

dermal exposure to JP-5 or JP-8.

No effects on food or water intake were observed in male mice following daily dermal exposures to 0.1 nL

kerosene for 1 week (Upreti et al. 1989). Increases in daily water consumption were noted in mice exposed to

JP-5; however, the doses were not reported (Easley et al. 1982). Similarly, dermal application of JP-5

increased water consumption and urine output (accompanied by a loss in osmolarity) in mice. Easley and

coworkers (1982) speculated that the increased water consumption in these animals may have been the result

of impaired renal function (see above discussion of Renal Effects, Section 2.2.3.2) or dehydration.

2.2.3.3 Immunological and Lymphoreticular Effects

No studies were located regarding immunological or lymphoreticular effects in humans after dermal exposure

to JP-5 or JP-8.

Acute dermal treatment (“patch test”) with 1% JP-5 induced mild dermal sensitization in guinea pigs (Cowan

and Jenkins 198 la, 1981b). Similarly, weak sensitization was noted in guinea pigs that were treated with 0.1

mL JP-8 four times over a 10-day period and subsequently challenged with 0.1 nL (Kinkead et al. 1992a).

Dermal sensitization did not occur in guinea pigs that were dermally treated with nine doses of 0.1% JP-5 in

propylene glycol over a 3-week period (Schultz et al. 1981). However, moderate sensitization was observed
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when guinea pigs received seven injections of 0.1 mL of 0.01% JP-5 in peanut oil over a 15-day period and

were then challenged with 0.05 mL of JP-5 (Kinkead et al. 1992b).

Decreases in the relative weights of the lymph nodes and thymus were noted in male mice following daily

dermal exposures to 0.1 mL kerosene for 1 week (Upreti et al. 1989). In addition, thymocyte counts, bone

marrow nucleated cell counts, thymic cortical lymphocytes, and the cellularity of the thymic lobules were

decreased. Jncreases in the cellular populations of the popliteal lymph nodes and the axial lymph nodes were

also present. This study is limited because females were not tested. Chronic dermal application of JP-5 (500

mg/kg, five times per week, for 103 weeks) induced granulocytic hyperplasia in the bone marrow in male and

female mice and hyperplasia in the lymph nodes of female mice (NTP/NIH 1986). Amyloidosis of the spleen

was found secondary to dermatitis in mice dermally treated (five times per week for 103 weeks) with 500 mg

JP-5/kg; this effect was not noted following dermal application of 250 mg JP-5/kg (NTP/NIH 1986). This was

most likely a result of chronic ulceration at the site of application.

The highest NOAEL and all LOAEL values from each reliable study for immunological effects in each

species and duration category are recorded in Table 2-3.

2.2.3.4 Neurological Effects

A significant increase in neurasthenia (i.e., fatigue, depressed mood, lack of initiative, dizziness, and

sleep disturbances) was found in workers who were chronically exposed to jet fuels by either inhalation, oral,

or dermal exposure (Knave et al. 1978). Also, attention and sensorimotor speed were impaired in the exposed

workers, but no effects were found on memory function or manual dexterity. Results of EEG tests suggest that

the exposed workers may have had instability in the thalamocortical system. The limitations of the study were

discussed in detail in Section 2.2.1.2 (Respiratory Effects).

Increased response to tactile stimuli and hyperactivity occurred in male mice at initiation of daily dermal

exposures to 0.1 mL kerosene for 1 week (Upreti et al. 1989). Females were not tested in this study. No

histopathological changes were noted in the nervous system of mice following dermal application of

2,000-8,000 mg JP-5/kg five times per week for 13 weeks or mice chronically exposed (five applications per

week for 103 weeks) to 250 or 500 mg JP-5/kg (NTP/NIH 1986).
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The highest NOAEL values for neurological effects in each species and duration category are recorded in

Table 2-3.

2.2.3.5 Reproductive Effects

No studies were located regarding reproductive effects in humans after dermal exposure to JP-5 or JP-8.

No histological changes were noted in the reproductive system of mice dermally treated with 2,000-8,000 mg

JP-5/kg (five times per week for 13 weeks) or in mice chronically exposed (dermal application five times per

week for 103) to 250 or 500 mg JP-5/kg (NTPINJH 1986).

The highest NOAEL values for reproductive effects in each species and duration category are recorded in

Table 2-3.

2.2.3.6 Developmental Effects

No studies were located regarding developmental effects in humans or animals after dermal exposure to JP-5

or JP-8.

2.2.3.7 Genotoxic Effects

No studies were located regarding genotoxic effects in humans or animals after dermal exposure to JP-5 or

JP-8. Genotoxicity studies are discussed in Section 2.5.

2.2.3.8 Cancer

No studies were located regarding cancer in humans after dermal exposure to JP-5 or JP-8.

Unspecified skin tumors were induced in C3HF/Bd mice following a 40-week exposure to 22.9 mg (but not

42.2 mg) JP-5 or a 60-week exposure to 5.7-42.2 mg JP-5 (the highest incidence was at 11.4 mg) (Schultz et

al, 198 1). Tumors were more prevalent in females than males. None of the control animals developed skin

tumors, and statistical analysis was not conducted The tumor incidence was not dose dependent, and

historical control data for this strain of mouse were not provided No skin cancer was reported in B6C3F1
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mice dermally treated (five times per week for 103 weeks) with 250 or 500 mg JP-5/kg. Malignant

lymphomas were noted in 39% of females treated with 250 mg JP-5/kg, 11% of females at 500 mg JP-5/kg,

and 15% of females in the control group (NTP/NIH 1986). No dose-response relationship was apparent for

this effect. A significant negative trend in the incidence of malignant lymphomas was noted in males of the

high-dose group; rates dropped from 16% in the control group to 6% at 250 mg JP-5/kg and 2% at 500 mg

JP-5/kg. Jet A (a kerosene fuel used by commercial airlines that is similar to JP-8 but does not contain

certain additives) produced an increased incidence (26%) of tumors (primarily squamous cell carcinoma and

fibrosarcoma) in C3HEleN mice receiving dermal applications three times per week. It was noted that Jet A

produced inflammatory and degenerative changes at the application site that led to “early mortality” and that

the nonneoplastic lesions and their attendant effects were so severe that the application of Jet A was

discontinued at week 62 (Clark et al. 1988). The study authors suggested that epidermal degeneration may

serve to mask tumor development. This phenomenon is often observed with chronic-duration carcinogenicity

studies of petroleum and shale-derived fuels.

The dermal carcinogenicity of mixtures of petroleum products that have a boiling point range of ..

approximately equal to or greater than 370º C is primarily related to the polycyclic aromatic hydrocarbon

(PAH) content of the material (Biles et al. 1988). Some petroleum-derived materials contain cracked stocks

that are known to contain biologically active PAHs; however, virgin distillate petroleum products (boiling

range of approximately 177-370º C), which include various middle distillate jet fuels, primarily contain

saturated species (Biles et al. 1988). Although these virgin petroleum materials contain low concentrations of

PAHs, repeated application can induce dermal tumors. It has been reported that the tumorigenicity of three

petroleum-derived liquids and four coal-derived liquids were not consistent with the PAH content of the test

materials (Witschi et al. 1987). In the report of a 2-year skin-painting study of four petroleum middle

distillates (including jet fuel), the authors suggested that the aromatic and sulfur heterocycles tested were not

the source of tumorigenicity in middle distillates (Freeman et al. 1993). These results suggest that the

tumorigenic potential of the middle distillates is not related to their PAH content.

It has been alternatively hypothesized that the carcinogenic activity of jet fuels is a secondary effect

associated with dermal irritation (Biles et al. 1988; Clark et al. 1988; McKee et al. 1994). Biles et al. (1988)

speculated that the irritating properties of middle distillate petroleum fuels played a role in the mechanism of

dermal carcinogenesis in a lifetime skin-painting assay, although the data did not demonstrate such a

relationship. In fact, they noted that the test groups with the most severe “degree of epidermal degeneration

and necrosis” demonstrated the lowest tumor yields. Of course, if the skin is actually destroyed, then it would



JP-5 AND JP-8 60

2. HEALTH EFFECTS

be most unlikely that skin tumors would be formed. Repeated application of four petroleum-derived

distillates (including Jet A and diesel) to mouse skin induced severe inflammation and degenerative changes;

however, the severity and early onset of inflammation were not always predictive of tumorigenicity (Clark et

al. 1988).

The role of chronic acanthosis and inflammation in tumor promotion by a middle distillate has been

investigated (Skisak 1991). Male CD-l mice received a single dermal treatment of 50 µL of

7,12-dimenthylbenz[a]anthracene (DMBA) as an initiator and were subsequently treated with 25,50, or 100

µL of hydrodesulfurized kerosine (HK) twice weekly for 25 weeks. Washing after treatment and topical

application of dexamethasone were used to control inflammation. The mice treated with 100 µL of HK had

the greatest tumor incidence (35/53) and the highest degree of acanthosis throughout the study. While the

tumor responses of the groups treated with 25 µL and 50 µL were similar (14/54 and 13/54, respectively),

the degree of acanthosis was much more pronounced in the mice treated with 50 µL HK. Application of

dexamethasone to animals treated with 50 µL reduced the tumor incidence to 0, although acanthosis was still

observed. It is interesting to note that washing the mice (l-2 hours after treatment) with an Ivory soap

solution after treatment with 50 µL of HK increased tumor incidence (22/53) compared to the group treated

with 50 µL HK but left unwashed (13154). The group washed with the soap solution also had elevated levels

of acanthosis relative to the unwashed group during several intervals during the study. The study authors

concluded that although hyperplasia may play a role in the promoting activity, there are other factors involved.

In a 2-year skin-painting study designed to evaluate the role of skin irritation in the tumorigenicity of middle

distillates, 37.5 µL of jet fuel and steam-cracked gas oil were applied two times per week, and jet fuel was also

applied in an intermittent fashion (dosing was suspended for 2-3 weeks when irritation was noted in 20% of

the group and resumed when it was resolved in all but 20%) (Freeman et al. 1993). The 2-3-week on/off

treatment cycle produced irritation that was less severe than dosing two times per week, and only l/50

intermittently dosed animals developed tumors, compared with 22/50 in the twice-weekly dosed group.

Freeman et al. (1993) indicate that, for jet fuel, a state of chronic irritation may be necessary for tumor

development. Based on studies of substances that produce chronic irritation without producing tumors, there

are other factors, in addition to chronic irritation, that may be necessary for tumor production in response to

JP-5 or JP-8.
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All LOAEL values from each reliable study for cancer effects in each species and duration category are

recorded in Table 2-3.

2 .3 TOXICOKINETICS

Few data were available concerning the absorption, distribution, metabolism, and excretion of JP-5 or JP-8.

Indirect evidence suggests that JP-5 and JP-8 may be absorbed through the respiratory tract, the

gastrointestinal tract, and percutaneously in humans and laboratory animals (see Section 2.3.1). No data were

located concerning the metabolism of JP-5 or JP-8 in humans or laboratory animals. No quantitative data were

found regarding the excretion of JP-5 or JP-8.

2.3.1 Absorption

2.3.1 .l  Inhalation Exposure

No studies were located specifically regarding the absorption of JP-5 or JP-8 in humans or laboratory animals

after inhalation exposure. However, indirect evidence of gastrointestinal, cardiovascular, hematological, renal,

dermal, and/or ocular effects from a case report in which two pilots were exposed to JP-5 vapor while flying a

small aircraft indicate that it can be absorbed following inhalation exposure in humans (Porter 1990). Effects

on animals acutely exposed to jet fuels by inhalation also provide indirect evidence for inhalation absorption

(Casaco et al. 1985b; Garcia et al. 1988b).

2.3.1.2 Oral Exposure

No studies were located specifically regarding the absorption of JP-5 or JP-8 in humans after oral exposure.

There is evidence, however, that absorption from the gastrointestinal tract occurs following ingestion of

kerosene by humans (Subcommittee on Accidental Poisoning 1962). In a study of 760 cases of accidental

ingestion of petroleum distillate products, including kerosene, it was concluded that patients-developed

complications including pulmonary effects in the absence of vomiting and lavage, leading to the “inference

that bloodstream absorption is a factor in the toxicity of these products to humans.”

Limited animal data and indirect evidence indicate that kerosene is poorly absorbed from the gastrointestinal

tract. Kerosene labeled with 3H-toluene or 14C-hexadecane was administered to tracheotomized baboons (15
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mL/kg) by nasogastric tube (Mann et al. 1977), and the isotopes were recovered after 6 hours from the brain,

lung, liver, spleen, heart, and kidney.

The potential absorption of ingested kerosene by the lungs after aspiration was tested by comparing

respiratory effects from oral exposures in nontracheotomized and tracheotomized monkeys (Wolfsdorf and

Kundig 1972). The tracheotomized monkeys that received the kerosene via nasogastric tube could not

aspirate the kerosene; thus, the potential for respiratory exposure by aspiration was prevented. Lung lesions

were seen in the nontracheotomized monkeys, but no lesions were seen in the tracheotomized monkeys.

These data suggest that aspiration of JP-5 or JP-8, not gastrointestinal absorption, is the underlying cause of

the respiratory effects. Additionally, a lack of pulmonary toxicity was reported in dogs in which aspiration

was prevented, supporting the supposition that pulmonary toxicity following kerosene ingestion is the result of

aspiration of kerosene into the lungs, rather than absorption from the gastrointestinal tract (Dice et al. 1982).

2.3.1.3 Dermal Exposure

No studies were located on the absorption of JP-5 or JP-8 following dermal exposure in humans or laboratory

animals. However, because dermal exposure to JP-5 in mice may induce renal damage (Easley et al. 1982), it

may be assumed that dermal absorption does occur. It is possible that dehydration may have been responsible

for the renal damage observed in this study, however, renal damage is described in Section 2.2.3.2 (Renal

Effects). No studies were located that directly tested dermal absorption of JP-5 or JP-8 vapor.

2.3.2 Distribution

2.3.2.1 Inhalation Exposure

No studies were located regarding the distribution of JP-5 or JP-8 in humans or laboratory animals after

inhalation exposure.

2.3.2.2 Oral Exposure

No studies were located regarding the distribution of JP-5 or JP-8 in humans after oral exposure.
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Limited animal data indicate that kerosene is absorbed and distributed to various tissues (Mann et al. 1977).

Kerosene, labelled with 3H-toluene or 14C-hexadecane, was given to tracheotomized baboons (15 mL,/kg) by

nasogastric tube (Mann et al. 1977). Radioactivity was recovered from the brain, lung, liver, spleen, heart, and

kidney after 6 hours. 3H-Toluene was absorbed and taken up by most tissues to a greater extent than was 14C-

hexadecane; however, the amounts absorbed and distributed were minimal (Mann et al. 1977).

2.3.2.3 Dermal Exposure

No studies were located regarding the distribution of JP-5 or JP-8 in humans or laboratory animals after

dermal exposure.

2.3.3 Metabolism

No studies were located regarding the metabolic pathway of JP-5 or JP-8 in humans or laboratory animals

subsequent to inhalation, oral, or dermal exposure.

2.3.4 Elimination and Excretion

No studies were located regarding the excretion of JP-5 or JP-8 following inhalation, oral, or dermal exposure

in humans or laboratory animals.

2.3.5  Physiologically Based Pharmacokinetic (PBPK)/Pharmacodynamic (PD) Models

Physiologically based pharmacokinetic (PBPK) models use mathematical descriptions of the uptake and

disposition of chemical substances to quantitatively describe the relationships among critical biological

processes (Krishnan et al. 1994). PBPK models are also called biologically based tissue dosimetry models.

PBPK models are increasingly used in risk assessments, primarily to predict the concentration of potentially

toxic moieties of a chemical that will be delivered to any given target tissue following various combinations of

route, dose level, and test species (Clewell and Andersen 1985). Physiologically based pharmacodynamic

(PBPD) models use mathematical descriptions of the dose-response function to quantitatively describe the

relationship between target tissue dose and toxic end points.
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PBPK/PD models refine our understanding of complex quantitative dose behaviors by helping to delineate

and characterize the relationships between: (1) the external/exposure concentration and target tissue dose of

the toxic moiety, and (2) the target tissue dose and observed responses (Andersen and Krishnan 1994;

Andersen et al. 1987). These models are biologically and mechanistically based and can be used to

extrapolate the pharmacokinetic behavior of chemical substances from high to low dose, from route to route,

between species, and between subpopulations within a species. The biological basis of PBPK models results in

more meaningful extrapolations than those generated with the more conventional use of uncertainty factors.

The PBPK model for a chemical substance is developed in four interconnected steps: (1) model

representation, (2) model parametrization, (3) model simulation, and (4) model validation (Krishnan and

Andersen 1994). In the early 1990s, validated PBPK models were developed for a number of toxicologically

important chemical substances, both volatile and nonvolatile (Krishnan and Andersen 1994; Leung 1993).

PBPK models for a particular substance require estimates of the chemical substance-specific physicochemical

parameters, and species-specific physiological and biological parameters. The numerical estimates of these

model parameters are incorporated within a set of differential and algebraic equations that describe the

pharmacokinetic processes. Solving these differential and algebraic equations provides the predictions of

tissue dose. Computers then provide process simulations based on these solutions.

The structure and mathematical expressions used in PBPK models significantly simplify the true complexities

of biological systems. If the uptake and disposition of the chemical substance(s) is adequately described,

however, this simplification is desirable because data are often unavailable for many biological processes. A

simplified scheme reduces the magnitude of cumulative uncertainty. The adequacy of the model is, therefore,

of great importance, and model validation is essential to the use of PBPK models in risk assessment.

PBPK models improve the pharmacokinetic extrapolations used in risk assessments that identify the maximal

(i.e., the safe) levels for human exposure to chemical substances (Andersen and Krishnan 1994). PBPK models

provide a scientifically sound means to predict the target tissue dose of chemicals in humans who are exposed

to environmental levels (for example, levels that might occur at hazardous waste sites) based on the results of

studies where doses were higher or were administered in different species.

Figure 2-3 shows a conceptualized representation of a PBPK model.

If PBPK models for JP-5 and JP-8 exist, the overall results and individual models are discussed in this section

in terms of their use in risk assessment, tissue dosimetry, and dose, route, and species extrapolations.
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PBPK models for JP-5 or JP-8 in humans or animals were not identified.

2.4 MECHANISMS OF ACTION

2.4.1 Pharmacokinetic Mechanisms

No studies were identified concerning the pharmacokinetic mechanisms of either JP-5 or JP-8.

2.4.2 Mechanisms of Toxicity

The primary risk from ingestion of kerosene is aspiration during emesis, which may cause pneumonitis. A

number of studies have investigated the biochemical mechanism of the lung response to exposure to large

concentrations of aerosolized kerosene (Casaco et al. 1982, 1985a, 1985b). The study authors speculated

that kerosene may induce asthma-like symptoms by acting on the parasympathetic nervous system either

through a direct effect on the vagus nerve or by inhibiting acetylcholinesterase. Garcia and Gonzalez (1985),

based on their observation that kerosene caused an “increase in Ca2+-dependent ATP hydrolysis without

increase in the rate of net calcium accumulation,” concluded that kerosene induced an effect on the membrane

of the sarcoplasmic reticulum. They suggested that the mechanism of kerosene-induced bronchoconstriction

may involve changes in the ionic flow across the cellular membranes to prolong muscle contraction. Although

generalizations cannot be made regarding the hematological effects of JP-5 and JP-8 on humans, the effect of

kerosene on the first two steps of the heme synthetic pathway has been studied in an animal model. Both

hepatic α-aminolevulinic acid (α-ALA) dehydratase and α-ALA synthetase activities were decreased in

female rats after intraperitoneal injection of kerosene, while heme oxygenase was unaffected (Rao and Pandya

1980). Since α-ALA synthetase is the rate-limiting enzyme of the heme biosynthesis pathway, hepatic heme

biosynthesis may be inhibited by kerosene. It is conceivable that decreases in enzyme activities may be related

to extramedullary hematopoiesis; however, there are no data to support this conjecture.

The biochemical mechanism of central nervous system depression seen with jet fuels and common to many

organic solvents has not been elucidated. The mechanism of carcinogenesis associated with various

formulations of middle distillate fuels is unknown.
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2.4.3 Animal-to-Human Extrapolations

The animal models utilized in the available toxicological studies were the laboratory species commonly used

in human health risk assessments. They had no species-specific peculiarities, with the exception of the α2µ-

globulin-related nephropathy that occurs in male rats.

2.5 RELEVANCE TO PUBLIC HEALTH

Overview.

The basic composition of JP-5 and JP-8 is similar to that of kerosene. They are refined by a straight

distillation of crude or shale oil, or a distillation of crude or shale oil in the presence of a catalyst. The jet

fuels are, however, refined under more stringent conditions and contain various additives not found in

kerosene. Typical additives to JP-5 and JP-8 include antioxidants (including phenolic antioxidants), static

inhibitors, corrosion inhibitors, fuel system icing inhibitors, lubrication improvers, biocides, and thermal

stability improvers. These additives are used in specified amounts as governed by commercial and

military specifications. The exact composition of a jet fuel is also dependent upon the crude oil from

which it is refined. Because of this inherent variability, little information exists on the exact chemical and

physical properties of jet fuels. However, it is clear that the primary component of both JP-5 and JP-8 is

kerosene, and any additives are quantitatively minor constituents of the mixtures.

Information regarding the health effects of jet fuels in humans and other animals is available for the

inhalation, oral, and dermal routes of exposure. Most of the information in humans is from cases of

accidental ingestion of kerosene that resulted in respiratory, neurotoxic, and to a lesser extent

gastrointestinal effects. In addition, a few case studies have identified these effects as well as

cardiovascular, hematological, and renal effects in humans after inhalation and/or dermal exposures. Jet

fuels appear to be eye and skin irritants in both animals and humans following direct contact. Animal data

exist for most systemic effects; however, the data are inconclusive for many of the end points. Further, a

number of the animal studies utilized an aerosol for exposure. It should be noted that the toxicity from an

aerosol varies from that of a vapor (the probable form of human exposure). The available epidemiological

studies are generally inconclusive, since they cannot reliably associate exposures to jet fuels with the

adverse effects reported.
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Minimal Risk Levels for JP-5 and JP-8.

Inhalation MRLs.

• An intermediate inhalation MRL of 3 mg/m3 was derived for JP-5 and JP-8 from the study by

Gaworski et al. (1984) in which hepatocellular fatty changes and vacuolization were observed in

mice exposed to JP-5 vapor at 150 mg/m3 continuously for 90 days. Based on the LOAEL of

150 mg/m3, the MRL was calculated as described in the footnote to Table 2- 1. Similar effects

150 on the liver were also observed in mice at 750 mg/m3. This study is supported by a study of

deodorized kerosene in which no significant adverse effects were observed in rats or dogs

exposed to 100 mg/m3 6 hours per day, 5 days per week for 13 weeks (Carpenter et al. 1976).

No acute or chronic inhalation MRLs were derived for JP-5 or JP-8 because available data were not

suitable for MRL derivation. Studies that report lethality or subtle biochemical alterations without

attendant pathology cannot be used for MRL determination.

Oral MRLs.
No acute, intermediate, or chronic oral MRLs were derived for either JP-5 or JP-8 because available data

were not suitable for MRL derivation. Studies that report lethality or subtle biochemical alterations

without attendant pathology cannot be used for MRL determinations. Dose-related hepatocyte necrosis

(Parker et al. 1981) occurred at doses that were greater than or equal to dose levels at which more serious

effects occurred; therefore, these data are unsuitable for the determination of an MRL.

Death. No quantitative lethality data for humans were located from studies of inhalation or dermal

exposure to JP-5 or JP-8. Based on case studies reporting deaths in humans following ingestion of

kerosene, estimated lethal doses of kerosene range from 1,900 to 16,800 mg/kg (Dudin et al. 1991;

Santhanakrishnan and Chithra 1978). These lethal doses are based upon specific cases in which kerosene

was ingested by a l-year-old child (30 mL) and a 2-year-old child (200 mL). No lethality was reported for

children from 10 months to 5 years old following ingestion of 120-880 mg/kg of kerosene (Dudin et al.

1991). There are no human data that identify lethal oral doses in adults, and no dose-response data are

available for humans. Therefore, it is not possible to approximate a threshold dose for lethality in humans.

Acute and intermediate exposures to moderate-to-high concentrations of JP-5, JP-8, and kerosene (Air

Force 1985; Cowan and Jenkins 1981a, 1981b; Gaworski et al. 1984; Pfaff et al. 1995; Vemot et al.

1990c), ranging up to 5,000 mg/m3 kerosene (aerosol), were not lethal to rats, including pregnant rats
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vapor form at concentrations that occur at elevated temperatures or as the result of exposure to an aerosol.

However, the data are not sufficient to draw generalizations concerning the lethal concentration or

cumulative dose of jet fuels in humans.

The acute oral LD50 values for kerosene in guinea pigs and rabbits have been reported to be 16,320 mg/kg

and 22,720 mg/kg, respectively (Deichmann et al. 1944). These data suggest that guinea pigs may be

more sensitive to kerosene than rabbits. A lethal dose of kerosene of 6,400 mg/kg has been reported in

calves (Rowe et al. 1973), and the lethal dose for rats is 12,000 mg/kg (Muralidhara et al. 1982).

Comparison of these data is problematic because they suggest that species differences and age sensitivity

may exist for oral kerosene toxicity, although such differences have not been established.

Jet fuels and petroleum products with similar compositions have differing oral lethality profiles in rats.

Acute lethal doses in rats were reported to be 12,000 mg/kg for kerosene (Muralidhara et al. 1982) while

lethal doses in 2 of 24 rats treated with a single oral dose of 18,900 mg/kg JP-5 were reported to be (Parker

et al. 1981). However, an oral dose of 12,200 mg/kg of deodorized kerosene was not lethal in rats

(Muralidhara et al. 1982). No treatment-related deaths were observed in rats administered up to

3,000 mg/kg JP-8 by gavage for 90 days (Mattie et al. 1995). Although differences in the oral toxicity of

the various types of jet fuels and differences in species thresholds of toxicity may exist, the oral toxicity of

JP-5 and JP-8 is relatively low. The intestinal absorption of jet fuels in humans is also relatively low.

Aspiration and its resultant pulmonary effect would be the primary risk from ingestion of jet fuels.

Daily dermal exposures to 0.1 mL kerosene for 1 week were not lethal to male mice (Upreti et al. 1989). A

minimum lethal dermal dose of 20,000 mg/kg (dose applied daily for 14 days) was reported for JP-5 from

acute dermal exposure in mice, although this dose was decreased to 2,000 and 250 mg/kg following

intermediate (five applications per week for 13 weeks) and chronic exposures (five applications per weeks

for 103 weeks), respectively (NTP/NIH 1986). Conclusions cannot be drawn from the available data

regarding dermal exposure to humans by JP-5 or JP-8 near hazardous waste sites, although the probability

of death occurring from dermal exposures appears remote.

Systemic Effects.

Respiratory Effects. Epidemiological studies did not indicate any evidence of respiratory toxicity in

children from exposure to kerosene vapor and combustion products from kerosene stoves used for cooking

(Azizi and Henry 199 1; Tominaga and Itoh 1985). Another epidemiological study reported “thoracic
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oppression” and cough in workers who were chronically exposed to jet fuels by the inhalation, oral, and/or

dermal routes (Knave et al. 1976, 1978; Struwe et al. 1983). However, the specific jet fuels to which

exposure occurred were not specified in this study, and it cannot be determined whether these exposures

included JP-5 and/or JP-8. A low concentration of deodorized kerosene vapor did not cause respiratory

irritation in humans (Carpenter et al. 1976). Animal data indicate that functional parameters of the lung

may be affected (Casaco et al. 1982), and bronchoconstriction may occur (Casaco et al. 1982; Garcia et al.

1988b) from acute inhalation of kerosene aerosol. No histopathological evidence of respiratory toxicity

was found in animals following relatively low-to-moderate intermediate inhalation or acute, intermediate,

and chronic dermal exposures to compositional analogs of jet fuels (primarily kerosene) (Carpenter et al.

1976; NTP/NIH 1986; Upreti et al. 1989). These data suggest that bronchoconstriction or respiratory

impairment may occur in humans at high inhalation or dermal exposure levels to kerosene or jet fuels.

Relatively low or moderate exposure levels may also affect sensitive members of the population, but this

cannot be conclusively determined from the data. The data also indicate that humans who are

occupationally exposed may be at increased risk of developing respiratory lesions.

Ingestion of kerosene has been shown to induce respiratory effects in humans, although it appears that

aspiration is the primary cause of the pulmonary toxicity and the most serious consequence of ingestion.

Numerous studies in animals and humans have illustrated the introduction of kerosene into the lungs from

vomitus and the subsequent manifestation of deleterious effects in the respiratory tract (Coruh and Inal

1966; Dice et al. 1982; Majeed et al. 1981; Nouri and Al-Rahim 1970; Wolfe et al. 1970; Wolfsdorf and

Kundig 1972). Limited absorption of kerosene from the gastrointestinal tract may also occur (Mann et al.

1977). Specific effects that have occurred in humans following ingestion of kerosene include

bronchopneumonia, bronchitis, pneumonitis, lung infiltrates and effusions, cough, dyspnea, hypoxia, and

tachypnea (Akamaguna and Odita 1983; Aldy et al. 1978; Annobil1983; Annobil and Ogunbiyi 1991;

Dudin et al. 1991; Lucas 1994; Mahdi 1988; Santhanakrishnan and Chithra 1978; St. John 1982). The

animal data describing respiratory toxicity are limited but are consistent with the findings in humans. No

histopathological effects were observed in the lungs of rats treated by gavage with JP-8 for 90 days

(Mattie et al. 1995). Oral exposure data for humans are available only for kerosene. However, since jet

fuels are composed primarily of kerosene, similar effects may be expected.

A number of studies have investigated the biochemical mechanism of lung response to concentrations of

aerosolized kerosene ranging up to a mean of 32.5 mg/L. The studies suggest that kerosene may induce

asthma-like symptoms by acting on the parasympathetic pathway through a direct effect on the vagus

nerve. Alternatively, kerosene may inhibit acetylcholinesterase, resulting in bronchoconstriction from
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increased concentration of acetylcholine in the trachea (Casaco et al. 1982, 1985a, 1985b). It has also

been reported that kerosene can affect the calcium pump of the rabbit sarcoplasmic reticulum (Garcia and

Gonzalez 1985). This suggests that the mechanism for kerosene-induced bronchoconstriction may involve

changes in the ionic flow across the cellular membranes, thereby prolonging muscle contraction.

Cardiovascular Effects. Mild hypertension from acute inhalation of JP-5 vapor (Porter 1990) and

palpitations from chronic inhalation, dermal, and/or oral exposures to unspecified jet fuels have been

reported in humans (Knave et al. 1976, 1978; Struwe et al. 1983). Tachycardia and cardiomegaly were

reported in children following acute ingestion of kerosene (Akamaguna and Odita 1983; Coruh and Inal

1966). It is not known how soon after accidental ingestion the cardiovascular effects were observed,

although Akamaguna and Odita (1983) indicate that the interval between the accident and hospital arrival

ranged from 1 hour to 14 days. Most of the available animal studies found no organ weight changes or

histopathological changes of the cardiovascular system of rats and mice following inhalation, oral, or

dermal exposures to kerosene (Carpenter et al. 1976; Mattie et al. 1995; Muralidhara et al. 1982; NTP/NIH

1986). However, there are some limited data regarding cardiac effects. Inhalation of kerosene aerosol

(20,400-34,000 mg/m3, 15 minutes daily for 21 days) or smoke (2 hours daily for 21 days) induced aortic

plaques in guinea pigs (Noa and Illnait 1987a). Aspiration of kerosene decreased heart rate and mean

arterial blood pressure in dogs (Goodwin et al. 1988). The effects in dogs were observed immediately

after dosing and returned to normal by 60 minutes. Because the dogs were studied for only a short period

after dosing, it is not known if later heart effects may have occurred. It is unlikely that cardiovascular

effects will occur in humans exposed to low levels of JP-5 or JP-5 8 near hazardous waste sites by

inhalation, or oral routes of exposure.

Gastrointestinal Effects. Inhalation of JP-5 vapor induced nausea in one individual (Porter 1990), while

ingestion of kerosene induced more severe effects. These included vomiting, abdominal pain and/or

distension, gastroenteritis, bleeding, and diarrhea (Akamaguna and Odita 1983; Aldy et al. 1978; Lucas

1994; Mahdi 1988; Majeed et al. 1981; Nouri and Al-Rahim 1970; Saksena 1969; St. John 1982). Nausea

was also reported in workers chronically exposed by inhalation to unspecified types of jet fuel (Knave et

al. 1976; Struwe et al. 1983). No histopathological changes in the gastrointestinal tract were reported in

animals exposed to jet fuels by the inhalation or dermal routes of exposure (Carpenter et al. 1976;

NTP/NIH 1986). Acute oral exposure to kerosene or deodorized kerosene at a dose of 12,150 mg/kg did

not induce diarrhea in rats (Muralidhara et al. 1982), but intermediate-duration oral exposure to JP-8

caused gastric irritation and hyperplasia (Mattie et al. 1995). Although the data in humans are largely

anecdotal, they strongly suggest that gastrointestinal effects are induced by both ingestion and inhalation
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of JP-5 and kerosene. However, it is not believed that these effects will occur in humans exposed to the

low levels found near hazardous waste sites.

Hematological Effects. Limited data in humans suggest that the ingestion of some aliphatic hydrocarbons

may induce hematological effects in some individuals (Algren and Rodgers 1992), and it is not known

whether these effects would occur in all individuals. However, of 12 patients admitted to the pediatric

intensive care unit of a children’s hospital during a 5-year period with respiratory distress associated with

hydrocarbon aspiration, the only hematological effects observed were intravascular hemolysis in

3 individuals. A fourth patient who had ingested kerosene had clinically insignificant hemolysis (Algren

and Rodgers 1992). Increases in leukocyte counts from acute ingestion of kerosene (Dudin et al. 1991;

Majeed et al. 1981; Nouri and Al-Rahim 1970) have also been reported in humans. No hematological

effects were noted in two individuals exposed to JP-5 by inhalation for a few hours (Porter 1990).

No hematological or splenic effects were reported in rats following oral exposure to kerosene (Muralidhara

et al. 1982), in rats and dogs following inhalation of deodorized kerosene (Carpenter et al. 1976), or in rats

following oral administration of deodorized kerosene (Muralidhara et al. 1982). Decreases in hemoglobin

concentration (32%), increases in erythrocyte and white blood cell counts, and an increased incidence of

polymorphonuclear leukocyte counts were noted in mice after acute dermal exposure to kerosene. A

decrease in the relative spleen weight was noted, although histopathological changes were not found

(Upreti et al. 1989). Oral exposure to JP-5 increased the hematocrit, decreased white blood cell counts,

and increased erythrocyte counts in rats (Parker et al. 1981). Increased white blood cell and red blood cell

counts and an increased incidence of polymophonuclear white blood cells were noted in mice after acute

dermal exposure to kerosene. Significant decreases in lymphocytes were observed in male rats treated

with 750, 1,500, or 3,000 mg/kg JP-8 by gavage for 90 days (Mattie et al. 1995).

The effect of kerosene on the first two steps of the heme synthetic pathway was studied in rats. The study

showed that hepatic α-ALA dehydratase and α-ALA synthetase activities were decreased in female rats

after intraperitoneal injection of kerosene (Rao and Pandya 1980). Since α-ALA synthetaste is the ratelimiting

enzyme of the heme biosynthesis pathway, hepatic heme biosynthesis may be inhibited by

kerosene. However, it is not known whether the low levels of JP-5 and JP-8 found near hazardous waste

sites would induce changes.

Musculoskefetd Effects. No studies were located regarding musculoskeletal effects in humans after

inhalation, oral, or dermal exposure to JP-5 and JP-8. No histopathological changes were noted in the
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musculoskeletal systems of rats and dogs exposed by inhalation to up to 100 mg/m3 deodorized kerosene

vapor for 13 weeks (Carpenter et al. 1976) or rats exposed by gavage to up to 3,000 mg/kg JP-8 for

90 days (Mattie et al. 1995). Mice treated dermally with marine diesel fuel and JP-5 (up to 500 mg/kg, 5

days per week for 90 or 103 weeks) did not develop adverse musculoskeletal effects (NTP/NIH 1986).

The limited information available from animal studies is not sufficient to assess its relevance to the human

musculoskeletal system.

Hepatic Effects. No human data are available for inhalation, oral, or dermal exposures to JP-5 and JP-8

with regard to hepatic toxicity. Inhalation of 231 mg/m3 kerosene vapor induced increases in blood lactate

and pyruvate levels in rats, and exposure to 58 mg/m3 kerosene vapor induced decreases in blood glucose

levels (Starek and Vojtisek 1986). Neither rats nor dogs developed histopathological changes in the liver

following inhalation exposure to 20,48, or 100 mg/m3 deodorized kerosene vapor (Carpenter et al. 1976).

Histopathological examination did reveal slight cellular infiltration and mild vacuolization of the livers of

rats following gavage with kerosene or deodorized kerosene, although liver weight was not affected

(Muralidhara et al. 1982). Gavage with JP-5 induced increases in serum hepatic enzyme activities,

hepatocyte necrosis, and vacuolization of the periportal hepatocytes in rats (Parker et al. 1981). No

histopathological changes were noted in the livers of mice following acute dermal exposures to 0.1 mL

kerosene (Upreti et al. 1989). Rats administered 750 mg/kg JP-8 by gavage for 90 days had significant

increases in aspartate aminotransferase and alanine aminotransferase levels compared to controls, but no

histopathological changes in the liver were evident (Mattie et al. 1995). Slight hepatic karyomegaly was

noted in mice exposed to 500-8,000 mg/kg JP-5 through five dermal applications per week for 13 weeks

(NTP/NIH 1986). Although the data from animal studies are not sufficient to assess the relevance to

human health, they suggest that jet fuels may cause hepatic effects in humans. It is not known whether

these effects could be caused by the low levels of JP-5 or JP-8 found near hazardous waste sites.

Renal Effects. Urinalysis was normal following inhalation of JP-5 by two individuals and following

ingestion of kerosene by numerous individuals (Dudin et al. 1991; Mahdi 1988; Nom-i and Al-Rahim

1970; Porter 1990).

Renal lesions have been produced in mice by dermal application of JP-5. However, the inability to

duplicate these lesions with intraperitoneal injections suggests that the renal effects were secondary to skin

injury (Easley et al. 1982). Lymphocytic inflammation has been induced in the urinary bladder of mice

with chronic dermal application of JP-5 (NTP/NIH 1986). However, acute and intermediate dermal
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exposures to kerosene and JP-5, respectively, did not induce any renal toxicity in mice (NTP/NIH 1986;

Upreti et al. 1989).

Inhalation or oral exposure to JP-5 or JP-8 induces a hydrocarbon-related nephropathy unique to male rats

(Air Force 1985; Bruner 1984; Cowan and Jenkins 1981a, 1981b; Gaworski et al. 1984; Mattie et al. 1995;

Parker et al. 1981). The progression of this lesion has been noted in several studies, including studies

conducted on the hydrocarbon decalin (decahydronaphthalene) (Air Force 1985; Alden 1986; Bruner

1984; Cowan and Jenkins 1981a, 1981b; Gaworski et al. 1984; Parker et al. 1981). Specifically, hyaline

droplets are formed in the cytoplasm of the proximal tubule cells of the cortex. The hyaline droplets

contain high concentrations of the protein α2µ-globulin, a protein not found in humans. It is believed that

this protein accumulates in the cytoplasm of the renal tubule cells because the degradation of α2µ-globulin is

slowed as a result of binding with specific substances, such as jet fuels, or their metabolites. The

tubules near the corticomedullary junction become dilated and are eventually filled with coarsely granular

casts and necrotic debris. This results in nephron obstruction and chronic necrosis. The nephropathy

induced by accumulation of this protein has not been noted in female rats, female mice (studies conducted

on male mice were not located), or dogs of either sex when exposed in similar conditions to JP-5 or JP-8

vapor (Air Force 1985; Bruner 1984; Cowan and Jenkins 198 la, 1981b; Gaworski et al. 1984). It does not

appear that the nephrotoxicity attributable to the α2µ-globulin syndrome observed in male rats is relevant

to humans (Olson et al. 1990). There is no evidence of renal necrosis in humans acutely exposed to JP-5

vapor (Porter 1990). It appears unlikely that renal effects would be observed in humans exposed to JP-5 or

JP-8 near hazardous waste sites.

Dermal Effects. Cellular destruction at the site of administration was noted in humans after dermal

exposure to kerosene (Lupulescu and Birmingham 1976; Lupulescu et al. 1973). Oral and/or dermal

exposure to kerosene induced blisters, erythema, and peeling skin in two cases (Annobil 1988). Case

studies describe numerous effects in or on the skin following dermal exposure to kerosene. These effects

include itching, blisters, reddening, flaccid bullae, pustules, soreness, burning, swelling, and denudation

(Annobil 1988; Jee et al. 1985; Mosconi et al. 1988; Tagami and Ogino 1973). There are limited data

suggesting that epidermal damage may be induced by kerosene at the site of application by impairing

protein synthesis in the epidermis (Lupulescu and Birmingham 1975). However, these data are

insufficient to identify the toxic effects that may occur in humans following dermal exposure to kerosene

at levels found near hazardous waste sites.
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Anal dermatitis and hyperplasia were observed in rats following oral treatment with undiluted JP-8 in a

90-day study (Mattie et al. 1995). Acute, intermediate, and chronic dermal exposures to JP-5 have induced

various degrees of dose-dependent dermatitis in mice (Easley et al. 1982; NTP/NIH 1986). The dermal

effects included acanthosis, inflammation, parakeratosis, and hyperkeratosis (NTP/NIH 1986). JP-5 also

induced skin irritation in guinea pigs (Cowan and Jenkins 198 la) and rabbits (Kinkead et al. 1992a), but

JP-8 did not induce dermal irritation in rabbits (Kinkead et al. 1992b). Dermal irritation was induced in

mice by acute dermal exposure to kerosene (Upreti et al. 1989).

Endocrine Effects. Very limited acute-duration oral (Muralidhara et al. 1982) and dermal (Upreti et al.

1989) studies in animals indicate that kerosene does not adversely affect the adrenal glands. No adverse

effects on the adrenal glands or pancreas were found upon histopathological examination of these organs

in an intermediate-duration oral study using JP-8 (Mattie et al. 1995). But, the data from animal studies

are not sufficient to assess whether humans may develop endocrine effects following exposure to JP-5 and

JP-8 at levels found near hazardous waste sites.

Ocular Effects. JP-5 vapors were reported to be irritating to the eyes of two individuals and were

associated with hyperemic conjunctiva in one of the two (Porter 1990). Eye irritation was also reported in

workers who were chronically exposed to unspecified jet fuels (Knave et al. 1978). Deodorized kerosene

vapors were shown to induce eye irritation in some persons (Carpenter et al. 1976). These data indicate

that jet fuels may induce eye irritation in humans, although no ocular irritation was reported when JP-5 or

JP-8 was instilled into the eyes of rabbits (Kinkead et al. 1992a, 1992b). However, data are insufficient to

determine whether ocular effects would be expected to occur in humans exposed to low levels found near

hazardous waste sites.

Body Weight Effects. Decreased body weight gain was found in rats exposed to JP-8 by inhalation for

acute- or intermediate-duration exposures (Pfaff et al. 1995). Body weight gain was also decreased when

pregnant rats were treated orally with JP-8 during gestational days 6-15 (Cooper and Mattie 1996). There

were also dose-dependent decreases in body weight observed in male rats treated orally with JP-8 in an

intermediate-duration study (Mattie et al. 1995). However, the effects on body weight observed in this

study may have been due to gastric irritation induced by administration of undiluted JP-8. Dose-dependent

decreases in body weight were induced in mice by acute and intermediate dermal exposures to

JP-5 (NTP/NIH 1986; Schultz et al. 1981) or JP-8 (Schultz et al. 1981). Decreases in food or water

consumption were not noted subsequent to acute dermal exposure to kerosene (Upreti et al. 1989). After

rats received a single dose of 24 mL JP-5/kg, a 7% weight loss was noted by the 2nd day (Bogo et al.
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1983). Data are insufficient to determine whether these effects might be expected in humans exposed to

low levels of JP-5 or JP-8 near hazardous waste sites.

Metabolic Effects. There were no blood chemistry changes in either of two individuals following a 1 -hour

exposure to JP-5 vapor while flying a small airplane (Porter 1990). Several case studies reported fever in

children following acute ingestion of kerosene (Akamaguna and Odita 1983; Aldy et al. 1978; Dudin et al.

1991; Mahdi 1988; Majeed et al. 1981; Nom-i and Al-Rahim 1970; Saksena 1969; St. John 1982;

Subcommittee on Accidental Poisoning 1962). The anecdotal nature of the reports concerning the effects

of ingestion of kerosene in children cannot be used to predict other possible outcomes.

No significant metabolic changes in blood chemistry were noted in rats continuously exposed to airborne

JP-8 for 90 days (500 or 1,000 mg/m3) (Mattie et al. 1991). Changes in blood glucose, lactate, and

pyruvate observed in rats exposed to kerosene vapor are discussed under hepatic effects.

Immunological and Lymphoreticular Effects. No studies were located regarding immunotoxicity

or lymphoreticular effects in humans after inhalation, oral, or dermal exposure or in laboratory animals

following inhalation exposure to jet fuels. No histopathological changes were observed in the spleen or

lymph nodes of rats administered 3,000 mg/kg JP-8 for 90 days (Mattie et al. 1995). However, there was a

decrease in relative spleen weight at this dose. Dermal application of JP-5 induced granulocytic

hyperplasia in the bone marrow and hyperplasia in the lymph nodes of mice. Decreases in the relative

weights of the lymph nodes and thymus were noted in mice following dermal exposure to kerosene (Upreti

et al. 1989). In addition, thymocyte counts, bone marrow nucleated cell counts, thymic cortical

lymphocytes, and the cellularity of the thymic lobules were decreased. Increases in the cellular

populations of the popliteal lymph nodes and the cell population of the axial lymph nodes were also

present. These data suggest that jet fuels may have an effect on the immune system of mice, although the

toxicological significance of these effects cannot be determined. Whereas dermal exposure to jet fuels

(liquid or vapor) would be expected to induce skin irritation or possibly dermatitis, there are also some

data available to evaluate delayed skin sensitization. JP-5 induced a moderate sensitization reaction in

guinea pigs (Kinkead et al. 1992b), although in another study the authors concluded that it was not a

sensitizer according to their test criteria (Cowan and Jenkins 1981a). The lack of data in humans and the

small amount of animal data are insufficient to determine whether jet fuels would induce immunological

or lymphoreticular effects in humans exposed to low levels near hazardous waste sites.
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Neurological Effects. Numerous neurological effects were reported after kerosene ingestion by

children: unconsciousness or semiconsciousness, drowsiness, restlessness, irritability, and in fewer cases,

coma and convulsions (Akamaguna and Odita 1983; Aldy et al. 1978; Coruh and Inal 1966; Dudin et al.

1991; Lucas 1994; Mahdi 1988; Majeed et al. 1981; Nouri and Al-Rahim 1970; Saksena 1969;

Santhanakrishnan and Chithra 1978; St. John 1982; Subcommittee on Accidental Poisoning 1962).

Neither coma nor convulsions occurred in children aged 10 months to 5 years that ingested 3-20 mL of

kerosene (doses approximating 120-1,800 mg/kg) (Dudin et al. 1991). There are limited data that suggest

that the central nervous system effects noted following ingestion of kerosene are due to hypoxia arising

from kerosene-induced respiratory impairment (Majeed et al. 198 1).

Neurological effects have been reported following inhalation of JP-5 vapor. These included fatigue,

coordination and concentration difficulties, headache, apparent intoxication, and anorexia. Effects

subsided within 24 hours for one individual and within 4 days for the other. Sensory impairment did not

occur in these individuals (Porter 1990). Experimental data indicate that olfactory fatigue and unusual

taste sensation may occur in some individuals after a 15minute inhalation exposure to 140 mg/m3

deodorized kerosene vapor (Carpenter et al. 1976). Neurasthenia (i.e., fatigue, depressed mood, lack of

initiative, dizziness, sleep disturbances) and impairment of attention and sensorimotor speed were

associated with chronic inhalation, oral, and/or dermal exposures to jet fuel by factory workers (Knave et

al. 1978; Struwe et al. 1983). It is not known to which jet fuels the workers were exposed and it was not

clear what other chemical exposures may have occurred. Subtle changes in posture balance were observed

in workers exposed to JP-8 (Smith et al. 1997), but exposure concentrations could not be determined, and

exposure to other chemicals was probable. Oral exposure to kerosene and deodorized kerosene induced

ataxia and drowsiness in rats in one study (Muralidhara et al. 1982), but a study of pregnant rats treated

orally with JP-8 during gestation days 6-15 reported no clinical signs of neurotoxicity (Cooper and Mattie

1996). Aspiration of kerosene induced drowsiness, lack of muscular coordination, and behavioral changes

(Nouri et al. 1983), and dermal exposure induced an increased response to tactile stimuli and hyperactivity

in mice (Upreti et al. 1989). No histopathological changes were noted in the nervous system of rats

following oral exposure to JP-8 for 90 days (Mattie et al. 1995) or in mice following dermal exposures to

JP-5 (NTP/NIH 1986). The information from human and laboratory animal studies indicates that

neurotoxicity may occur by all routes of exposure and that all jet fuels may be neurotoxic. As is common

with many hydrocarbons, the primary acute neurotoxic effect of jet fuels is central nervous depression that

may be manifest in a number of symptoms. However, it is not known whether these effects might occur in

humans after exposure to low levels of JP-5 or JP-8 found near hazardous waste sites.
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Reproductive Effects. No studies were located regarding reproductive effects in humans after

inhalation, oral, or dermal exposure to jet fuels. Although relative testis weight was increased in rats

exposed to JP-8 for 90 days, there was no evidence of histopathological change in this organ (Mattie et al.

1995). No histological changes were noted in the reproductive system of mice dermally exposed to JP-5

for 13 weeks or chronically exposed to JP-5 (NTP/NIH 1986). There is not enough information to assess

the human reproductive toxicity to jet fuels following oral, inhalation, or dermal exposures.

Developmental Effects. No studies were located regarding developmental effects in humans after

inhalation, oral, or dermal exposure to jet fuels or in animals after inhalation or dermal exposure to jet

fuels.

Significant decreases in fetal body weight were found after pregnant rats were treated orally during

gestational days 6-15 with 1,500 mg/kg JP-8 compared to controls (Cooper and Mattie 1996). These

changes in fetal body weight were found in conjunction with significant decreases in maternal body

weight gain at 1,000 mg/kg and in adjusted maternal body weight at 1,500 mgkg. The NOAEL for

maternal body weight changes was 500 mg/kg. No other maternal or fetal signs of toxicity were observed

at doses up to 2,000 mg/kg JP-8. Data are insufficient to assess the developmental toxicity to jet fuels

after inhalation, oral, or dermal exposures.

Genotoxic Effects. No genotoxicity studies involving human or animal exposure to jet fuels were

identified. The results from a study employing a human cell line showed that neither 5 nor 50 ppm

petroleum-derived JP-5 (PD-JP-5) interfered with Snyder-Theilen feline sarcoma virus

(ST-FeSV)-directed transformation of human foreskin fibroblastic cells (Blakeslee et al. 1983). Higher

concentrations (≥ 100 ppm) were cytotoxic. The study authors consider this in vitro assay to be a useful

predictor of carcinogenesis since several known carcinogens have been shown to suppress transformation

in cells infected with the ST-FeSV by blocking a specific virus gene function.

Kerosene administered intraperitoneahy did not increase the frequency of chromosomal aberrations in

bone marrow cells harvested from rats following a one-time exposure to 0.04,O. 13, or 0.4 mL or a 5-day

exposure to 0.02,0.06, or 0.18 r&/day (Conaway et al. 1984). No rationale was provided for the selection

of 0.4 mL (LD5) as the high dose and no data were reported regarding cytotoxic effects on the target organ

(i.e., bone marrow cells). The genotoxicity of kerosene was also evaluated with the mouse lymphoma

TK+/- forward mutation assay. The data reported were insufficient to permit a full evaluation of the results;

however, the study authors reported kerosene to be negative (Conaway et al. 1984).
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JP-5 was not mutagenic in the Ames assay when activated with S9 (Aroclor-induced rat liver enzymes)

(Schultz et al. 1981). Similarly, JP-5 was not mutagenic in well-conducted Sulmonellu typhimurium

preincubation assays. Doses of each agent evaluated without S9 activation and with rat or hamster liver

fractions ranged from 3 to 333 µg/plate without S9 and from 100 to 10,000 µg/plate both with and without

S9 (JP-5) (NTP/NIH 1986). It was also reported that kerosene was negative in the Salmonella/mammalian

microsome mutagenicity assay with the following conditions: 0.001-5 µL/plate +/-S9 (plate test) and

6.25-50 µL/rnL +/-S9 (preincubation assay) (Conaway et al. 1984).

JP-8 was subjected to a battery of tests to evaluate its genotoxic potential (Air Force 1978a). The battery

of tests included the Ames assay, the mouse lymphoma assay, the unscheduled DNA synthesis assay, and

dominant lethal assays. The Ames assay utilized five strains of S. typhimurium and was conducted with

and without a metabolic activation system. JP-8 was not mutagenic in the Ames assay and was toxic to

most of the bacterial strains at concentrations above 1 µL/plate. The mouse lymphoma assay was used to

evaluate JP-8 for forward mutation induction. JP-8 did not induce mutation in mouse lymphoma cells and

was considered moderately toxic to the assay at 0.16 µL/mL. Unscheduled DNA synthesis evaluates the

ability of a material to react with DNA and is assessed by the incorporation of 3H-thymidine. JP-8 induced

the incorporation of significant levels of labeled thymidine. The activity was moderate and not dose

related. Toxicity was evident at 5.0 µL/mL. The dominant lethal assay determines the capability of a

material to induce genetic damage in germ cells. JP-8 did not induce effects either in mice at doses of

0.13,0.4, and 1.3 mL/kg or in rats at doses of 0.1, 0.3, and 1.0  rnL/kg.

These data suggest that the jet fuels do not present a genotoxic hazard to humans (refer to Table 2-4 and

Table 2-5 for a further summary of these studies).

Cancer. Scherr and colleagues (1992) reported no additional relative risk for non-Hodgkin’s lymphoma

for subjects occupationally exposed to “gasoline or kerosene.” No significant increased relative risk for

any type of cancer was noted in Swedish Air Force personnel exposed to military aircraft fuels (including

an “unleaded kerosene type jet fuel”) (Selden and Ahlborg 1991). A significant association between the

incidence of astrocytoma in children and the reported use of kerosene by their mothers during pregnancy,

when adjusted for income, was reported by Bunin et al. (1994). However, these data should be interpreted

with caution because of maternal exposure to other agents and lack of data on exposure duration and

concentrations. Although a significant association was observed between exposure to jet fuel and kidney

cancer in a population-based case-referent study, some individuals were also exposed to aviation gasoline

(Siemiatycki et al. 1987). No definitive association was found between occupational exposure to kerosene







JP-5 AND JP-8 82

2. HEALTH EFFECTS

and cancer in this same study. Chan and coworkers (1979) examined exposure to kerosene from kerosene

cooking stoves. Exposure to kerosene combustion products may have occurred instead of, or in addition

to, inhalation of kerosene vapor. A thymus sarcoma was found in 1 of 10 male rats treated orally with

JP-8 for 90 days (Mattie et al. 1995). Due to the small numbers of animals used and the short duration of

the study, it is not possible to determine whether this tumor was incidental. Therefore, no firm

conclusions regarding human health can be drawn from these data.

No dermal cancer was noted in B6C3F, mice following chronic dermal exposure to 250 or 500 mg/kg/day

JP-5 (NTP/NIH 1986). Unspecified skin tumors were noted in C3HF/Bd mice, but the tumor incidence

was not dose related for most exposure conditions (Schultz et al. 1981). Dermal application of Jet A

induced an increased incidence (26%) of neoplastic lesions (Clark et al. 1988). An increase in the

incidence of confirmed tumors was also noted in animals receiving DMBA as an initiator and

hydrodesulfurized kerosene as a promoting agent (API 1989). These data suggest that chronic application

of jet fuels can act as a skin carcinogen; however, only one species has been investigated. Further

investigation utilizing other species is required to more fully elucidate the mechanism of dermal

carcinogenesis and the impact of dermal exposure of jet fuels on humans.

2.6 BIOMARKERS OF EXPOSURE AND EFFECT

Biomarkers are broadly defined as indicators signaling events in biologic systems or samples. They have

been classified as markers of exposure, markers of effect, and markers of susceptibility (NAS/NRC 1989).

At present, the use of biomarkers as tools of exposure in the general population is very limited. A biomarker of

exposure is a xenobiotic substance or its metabolite(s), or the product of an interaction between a xenobiotic

agent and some target molecule(s) or cell(s) that is measured within a compartment of an organism (NRC

1989). The preferred biomarkers of exposure are generally the substance itself or substance-specific

metabolites in readily obtainable body fluid(s) or excreta. However, several factors can confound the use and

interpretation of biomarkers of exposure. The body burden of a substance may be the resultof exposures from

more than one source. The substance being measured may be a metabolite of another xenobiotic substance

(e.g., high urinary levels of phenol can result from exposure to several different aromatic compounds).

Depending on the properties of the substance (e.g., biologic half-life) and the duration and route of exposure,

the substance and all of its metabolites may have left the body by the time samples can be taken. It may be

difficult to identify individuals exposed to hazardous substances that are commonly found in
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body tissues and fluids (e.g., essential mineral nutrients such as copper, zinc, and selenium). Biomarkers of

exposure to JP-5 and JP-8 are discussed in Section 2.6.1.

Biomarkers of effect are defined as any measurable biochemical, physiologic, or other alteration within an

organism that, depending on magnitude, can be recognized as an established or potential health impairment or

disease (NAS/NRC 1989). This definition encompasses biochemical and cellular signals of tissue

dysfunction (e.g., increased liver enzyme activity or pathologic changes in female genital epithelial cells), as

well as physiologic signs of dysfunction such as increased blood pressure or decreased lung capacity.

However, such markers are not often substance specific. They also may not be directly adverse, but can still

indicate potential health impairment (e.g., DNA adducts). Biomarkers of effects caused by JP-5 and JP-8 are

discussed in Section 2.6.2.

A biomarker of susceptibility is an indicator of an inherent or acquired limitation of an organis m3s ability to

respond to the challenge of exposure to a specific xenobiotic substance. It can be an intrinsic genetic or other

characteristic or a preexisting disease that results in an increase in absorbed dose, a decrease in the

biologically effective dose, or a target tissue response. If biomarkers of susceptibility exist, they are

discussed in Section 2.8, Populations That Are Unusually Susceptible,

2.6.1 Biomarkers Used to Identify or Quantify Exposure to JP-5 and JP-8

No biomarkers of exposure were identified specifically for jet fuels; however, there have been suggestions for

potential indicators for kerosene exposure. These include the odor of kerosene on the breath, suggesting

ingestion (Annobil 1988; Zucker et al. 1986), and the odor of kerosene on clothing, suggesting dermal

exposure (Annobil 1988; Tagami and Ogino 1973). The odors of distillate fuels are so similar, however, that

use of these markers to identify specific fuels is impractical. Some components of kerosene, other jet fuels, and

their metabolites may be detected in the blood and urine, although the route of exposure cannot be determined

from this information. For information on biomarkers of exposure for some of the constituents of jet fuels, the

ATSDR toxicological profiles on benzene, toluene, xylenes, and polycyclic aromatic hydrocarbons (ATSDR

1989,1990, 1995a, 1995b) can be consulted.

2.6.2 Biomarkers Used to Characterize Effects Caused by JP-5 and JP-8

No specific, quantitative biomarkers of effect for jet fuels were identified.



JP-5 AND JP-8 84

2. HEALTH EFFECTS

For more information on biomarkers for renal and hepatic effects of chemicals see ATSDR/CDC

Subcommittee Report on Biological Indicators of Organ Damage (1990) and for information on biomarkers

for neurological effects see OTA (1990).

2.7 INTERACTIONS WITH OTHER CHEMICALS

Exposures to two or more substances may cause effects that are additive (the combined effect of the mixture is

equal to the sum of the effects of the agents), synergistic (causing an effect that is greater than the sum of the

effects of the agents), or antagonistic (one substance interferes with the action of another). No information was

located regarding the influence of other chemicals on the toxicity of either JP-5 or

JP-8; however, kerosene vapor has been shown to increase the sleeping time of hexobarbital in rats following

acute exposure, and to alter the antipyretic action of phenacetin (an antipyretic) following subchronic exposure

(Starek and Vojtisek 1986). In comparison to rats treated only with kerosene, intratracheal exposure of rats to

chrysotile asbestos (5 mg) and kerosene (0.05 mL) resulted in a decrease in cytochrome P-450 and decreases

in the activities of benzo(a)pyrene hydroxylase, epoxide hydrase, and glutathione-S-transferase (Arif et al.

1992). The investigators suggested that asbestos may increase the toxic potential of kerosene.

2.8 POPULATIONS THAT ARE UNUSUALLY SUSCEPTIBLE

A susceptible population is considered to be one that will exhibit a different or enhanced response to JP-5 and

JP-8 than will most persons exposed to the same level of JP-5 or JP-8 in the environment. Reasons may

include genetic makeup, age, health and nutritional status, and exposure to other toxic substances (e.g.,

cigarette smoke). These parameters may result in reduced detoxification or excretion of JP-5 and JP-8, or

compromised function of target organs affected by JP-5 and JP-8. Populations who are at greater risk due to

their unusually high exposure to JP-5 and JP-8 are discussed in Section 5.6, Populations With Potentially

High Exposure.

No information was located regarding the toxicity of JP-5 and JP-8 in susceptible populations. Available

human data, in general, were based upon case studies that reported ingestion of kerosene by children.

Children were not shown to be particularly susceptible to kerosene in the data reviewed; however, children

appear to be more likely to be accidentally orally exposed to kerosene than adults. In particular, children who

were 5 years old or younger often mistakenly drank kerosene because it was accessible.
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Data from a single animal model, however, suggest that children may be more sensitive than adults to at least

some of the effects of jet fuels, because younger rats were found to be more susceptible to kerosene than older

rats. A single oral dose of 22,400 mg/kg kerosene killed 27% of the adult rats, 66% of the 5-week-old rats, and

100% of the l0-day-old rats (Deichmann et al. 1944). It is not known, however, whether kerosene would also

be more toxic in younger humans than in older humans.

2.9 METHODS FOR REDUCING TOXIC EFFECTS

This section describes clinical practice and research concerning methods for reducing toxic effects of

exposure to JP-5 and JP-8. However, because some of the treatments discussed may be experimental and

unproven, this section should not be used as a guide for treatment of exposures to JP-5 and JP-8. When

specific exposures have occurred, poison control centers and medical toxicologists should be consulted for

medical advice. The following texts provide specific information about treatment following exposures to

JP-5 and JP-8: Bronstein AC, Currance PL. 1988. Emergency care for hazardous materials exposure.

Washington, DC: The C.V. Mosby Company, 175-176. Ellenhom MJ, Barceloux DG. 1988. Medical

Toxicology: Diagnosis and treatment of human poisoning. New York, NY. Elsevier Publishing, 944-945.

Stutz PR, Janusz SJ. 1988. Hazardous materials injuries: A handbook for pre-hospital care. 2nd ed.

Beltsville, MD: Bradford Communications Corporation, 360-36 1.

2.9.1 Reducing Peak Absorption Following Exposure

The mitigation procedures for jet fuels parallel those for hydrocarbon poisoning in general. Inhalation and

ingestion appear to be the most serious routes of exposure. In the case of overexposure by inhalation, it is

suggested that the patient be moved to an area of fresh air and given basic supportive treatment (CONCAWE

1985; HSDB 1998) including 100% humidified supplemental oxygen as required (HSDB 1998).

For poisoning by ingestion, the treatment protocol is more complex. As with inhalation, it is recommended

that the patient receive prompt supportive medical care (Bronstein and Currance 1988; CONCAWE 1985;

Goldfrank et al. 1990; Haddad and Winchester 1990; Stutz and Janusz 1988; Zieserl 1979). The primary

concern for the person who has ingested hydrocarbons such as kerosene is hydrocarbon aspiration either

during ingestion or during gastric evacuation. Aspiration of the hydrocarbon into the lungs can cause

hydrocarbon pneumonitis and secondary infections, including pneumonia.
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Because of the aspiration risk, a controversy has developed over which (if either) of two gastric evacuation

treatments is better: induced vomiting or gastric lavage. In general, the recommendation is that no form of

gastric emptying be used if the amount of hydrocarbon ingestion is small (Bronstein and Currance 1988;

Ellenhom and Barceloux 1988; Goldfrank et al. 1990; HSDB 1998; Litovitz and Greene 1988; Shirkey

1971; Zieserl 1979). This is usually the case with accidental poisonings. If unknown or large amounts

(volumes greater than 100 mL) have been ingested, then the decision as to how and/or whether to evacuate

the stomach should be based on the state of the patient, the hydrocarbon’s viscosity, and the involvement of

other more dangerous chemicals. The viscosity of the fuel is extremely important and may determine the

extent of the lung damage following aspiration. For conscious patients with operational gag reflexes and

without spontaneous emesis, induced vomiting seems to be the preferred method of gastric emptying

(Ellenhom and Barceloux 1988; Goldfrank et al. 1990; Ng et al. 1974; Shirkey 1971; Zieserl l979);

otherwise, endotracheal intubation followed by gastric lavage has been suggested (Ellenhom and Barceloux

1988; Haddad and Winchester 1990).

Controversy also exists over whether or not to administer activated charcoal (to bind the hydrocarbon) or

cathartics (Ellenhorn and Barceloux 1988; Goldfrank et al. 1990; Haddad and Winchester 1990; HSDB

1998; Litovitz and Greene 1988; Shirkey 1971; Stutz and Janusz 1988; Zieserl 1979). Some question the

overall effectiveness of activated charcoal and cathartics (Goldfrank et al. 1990; Litovitz and Greene 1988;

Zieserl 1979). In addition, activated charcoal may cause vomiting (HSDB 1998), which may or may not be

desired. Most agree, however, that if cathartics are administered, they should be saline cathartics, such as

magnesium or sodium sulfate or citrate, and not oil-based cathartics such as mineral oil (Ellenhorn and

Barceloux 1988; Goldfrank et al. 1990; Haddad and Winchester 1990; Stutz and Janusz 1988).

In general, administration of antibiotics andfor corticosteroids does not appear useful in treating hydrocarbon

pneumonitis (Brown et al. 1974; Goldfrank et al. 1990; Haddad and Winchester 1990; HSDB 1998; Steele et

al. 1972; Wolfsdorf and Kundig 1974; Zieserl 1979). In fact, one study has suggested that steroid

administration may increase bacterial colonization in the lungs (Brown et al. 1974). The use of antibiotics is

recommended only to treat secondary lung infections (Haddad and Winchester 1990; HSDB 1998; Zieserl

1979).

If the skin is exposed to jet fuels, washing the area of contact with large amounts of soapy water is

recommended (CONCAWE 1985; Ellenhom and Barceloux 1988; Goldfrank et al. 1990; HSDB 1998; Stutz

and Janusz 1988). If blistering or skin loss occurs, then the use of sterile water alone is suggested



JP-5 AND JP-8 87

2. HEALTH EFFECTS

(CONCAWE 1985). For ocular exposure, flushing the eyes liberally with water (CONCAWE 1985; HSDB

1998; Stutz and Janusz 1988) and, if necessary, using proparacaine hydrochloride to assist the irrigation

(Bronstein and Currance 1988), are the recommended treatment protocols.

2.9.2 Reducing Body Burden

Little is known about the toxicokinetics of jet fuels, and there are no known methods for the reduction of body

burden.

2.9.3 Interfering with the Mechanism of Action for Toxic Effects

Although lung response to aerosolized kerosene and the effect of kerosene on heme biosynthesis have been

partially investigated, the toxicities of jet fuels as well as their mechanisms are not well defined. As such, no

known therapies are available to disrupt the mechanisms of action.

2.10 ADEQUACY OF THE DATABASE

Section 104(I)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether adequate

information on the health effects of JP-5 and JP-8 is available. Where adequate information is not available,

ATSDR, in conjunction with the National Toxicology Program (NTP), is required to assure the initiation of a

program of research designed to determine the health effects (and techniques for developing methods to

determine such health effects) of JP-5 and JP-8.

The following categories of possible data needs have been identified by a joint team of scientists from

ATSDR, NTP, and EPA. They are defined as substance-specific informational needs that if met would

reduce the uncertainties of human health assessment. This definition should not be interpreted to mean that

all data needs discussed in this section must be filled. In the future, the identified data needs-till be evaluated

and prioritized, and a substance-specific research agenda will be proposed.
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2.10.1 Existing Information on Health Effects of JP-5 and JP-8

The existing data on health effects of inhalation, oral, and dermal exposure of humans and animals to JP-5

and JP-8 are summarized in Figure 2-4. The purpose of this figure is to illustrate the existing information

concerning the health effects of JP-5 and JP-8. Each dot in the figure indicates that one or more studies

provide information associated with that particular effect. The dot does not necessarily imply anything about

the quality of the study or studies, nor should missing information in this figure be interpreted as a “data

need.” A data need, as defined in ATSDR’s Decision Guide for Identifying Substance-Specific Data Needs

Related to Toxicological Profiles (ATSDR 1989), is substance-specific information necessary to conduct

comprehensive public health assessments. Generally, ATSDR defines a data gap more broadly as any

substance-specific information missing from the scientific literature.

The existing data on health effects of inhalation, oral, and dermal exposure of humans and animals to JP-5

and JP-8 are summarized in Figure 2-4. The purpose of this figure is to illustrate the existing information

concerning the health effects of JP-5 and JP-8. Each dot in the figure indicates that one or more studies

provide information associated with that particular effect. The dot does not necessarily imply anything about

the quality of the study or studies, nor should missing information in this figure be interpreted as a “data

need.” A data need, as defined in ATSDR’s Decision Guide for Identifying Substance-Specific Data Needs

Related to Toxicological Profiles (ATSDR 1989), is substance-specific information necessary to conduct

comprehensive public health assessments. Generally, ATSDR defines a data gap more broadly as any

substance-specific information missing from the scientific literature.

Information is available in humans on acute, intermediate, and chronic systemic effects as well as on

neurological and carcinogenic effects following inhalation exposure to JP-5 and JP-8 or some of their

compositional analogs; on death, acute systemic, and neurological effects following ingestion; and on

intermediate, acute, and chronic systemic and neurological effects following dermal exposure. Information is

also available in animals on death and acute and intermediate systemic effects as well as on neurological,

developmental, reproductive, genotoxic, and carcinogenic effects following inhalation exposure to jet fuels or

some of the compositional analogs; on death and acute systemic effects as well as on neurological and

genotoxic effects following ingestion; and on death, acute, intermediate, and chronic systemic effects and

immunological, neurological, reproductive, and carcinogenic effects following dermal exposure. Therefore,

as Figure 2-4 shows, the majority of the data on health effects of jet fuels concern inhalation or dermal
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exposure of animals; however, there are some data for all routes of exposure in both laboratory animals and

humans.

2.10.2 Identification of Data Needs

The following are topical sections that identify gaps in the present state of knowledge concerning the

toxicology of JP-5 and JP-8. Each of the sections identifies specific areas in which additional data are needed

to gain a greater understanding of the toxicity of jet fuels and their constituents as well as of the biochemical

mechanisms of their toxicity.

Acute-Duration Exposure. There are many case studies that identify respiratory, neurological, and

gastrointestinal effects as the primary effects in humans induced by acute exposures to jet fuels or

compositional analogs, particularly by the oral route (Akamaguna and Odita 1983; Aldy et al. 1978; Annobil

1983; Annobil and Ogunbiyi 1991; Mahdi 1988; Santhanakrishnan and Chithra 1978; St. John 1982;

Subcommittee on Accidental Poisoning 1962) and, to a lesser extent, by inhalation exposure (Porter 1990).

Dermal irritation is also well documented for both humans (Annobill988; Mosconi et al. 1988; Tagami and

Ogino 1973) and animals (Kinkead et al. 1992a; NTP/NIH 1986; Upreti et al. 1989) after dermal exposure.

Dermal sensitization has also been reported in animals after exposure to JP-5 (Cowan and Jenkins 1981a, 1981

b; Kinkead et al. 1992b) and JP-8 (Kinkead et al. 1992a). Some data indicate that cardiovascular,

hematological, and renal effects may occur in humans exposed to the vapor of JP-5 (Porter 1990).

Dose-response data are largely lacking for the effects noted in both humans and laboratory animals. A dose-

response relationship was noted in rats following a single exposure to kerosene by oral gavage for the

following effects: death, unsteady gait, and drowsiness (Muralidhara et al. 1982). Following gestational

exposure by gavage, decreased maternal body weight gain was noted in rats (Cooper and Mattie 1996).

However, the majority of animal data have not been verified by more than one study using the same jet fuel,

species, and/or route of exposure, and some of the studies only tested one dose (Brown et al. 1974; Casaco et

al. 1982; Garcia et al. 1988b; Goodwin et al. 1988; Nouri et al. 1983; Upreti et al. 1989). Additional dose-

response data are needed to serve as the basis of both acute oral and acute inhalation MRLs. Acute oral LD50

data are available for kerosene in guinea pigs and rabbits (Deichmann et al. 1944). Additional data are needed

regarding inhalation and dermal exposures in various species to verify the renal toxicity of jet fuels noted in a

few individuals and dermal exposure animal models.



JP-5 AND JP-8 91

2. HEALTH EFFECTS

Intermediate-Duration Exposure. Animal data are available for intermediate exposures by the

inhalation, oral, and dermal routes. Limited animal data were located for the oral route. Most of these studies

found no evidence of toxicity in any of the exposure conditions used (Bruner 1984; Carpenter et al. 1976;

NTP/NIH 1986), but toxicity has been observed in rats in an intermediate-duration oral study (Mattie et al.

1995). However, the lack of toxicity in these studies has not been verified by more than one study using the

same material, species, andfor route of exposure. Dose-response data are needed to serve as the basis of

intermediate oral MRLs. Intermediate-duration studies (inhalation and oral) that compare the toxicity of all jet

fuels would be especially useful for MRL derivation. These studies should examine all histopathological end

points, as well as perform clinical and biochemical evaluations (including hematology). It would also be useful

to administer the jet fuel with a vehicle to possibly prevent the irritation and hyperplasia observed in the

gastrointestinal tract in rats in the Mattie et al. (1995) study, which did examine some of these endpoints.

One well-conducted study in mice describes effects (death, hepatic karyomegaly, and dermatitis) from dermal

exposures to JP-5 (NTP/NIH 1986). Another study found dose-dependent increases in blood lactate and

pyruvate levels and decreases in blood glucose levels in rats after inhalation of kerosene vapor (Starek and

Vojtisek 1986). However, neither of these studies can be used for MRL derivation. In the first study the data

were obtained following dermal exposures, which cannot be used to derive an MRL. In the other, the

biochemical and organ weight effects induced by inhalation of the jet fuels were not supported by

pathological changes or the organs affected had not been histopathologically identified as targets in other

studies. A third study, in which rats were administered JP-8 orally at doses up to 3,000 mg/kg for 90 days

showed decreased lymphocytes, decreased body weights, and gastrointestinal irritation and hyperplasia

(Mattie et al. 1995). However, an intermediate-duration oral MRL could not be derived from this study

because, as indicated above, treated animals received neat JP-8 by gavage, an administration that is of

concern because of the appearance of gastrointestinal irritation.

Chronic-Duration Exposure and Cancer. Epidemiological data regarding respiratory and dermal

effects from chronic exposures to jet fuels or petroleum products of similar composition in humans are

described elsewhere (see Epidemiological and Human Dosimetry Studies in this section). No other

information is available for humans regarding chronic inhalation or oral exposures. A single animal study

addressed carcinogenicity in animals via inhalation (Bruner 1984). Animal model data were available for the

carcinogenic effects of chronic dermal exposure. It is apparent that chronic dermal application of jet fuels can

induce tumorigenesis; however, both the mechanism of induction and the relevance of tumor induction to

humans are poorly defined. As such, further elucidation of the biochemical pathway, the relevance of dermal
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exposure to humans, and the incidence of tumor induction at sites remote from a dermal exposure site would

be of value.

The demonstration of renal toxicity in animal models has been considered significant since case studies have

also reported such toxicity. However, data exist that appear to associate the renal toxicity with water loss due

to skin lesions induced by chronic dermal application of jet fuels rather than systemic toxicity. Data that clarify

this effect would be of interest.

Dose-response data to serve as the basis of chronic inhalation MRLs are also needed.

A thymus tumor was observed in 1 of 10 rats in an intermediate-duration oral study using undiluted JP-8

(Mattie et al. 1995). It is not possible to determine whether this was incidental due to the small number of

animals used and the short duration of the study. Long-term oral studies using JP-8 would be useful to

determine the carcinogenic potential of JP-8.

Genotoxicity. The data available suggest that these jet fuels are not mutagenic and do not present a

genotoxic hazard to humans.

Reproductive Toxicity. No information was found regarding reproductive toxicity in humans from

inhalation, oral, or dermal exposures to jet fuels. There were no pathological changes in the reproductive

organs of mice following chronic and/or intermediate dermal exposures to JP-5 (NTP/NIH 1986) or in the

testes of rats after oral exposure to JP-8 for go-days (Mattie et al. 1995). In the absence of route-specific

data, and limited pharmacokinetic data, it is not possible to predict whether JP-5 or JP-8 might affect

reproduction across routes of exposures. Additional data are needed to identify the toxic potential of jet fuels

on the reproductive system by all routes of exposure.

Developmental Toxicity. No information was found regarding developmental toxicity in humans from

inhalation, oral, or dermal exposures to jet fuels. Significant decreases in fetal body weight were found after

pregnant rats were treated orally with JP-8 compared to controls from gestational days 6-15 (Cooper and

Mattie 1996). These changes in fetal body weight were found in conjunction with significant decreases in

maternal body weight gain at 1,000 mgkg and in adjusted maternal body weight at 1,500 mgkg. No other

signs of toxicity were found in fetuses or dams in this study. Although pharmacokinetic data may support the

potential of JP-8 to cause similar effects by other routes of exposure, it is not possible to predict the levels at
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which these effects might occur. Additional data are needed to identify the toxic potential of jet fuels

regarding developmental effects by all routes of exposure.

Immunotoxicity. No information was found regarding immunotoxicity in humans from inhalation, oral,

or dermal exposures to either JP-5, JP-8, or to petroleum products with similar compositions. Three animal

studies were identified that tested immunological effects, one using rats and two using mice. No

histopathological changes were observed in the spleen or lymph nodes of male rats treated by gavage with

JP-8 (undiluted) for 90-days (Mattie et al. 1995). The mice studies identified cellular effects in the bone

marrow, lymph nodes, and/or thymus and decreases in the relative weights of the lymph nodes and thymus

from acute dermal exposures to kerosene (Upreti et al. 1989) and from chronic dermal exposures to JP-5

(NTP/NIH 1986). However, the toxicological significance of these effects on the immune system cannot be

determined from these data. Additional data are needed to identify the toxic potential of jet fuels on the

immune system by all routes of exposure and in various animal systems.

Neurotoxicity. Epidemiological data regarding neurological effects from chronic exposures to jet fuels in

humans are described elsewhere (see Epidemiological and Human Dosimetry Studies in this section).

Neurological effects from oral exposures are well documented in humans by case studies (Akamaguna and

Odita 1983; Aldy et al. 1978; Coruh and Inal 1966; Dudin et al. 1991; Lucas 1994; Mahdi 1988; Majeed et

al. 1981; Nouri and Al-Rahim 1970; Saksena 1969; Santhanakrishnan and Chithra 1978; St. John 1982;

Subcommittee on Accidental Poisoning 1962). There is limited information in animals regarding neurotoxic

effects following oral exposure (Cooper and Mattie 1996; Mattie et al. 1995; Muralidhara et al. 1982) or

aspiration (Nouri et al. 1983). Some information is available that identifies neurological effects in humans

from inhalation exposures. The available data indicate that coordination and concentration difficulties,

headache, intoxication, and/or anorexia may be induced by inhalation of JP-5 vapor (Porter 1990) and that

sensory impairment may be induced by deodorized kerosene vapor (Carpenter et al. 1976).

A 90-day oral study in rats found no treatment-related histopathological changes in the brain or sciatic nerve

(Mattie et al. 1995). One animal study found no histopathological changes in the organs of the nervous system

in mice following chronic and/or intermediate dermal exposures to JP-5 (NTP/NIH 1986). However, increased

response to tactile stimuli and hyperactivity occurred in mice from acute dermal exposures to kerosene (Upreti

et al. 1989).
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In summary, there is much information regarding the specific neurological effects that may be induced by oral

exposures to kerosene in humans, but dose-response data are lacking for both animals and humans. More

information is needed to identify the inhalation and dermal effects of jet fuels on the nervous system in both

animals and humans.

Epidemiological and Human Dosimetry Studies. There were limited data that indicated that the

use of kerosene stoves in the home is not associated with increased respiratory illness (Azizi and Henry 199 1;

Tominaga and Itoh 1985), although chronic dermal exposure to kerosene has been related to dermatosis (Jee et

al. 1985).

A number of effects have been associated with chronic exposure to jet fuel in factory workers and Air Force

employees (Knave et al. 1976, 1978; Smith et al. 1997; Struwe et al. 1983). These effects have included

increases in the occurrence of neurasthenia (anxiety and/or mental depression, fatigue, depressed mood, lack

of initiative, dizziness, palpitations, thoracic oppression, sleep disturbances), changes in postural balance, or

eye irritation. Psychological tests found that attention and sensorimotor speed were impaired in exposed

workers, but there were no effects on memory functions or manual dexterity. EEG tests suggested that there

may have been instability in the thalamocortical system in the exposed group. Postural balance studies

suggested a subtle effect on vestibular/ proprioception functionalities (Smith et al. 1997). However, the type of

jet fuels was not noted and there was no control for exposure to other compounds. Inhalation exposure was

likely since jet fuel vapor was detected by the study authors; however, dermal and oral (i.e., eating with

contaminated hands) exposures may also have been possible.

Limited epidemiological information exists for carcinogenicity in humans following inhalation exposure to

kerosene (vapor). No strong association was seen between bronchial cancer and the use of kerosene or gas

for cooking (Chan et al. 1979). Of the women with bronchial cancer, mainly adenocarcinomas, 48% were

non-smokers. There was no association with their place of residence or occupation, and the cause of the

cancer is unknown (Chan et al. 1979). Actual kerosene exposure is unknown since Chan et al. (1979)

assumed exposure occurred if a kerosene stove was used. A significant association between incidence of

astrocytoma in children and the reported use of kerosene by their mothers during pregnancy, when adjusted

for income, was reported by Bunin et al. (1994). However, this data should be interpreted with caution

because of maternal exposure to other agents and lack of data on exposure duration and concentrations. A

significant association between kidney cancer and jet fuel exposure was observed in a population-based

casereferent study, but some of the exposed individuals were also exposed to other substances, such as aviation
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gasoline (Siemiatycki et al. 1987). No association between exposure to aircraft fuel and lymphatic or other

cancers was detected in a historical prospective study (Selden and Ahlborg 199 1). Animal data have been

reported that indicate that chronic dermal application of middle distillate fuels can induce tumorigenesis

(Clark et al 1988; Freeman et al. 1993; Schultz et al. 1981; Skisak 1991); however, the mechanism of

tumorigenesis remains nebulous. Exposures to jet fuels generally occur in the occupational setting. For this

reason, it is difficult to control for confounding factors and to identify levels and durations of exposure.

Therefore, if future studies are going to yield useful data concerning the toxicity of jet fuel in humans,

rigorous controls must be planned for any confounding factors. Additional cohort studies that control for

these factors and use adequate numbers of subjects would be useful to examine possible associations between

cancer and fuel exposure. These considerations should also be taken into account when planning studies for

the future monitoring of individuals living near hazardous waste sites.

Biomarkers of Exposure and Effect. No specific biomarkers of exposure or effect were identified for

either JP-5 or JP-8.

Exposure. Procedures do exist for identifying and quantifying the hydrocarbon components of jet fuels or

their analogs, specifically kerosene, in blood, urine, and stomach contents (Hara et al. 1988; Kimura et al.

1988,1991; Yamaguchi et al. 1992). Another potential biomarker of exposure to kerosene is the odor of

kerosene on the breath or clothing (Annobil 1988; Tagami and Ogino 1973; Zucker et al. 1986). However,

the odors of middle distillates are so similar that the marker would probably lack specificity. Studies

delineating the metabolism and excretion of jet fuels are needed to identify potential biomarkers of exposure.

Effect. Although not specific for jet fuels, aminolevulinic acid (ALA) could potentially be used as an adjunct

or supplemental biomarker. Kerosene may affect heme metabolism by decreasing the activities of enzymes in

the heme biosynthetic pathway (hepatic α-ALA dehydratase and α-ALA synthetase) (Rae and Pandya 1980).

Therefore, it may be possible that this effect would generate increased ALA in the urine of exposed

individuals. Additional studies of acute, intermediate, and chronic exposure are needed to identify biomarkers

of effects for specific target organs following exposure to jet fuels.

Absorption, Distribution, Metabolism, and Excretion. No quantitative data were located regarding

the absorption, distribution, metabolism, or excretion of jet fuels following inhalation, oral, or dermal

exposure in humans. Very limited data indicate that kerosene is poorly absorbed from the gastrointestinal

tract and is distributed to various tissues, although accumulation is low (Mann et al. 1977). Another study in
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humans suggests that respiratory toxicity may result from both aspiration from vomiting and gastrointestinal

absorption (Subcommittee on Accidental Poisoning 1962). However, aspiration is the primary concern

following ingestion. Acute, intermediate, and chronic data are needed to assess the relative rates and extent of

absorption, distribution, and excretion of jet fuels with respect to all three routes of exposure as well as with

respect to time and dose.

Comparative Toxicokinetics. Limited data are available regarding comparative toxicokinetics. The

acute oral LD50 values in guinea pigs and rabbits for kerosene have been reported to be 16,320 mg/kg and

22,720 mg/kg, respectively (Deichmann et al. 1944). These data suggest that there may be species

differences in the oral toxicity of kerosene (suggesting a species difference for JP-5); however, more data

would be needed to thoroughly examine species variation in toxicokinetics. This information would be useful

for identifying similar target organs and for adequately assessing which animals can serve as the best models

for humans as well as defining mechanisms of action.

Methods for Reducing Toxic Effects. The mitigation procedures for both JP-5 and JP-8 parallel

those for hydrocarbon poisoning. Several treatments for hydrocarbon poisoning have been considered

controversial: gastric decontamination, induced emesis versus gastric lavage, and administration of activated

charcoal, cathartics, antibiotics, and corticosteroids. Most studies indicate that antibiotics and corticosteroids

are not effective treatments for hydrocarbon-induced pneumonitis (Brown et al. 1974; Goldfrank et al. 1990;

Haddad and Winchester 1990; HSDB 1998; Steele et al. 1972; Wolfsdorf and Kundig 1974; Zieserl 1979).

However, more research regarding the usefulness of cathartics and activated charcoal is needed. In addition,

elucidating the toxicokinetics of absorption of jet fuels in the gastrointestinal tract would help determine

whether gastric decontamination is worth the risk of pulmonary aspiration. Related to gastric decontamination

is the question of whether induced emesis is safer than gastric lavage. Since there are presently no known

antidotes for hydrocarbon poisoning, research in this area would be beneficial as well.

2.10.3 Ongoing Studies

No on-going studies evaluating the health effects or toxicokinetics of either JP-5 or JP-8 were located.
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3.1 CHEMICAL IDENTITY

Information regarding the chemical identities of JP-5 and JP-8 is located in Table 3- 1. Information on the

composition of jet fuel no. 1 (kerosene) and JP-5 is presented in Table 3-2. Information on the composition

of JP-8 is presented in Table 3-3.

Both JP-5 and JP-8 are distillate fuels consisting of distilled process streams refined from crude petroleum.

Characteristics of JP-8 fuel (such as density and distillation temperatures) are very similar to those of JP-5

(DOD 1992). There is no standard formula for jet fuels. Their exact composition depends on the crude oil

from which they were refined. Variability in fuel composition occurs because of differences in the original

crude oil (Custance et al. 1992; IARC 1989) and in the individual additives. As a result of this variability,

little information exists on the exact chemical and physical properties of jet fuels (Custance et al. 1992).

However, the differences in these fuels are minor. The primary ingredient of both JP-5 and JP-8 is kerosene,

and the composition of these fuels is basically the same as kerosene, with the exceptions that they are made

under more stringent conditions and contain various additives not found in kerosene (DOD 1992; IARC 1989).

The crude oil from which JP-5 and JP-8 are refined is derived from petroleum, tar sands, oil shale, or mixtures

thereof (DOD 1992). Typical additives to JP-5 and JP-8 include antioxidants (including phenolic antioxidants),

static inhibitors, corrosion inhibitors, fuel system icing inhibitors, lubrication improvers, biocides, and thermal

stability improvers (DOD 1992; IARC 1989; Pearson 1988). These additives are used only in specified

amounts, as governed by military specifications (DOD 1992; IARC 1989). Straight-run kerosene, the basic

component of the kerosene used for jet fuels, consists of hydrocarbons with carbon numbers mostly in the C9–

C16 range. Like all jet fuels, straight-run kerosene consists of a complex mixture of aliphatic and aromatic

hydrocarbons (LARC 1989). Aliphatic alkanes (paraffins) and cycloalkanes (naphthenes) are hydrogen

saturated, clean burning, and chemically stable and together constitute the major part of kerosene (IARC

1989). Aromatics comprise lo-20% and olefins less than 1% of the jet fuels (JARC 1989). The boiling range of

kerosene, JP-5, and JP-8 is well above the boiling point of benzene (a carcinogenic aromatic) and many

polycyclic aromatic hydrocarbons (PAHs); consequently, the benzene content of kerosene and these jet fuels is

normally below 0.02%, and PAHs are virtually excluded (IARC 1989).
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4.1 PRODUCTION

Jet fuels are produced from refined crude petroleum to meet specifications for particular uses (Air Force

1989b; IARC 1989). These specifications are designated by the American Society for Testing and Materials

(ASTM) (IARC 1989). Light jet fuels such as jet fuel no. 1 (kerosene) are refined from straight distillation of

crude oil or distillation of crude oil in the presence of a catalyst. Fuels such as JP-5 and JP-8 are then

chemically enhanced with antioxidants, dispersants, or corrosion inhibitors to meet the requirements for a

specific application. Jet fuel no. 1 is a product of the straight-run distillation of crude petroleum (HSDB

1998). It consists of a mixture of petroleum hydrocarbons, chiefly of the methane series, which typically

have from 10 to 16 carbon atoms per molecule (HSDB 1998; IARC 1989). The typical components of the

end product of jet fuel no. 1 include paraffins (n-, iso-, monocycle-, bicycle- and tricycle-), olefins, aromatics,

and nitrogen and sulfur impurities (Air Force 1989b; IARC 1989).

Although most facilities that refine crude petroleum in the United States produce a jet fuel no. 1 fraction

(HSDB 1998), only producers that market jet fuel no. 1 as an end product are listed as commercial

manufacturers. These manufacturers are Claibome Gasoline Company (Claibome and Union Parish,

Louisiana), Continental Oil Company (Acadia Parish, Louisiana), Sun Production Company (Starr County,

Texas), Exxon Corporation (Pledger County, Texas), Atlantic Richfield Company (New York, New York),

and Shell Oil Company (Houston, Texas) (HSDB 1998). Because JP-5 and JP-8 are not required to be

reported under SARA Section 313, there are no data for JP-5 and JP-8 in the 1992 Toxics Release Inventory

(TRI) (TR192 1994).

Production of kerosene has steadily decreased since 1970 (API 1991). The supply of kerosene produced in

1970 was 95,600,000 barrels. By 1975, production volume had dropped to 55,500,000 barrels. As of 1990,

only 16,400,000 barrels of kerosene were produced. While the demand for kerosene has gradually declined

with time, that for jet fuels has steadily increased. As a result, many refiners have recently chosen to produce

Jet A-l (a commercial jet fuel very similar to JP-8) as their basic product and to simply divert a portion of the

product for marketing as kerosene (IARC 1989). In the United States, production of jet fuels, including both

kerosene-type (JP-5 and JP-8) and wide-cut fuels, increased from 268,452,000O barrels (37,636,000 tons) in

1970 to 406,137,000 barrels (56,939,000 tons) in 1985 (IARC 1989). In the countries of the Organization
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for Economic Cooperation and Development (OECD), production increased from 411,282,000 barrels

(57,659,000 tons) to 643,967,000 barrels (90,280,000 tons) during the same time (IARC 1989).

4.2 IMPORT/EXPORT

Imports of distillate fuels have varied from year to year since the 1970s. Since 1975, imports of distillate jet

fuels such as jet fuel no. 1 into the United States have been low compared to the amount of distillate jet fuels

produced in the United States (API 1991). Imports of kerosene fluctuated between 1975 and 1984 and then

showed a steady increase from 1985 to 1987, attaining an annual maximum of 6,935,000 barrels in 1987.

Between 1988 and 1990, imports of kerosene decreased to a low of 1,825,000 barrels (API 1991).

During the five-year period from 1990 to 1994, kerosene-type jet motor fuel imports into the U.S. have been

steady, averaging approximately 27.3 million barrels annually. In 199 1, however, the year of the Persian Gulf

War, imports reached a low of 19.7 million barrels. Imports rose to a peak of 29.4 million barrels in 1994 and

declined slightly to 28.0 million barrels in 1996 (NTDB 1997). Import data for 1995 is not available.

Exports of jet fuel no. 1 between 1972 and 1975 ranged from 100,000 barrels (14,000 tons) in 1972 to

699,000 barrels (98,000 tons) in 1975 (HSDB 1998). Exports of distillate jet fuels increased almost

1 00-fold between 1975 and 1990 (API 1991). Little kerosene has been exported from the United States since

the 1970s. In 1971, approximately 365,000 barrels were exported from the United States. The next 2 years for

which export volumes were reported for kerosene were 1983 and 1984, when 365,000 barrels were exported

each year. However, export volumes doubled from 730,000 barrels in 1986 to 1,820,000 barrels in 1990 (API

1991). Comprehensive export data for kerosene prior to 1986 are not available. Kerosene exportation between

1987 and 1989 remained relatively constant with a yearly export average of approximately 547,500 barrels.

However, by 1990, the annual export of kerosene was 2,190,000 barrels (API 1991), an increase of

approximately 400%. U.S. exports of kerosene-type jet motor fuels declined during the 5-year period between

1991 and 1995, from 14.1 to 9.4 million barrels annually NTDB 1997). The largest decrease occurred in 1994

when the quantity dropped 8.9 million barrels from the previous year, from 15.3 in 1993 to 6.4 million barrels

in 1994 (NTDB 1997).
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4.3 USE

Aviation turbine fuels were not used until the 1930s when the first turbojet engine was developed (IARC

1989). Jet-powered aircraft had only limited use in World War II, but further military and commercial

developments allowed jet engines to dominate as power sources for aircraft in the 1960s. JP-1, a mixture of

gasoline and kerosene, was the first jet fuel used by the U.S. Army Air Corps in 1944 (Army 1989). A

military specification for JP-4, also a mixture of gasoline and kerosene, was first issued in 195 1 (Army

1989). JP-5 was developed by the U.S. Navy in the early 1950s for aircraft use aboard aircraft carriers. Its

lower volatility and higher minimum flashpoint (140°F) compared to JP-4 made it safer in the event of a

shipboard spill or crash (Army 1989). During the Vietnam War, the Navy’s JP-5 proved to be a superior fuel

for combat aircraft, as compared to the Air Force’s JP-4; the Navy had lower loss rates as a result of fewer

gunfire-initiated and post-crash fires and explosions (Air Force 1989a). Statistics showed that the

probability of post-crash fires with JP4-fueled aircraft was 83%, but for kerosene (JP5)-fueled aircraft, the

probability was only 35% (Air Force 1987). The Navy has also used JP-5 as an alternative fuel on surface

ships (Risher 1995). As a result, the Air Force initiated a program to replace JP-4 with a safer, kerosene-based

fuel. After extensive tests, Commercial Jet A-1, a low-freezing-point kerosene fuel used by

commercial airlines, was determined to be a suitable replacement, and a military specification for JP-8 was

prepared and published in 1976 (Air Force 1987). JP-8 is identical to Jet A-l, except for the addition of a

fuel system icing inhibitor, a corrosion inhibitor, and a lubricity additive. For continental U.S. flights, U.S.

commercial airlines use Jet A, which is basically the same as Jet A-l with a higher freeze point, making it

unsuitable for military use (Air Force 1987). Properties of JP-8 were chosen to provide: (1) low volatility, as

measured by flashpoint (in order to minimize in-flight and post-crash aircraft fires); (2) low freezing point

(needed for high-altitude and worldwide operations); (3) high availability in wartime and low cost in

peacetime; and (4) compatibility with existing aircraft (Air Force 1989a). In 1979, the U.S. Air Force

switched from JP-4 to JP-8 for its operations in Great Britain (Air Force 1987). NATO has begun the

process of switching to JP-8 as the single fuel for land-based air and ground forces. This conversion to one

fuel for use by NATO ground and air forces is expected to result in substantial logistics and operations

benefits (Army 1989). The U.S. Air Force is currently planning a domestic conversion from naphtha-based

JP-4 jet fuel to distillate-based JP-8 jet fuel (Salthouse 1992).



JP-5 AND JP-8 106

4. PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL

4.4 DISPOSAL

Vapors generated in tank truck loading of jet fuels can be disposed of by the installation of a vapor recovery

system (NIOSH 1989). Runoff of jet fuels from loading and unloading aircraft operations can be separated by

an on-site oil/water separation system.

Several methods have been investigated for the disposal of jet fuels spilled onto soil from normal aircraft

operations or from accidental spills. One method, in situ soil venting, involves using vacuum blowers to pull

large amounts of air through soil contaminated with jet fuels (Elliot and DePaoli 1990). The vacuum pulls out

the soil gas, and the jet fuel contaminants volatilize as a result of disrupted equilibrium. Incineration of free-

product extracted from contaminated media is another method of disposal proposed for soils and water

contaminated with jet fuels (OHM/TADS 1985). Incineration of soils contaminated with jet fuels has also been

investigated (OHM/TADS 1985). Other methods include absorption (straw, polyurethane foam, activated

carbon, and peat have been used as absorbents), gelling agents, combustion promoters, dispersants, and

mechanical systems (OHM/TADS 1985). Biodegradation has also been suggested as a means of disposal for

spills onto soil (OHM/TADS 1985). Hydrocarbon-degrading bacteria have been shown to degrade petroleum

products into smaller units and eventually into nonseparable particles (Butt et al. 1988). Soil contaminated

with jet fuel no. 1 was found to have a growth response of 106 colony-forming units per mL in 7 out of 21

types of bacteria isolated for sample study (Butt et al. 1988). For more information on biodegradation, refer to

Chapter 5.

Wastes containing JP-5 and JP-8 are considered hazardous if they meet certain criteria specified by law.

Hazardous wastes are subject to the handling, transport, treatment, storage, and disposal regulations as

promulgated under the Resource Conservation and Recovery Act (HSDB 1998; IRPTC 1985). Regulations

governing the treatment and disposal of wastes containing JP-5 and JP-8 are detailed in Chapter 7.
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5.1 OVERVIEW

JP-5 and JP-8 are complex mixtures of aromatic and aliphatic hydrocarbons whose exposure potentials are

based on the mixtures themselves and on the individual components of the mixtures (primarily n-alkanes,

branched alkanes, benzene and alkylbenzenes, naphthalenes, and PAHs, particularly in the case of

environmental exposures once degradation begins). There are few methods for analyzing the environmental

fate of jet fuels per se; instead, methods are used to analyze the proportions of the component hydrocarbons

of jet fuels.

Jet fuel may be released to the environment by in-flight jettisoning of fuel and from spills or leaks to soil or

water during use, storage, or transportation. Jet fuel jettisoned from planes can be transported via airborne

dispersion, and some of it can be transformed photochemically to ozone and other components of smog. Jet

fuel may form aerosols as a result of reactions with atmospheric chemicals, but the specific composition of

the particulate material is not known. Most of the jet fuel released to water evaporates into the air. The more

volatile components of jet fuels (low molecular weight alkanes) evaporate from soil and water and enter the

atmosphere where they are degraded. Components with higher boiling points persist longer in soil and water.

Some components of JP-5 and JP-8 are soluble in water (e.g., the aromatics–benzene, toluene, and xylene).

Under turbulent water conditions, the more soluble hydrocarbons remain dissolved longer and may partition to

soils and sediments and be biodegraded. The rate and extent of biodegradation are dependent on the ambient

temperature, the presence of a sufficient number of microorganisms capable of metabolizing the component

hydrocarbons, the amount of aromatic species in the jet fuel, and the concentration of jet fuel. Some

components also volatilize or migrate through the soil to groundwater.

The National Occupational Exposure Survey conducted by NIOSH between 1980 and 1983 estimated that

1,076,5 18 employees (including 96,255 females) were exposed to kerosene, a primary component of JP-5

and JP-8, in the workplace. Worker exposure was most likely in industries associated with machinery and

special trade contractors. Populations most likely to be exposed to JP-5 and JP-8 include those involved in

jet fuel manufacturing or refueling operations, populations near an area where JP-5 or JP-8 have been

dumped, and populations working or living on military bases where the fuels are used or stored (and where

leaks and spills are likely to occur).
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JP-5 and JP-8 have been found in at least 22 of the 1,445 current or former EPA National Priorities List

(NPL) sites (HazDat 1997). However, the number of sites evaluated for JP-5 and JP-8 is not known. The

frequency of these sites can be seen in Figure 5-1. Of these sites, all are located in the United States.

5.2 RELEASES TO THE ENVIRONMENT

JP-5 and JP-8 are fuel mixtures used by the U.S. military and NATO as aviation fuels. As a result of

normal aircraft operations and fuel storage, JP-5 and JP-8 can be released into the environment. Under

some conditions, it is common practice for aircraft to jettison excess fuel into the air, releasing it into the

environment (IARC 1989).

Releases of JP-5 and JP-8 are not required to be reported under SARA Section 313; consequently, there are

no data for these compounds in the 1992 TRI (TR192 1994).

5.2.1 Air

JP-5 and JP-8 may be released into the air as vapors during aircraft loading and unloading operations or as

a result of their normal use as a jet fuel for military aircraft (Air Force 1981a; NIOSH 1989). Releases into

the air may also occur as a result of volatilization of JP-5 or JP-8 from contaminated soils or spill sites (Air

Force 1989b). Atmospheric emissions of jet fuels may be determined primarily by detection of their

volatile hydrocarbon components.

5.2.2 Water

Jet fuels may be released into surface water or groundwater as a result of leaking storage tanks and pipelines,

surface runoff of unburned fuel residue, airborne jettisoning of fuels, and spills during dispensing operations

and aircraft maintenance (Guiney et al. 1987a; Klein and Jenkins 1983). Leakage of jet fuels including JP-5

from storage tanks at the Patuxent Naval Air Test Center (NATC), Patuxent River, Maryland, has resulted in

“severe environmental insult” to a Navy fuel farm and adjacent areas (Navy 1988). During the winter of 1976-l

977 a pipeline connecting underground storage tanks ruptured, releasing an undetermined amount of JP-5 and

other jet fuels into the subsurface system. The existence and possible extent of groundwater contamination are

unknown; however, surface waters near the site are known to be contaminated with jet
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fuels including JP-5 (Arthur et al. 1992). On October 16, 1982, a crack in a petroleum pipeline near

Ebensburg, Pennsylvania, released an estimated 1,3 10 barrels of “aviation kerosene” into a stream (Guiney et

al. 1987a).

5.2.3 Soil

JP-5 and JP-8 may be released into soil as a result of accidental spills and leaks in underground or

aboveground storage tank systems. From March to June 1971, an accidental spill released more than 14 tons of

JP-5 jet fuel mixed with jet fuel no. 2 at a storage facility in Searsport, Maine (Dow et al. 1975). During the

winter of 1976-1977, soils at a fuel farm at Patuxent NATC, Patuxent River, Maryland, were

contaminated with an unknown quantity of JP-5 when a pipeline connecting underground storage tanks

ruptured (Arthur et al. 1992). Since that time, site investigations have revealed that the fuel has moved

through several acres of sandy soil to a depth of 20-30 feet (Arthur et al. 1992).

5.3 ENVIRONMENTAL FATE

5.3.1 Transport and Partitioning

The transport and dispersion of JP-5 and JP-8 are dependent on the water solubility and volatility of the

component hydrocarbon fractions. Lower molecular weight hydrocarbons such as n-alkanes may volatilize

relatively quickly from both water and soil, while larger aliphatics (greater than C9 chain length) may be

sorbed to organic particles in water or soil. Aromatic hydrocarbons will be dissolved in the aqueous phase in

both soil and water and may undergo some volatilization. Information on the specific physical and chemical

properties of several of the component hydrocarbons (e.g., benzene, toluene, xylene, and naphthalene) can be

found in the ATSDR toxicological profiles for these chemicals. The many hydrocarbons that compose JP-5

and JP-8 can be divided into a few groups of hydrocarbon classes with similar properties (Air Force 1989b).

These include paraffins (also called alkanes, which are saturated straight-chain hydrocarbons), cycloparaffrns

(saturated cyclic hydrocarbons), aromatics (fully unsaturated cyclic compounds), and olefins (also called

alkenes, which are unsaturated straight-chain and cyclic hydrocarbons). Paraffins and cycloparaffins (alkanes

and cycloalkanes) are the major hydrocarbon components of JP-5 and JP-8 and together constitute

approximately 80-90% by volume of the fuels (IARC 1989). Aromatics constitute approximately 17% of JP-8

and 18% of JP-5 (Army 1988). It is important to point out that the specific composition of jet fuels varies

among manufacturers and probably among batches (Air Force 1989a; DOD 1992). JP-5 and JP-8 may
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alone. The addition of sediments to water inhibited the evaporative removal of JP-8, apparently by adsorbing

the components of JP-8 and thus rendering them unavailable for evaporation (Dean-Ross et al. 1992).

Horizontal and vertical migration of JP-5 has been demonstrated by field observations and laboratory

experiments. Model soil core terrestrial ecosystems and outdoor soil cores were treated with JP-5 to mimic a

spill and watered to simulate rainfall (Air Force 1982a). The individual hydrocarbon components of JP-5

were found to vertically migrate to varying depths in quantities independent of one another, apparently

independent of aqueous leachate movement. Movement of JP-5 in the laboratory occurred to a depth of 50

cm with the majority of hydrocarbons being transported in the first 10 cm. Of the 14 hydrocarbons present,

only one component, 1,3,5-trimethylbenzene, was detected below 20 cm. Hydrocarbon components did not

persist past the 131st day of the experiment. The outdoor soil core showed movement of JP-5 to a 30-cm

depth. The majority of hydrocarbons were seen at 10,20, and 30 cm. Hydrocarbon components were

detectable in the core until the 173rd day of the experiment (Air Force 1982a). Horizontal and vertical

migration of jet fuels has also been confirmed by detection of JP-5 hydrocarbons in soil several meters from

the spill site (Arthur et al. 1992).

The movement of a synthetic kerosene through soil was found to be dependent on the moisture content of the

soil. The greater the moisture content (e.g., 4% compared with 0.8%) of the soil, the less the adsorption of the

more volatile components of the kerosene and the greater and more rapid the penetration of the liquid

component through the soil. Conversely, the upward mobility of both the liquid and vapor phases of kerosene

through soil decreased with increased moisture content, and at field capacity, the upward capillary movement

of the kerosene was completely inhibited (Acher et al. 1989). Desorption of a simulated kerosene applied to

three types of soil, each with a moisture content at 70% of field capacity, was found to be complete after 30

days of exposure to the atmosphere with the slowest desorption from the soil having the greatest organic

content (Yaron et al. 1989). Kerosene loss from a dune sand, a loamy sand, and a silty loam soil after 50 days

showed that volatilization of all kerosene components was greatest from the dune sand and loamy sand soils.

The larger pore size of these types of soil compared with the silty loam soil was thought to be the reason for

the increased volatilization (Galin et al. 1990a). Movement of kerosene through three grades of sand was

affected mainly by volatilization of the C9–C13 components with a subsequent increase in the viscosity of the

remaining kerosene residue and a decrease in the infiltration rate through the inert porous media (Galin et al.

1990b).
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The movement of kerosene through various types of soil over a 12-hour period was studied. Upward,

downward, and lateral movement was greatest in soil of the mica/kaolinite type (11% clay content)–40, 102,

and 45 cm, respectively. Movement through soils that were primarily kaolinite (clay content of 26-52%),

regardless of the direction, ranged between 20 and 33 cm (EPA 1986). Application of herbicides such as S-

ethyl dibutylthiocarbamate to a field using kerosene as a solvent (up to a volume of 40 gallons per acre)

increased the inactivation of the herbicide on soil, whereas acetone, benzene, and xylene did not. The

accelerated inactivation possibly resulted from a change in surface tension that facilitated the volatilization of

the herbicide from the soil (Danielson and Gentner 1970).

Studies on the permeability of compacted micaceous soil used as a potential liner for landfills found that the

permeability of the soil to kerosene varied from three to four orders of magnitude greater compared with water

(EPA 1984).

Aquatic organisms are known to bioconcentrate hydrocarbons. Flagfish exposed to concentrations of 1.0-6.8

mg/L JP-8 in surrounding water (from the egg stage to posthatching) have been found to accumulate JP-8

(Klein and Jenkins 1983). The mean concentration of JP-8 in whole-body tissue samples increased with

increasing concentration of the WSF of the fuel. The bioconcentration factor (BCF), expressed as the ratio of

the concentration in tissue to the concentration of the WSF of JP-8 in the aqueous environment, was found to

be 159 (log value = 2.2). Adult flagfish exposed to 2.54 mg/L, for 14 days yielded a BCF of 130 (log value

=2.1). Adult flagfish that were placed in uncontaminated water exhibited a depuration rate similar to the

accumulation rate. Similar experiments with rainbow trout showed no relationship between JP-8

concentrations in surrounding water and whole-body concentrations in the fish. The relatively low BCF of 63-l

12 (log value = 1.8-2.1) calculated for rainbow trout indicates that the WSF of JP-8 does not

concentrate as readily in this species.

5.3.2 Transformation and Degradation

5.3.2.1 Air

No studies on the transformation or degradation of JP-5 or JP-8 in the atmosphere were located. However,

volatile components of jet fuels such as benzene, toluene, xylenes, and PAHs may be expected to enter the

atmosphere where they are subjected to degradation processes. Further information on the atmospheric

degradation of selected volatile hydrocarbons is presented in the ATSDR toxicological profiles for these
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chemicals (ATSDR 1989, 1990, 1995a, 1995b). Studies on JP-4, a jet fuel mixture of gasoline and kerosene,

indicate that jet fuels react photochemically in air in the presence of nitrogen oxide compounds to form ozone,

but the effect of temperature on the nitrous oxide oxidation rate is uncertain (Air Force 1981 b, 1982b).

Reactions of JP-4 produce large amounts of aerosol material (Air Force 1981b), and it should be noted that JP-

4 has a considerable gasoline component compared to straight kerosene.

5.3.2.2 Water

Biodegradation of jet fuels is dependent on the degradation of the various hydrocarbon fractions present in

the oils. The relative order for biodegradation of the hydrocarbon fractions from the most readily degraded to

the least is as follows: n-alkanes, iso-alkanes, olefins, low molecular weight aromatics (at low, nontoxic

concentrations), PAHs, and cycloalkanes (Bartha and Atlas 1977; Edgerton et al. 1987).

Conflicting data exist on the biodegradation of jet fuels and kerosene. Biodegradation of JP-8 in water was

studied using quiescent flask test systems (Dean-Ross et al. 1992). Microbial activity in flasks of water

incubated at 30°C on a shaker at 200 revolutions per minute for 4 days was inhibited by all concentrations of

JP-8 tested (0.0l%, 0.l%, 1%), as indicated by a depression of glucose mineralization in comparison to a

control. The study authors suggested that one possible explanation for the lack of biodegradation in water

samples is the toxicity of JP-8 to microorganisms, which may severely inhibit microbial activity (Dean-Ross et

al. 1992).

Microorganisms readily able to degrade hydrocarbons were found in the Neuse River estuary in North

Carolina. Although the estuary was relatively free of hydrocarbon contamination, 63% of the bacteria and

71% of the fungi isolated from surface water samples were able to utilize kerosene as the sole carbon source

(Buckley et al. 1976). Weathered kerosene (volatile components were allowed to escape prior to testing) was

spiked with four hydrocarbon markers, and the degradation of the markers was monitored. All four markers

were degraded by a water-sediment mixture from an “oiled arm” of an Ohio lake; more rapid-degradation was

associated with mixtures taken from relatively polluted areas of the lake (Cooney et al. 1985), suggesting that

biodegradation is enhanced by the presence of acclimated microorganisms. Marine bacteria capable of using

jet fuel no. 1 were isolated from Narragansett Bay, Rhode Island. Most of the bacteria were found to utilize the

aliphatic components of the jet fuel, primarily hexadecane, while only a few of the bacteria were able to

degrade the aromatic components. The bacteria were able to degrade the hexadecane at 0 °C, but degradation

was significantly improved when the incubation temperature was increased to 8 °C and 16 °C; similar but not
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such dramatic effects were seen in the degradation of naphthalene with increased temperature (Cundell and

Traxler 1976).

Petroleum residues were measured in the northern Arabian Sea to assess the contamination following the oil

spills resulting from the Gulf War in 1991. Little change in variables related to oil pollution took place in any

compartment of the marine environment-water, plankton, fish, or sediments (Sengupta et al. 1993).

5.3.2.3 Sediment and Soil

Ample evidence exists to indicate that kerosene, JP-5, and JP-8 are biodegraded in soil. Microbial

degradation in soils is greatest for the aromatic fractions of jet fuels, while the biodegradation of the aliphatic

hydrocarbons decreases with increasing carbon chain length. Evaporation is the primary fate process for these

aliphatics (Air Force 1989b).

Application of JP-5 to terrestrial soil core ecosystems and outdoor soil cores resulted in a stressed condition

as indicated by an increased rate of carbon dioxide (CO2) production within 1 day of application (Air Force

1982a). The carbon dioxide production of the cores returned to a rate almost comparable to that of the

controls following the increase. A possible reason for this increase was increased activity of microorganisms

that utilize the component hydrocarbons of JP-5. The study authors concluded that soil microbes are able to

degrade JP-5 in cultures inoculated with soil organisms (Air Force 1989a). In a quiescent flask study, JP-8 was

found to be nontoxic to sediment microorganisms (Dean-Ross et al 1992). The study authors found that

removal of some components of JP-8 from active soil (soil containing microorganisms) was significantly faster

than removal in sterilized soil. Subsurface microorganisms present at a fuel spill at Patuxent NATC were able

to utilize JP-5 as their sole carbon source (Navy 1988). The study author concluded that potential exists for

promoting in situ biodegradation of some of the hydrocarbon components by stimulating the growth of

indigenous microflora. Although most soils contain microorganisms capable of degrading hydrocarbons in

situ, the factors that limit the bioremediation process (e.g., restricted bioavailability of the contaminant,

nutrient limitations, potential toxicity of fuel hydrocarbons and associated contaminants, inadequate

reduction/oxidation [redox] potential, inadequate or excessive moisture, acidic or basic conditions, and oxygen

deficiency) need to be overcome in order to stimulate the degradation of jet fuels in soil and groundwater

(Arthur et al. 1992).
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The degradation of kerosene in soil was studied when a pipeline ruptured and showered a wheat field with

kerosene. After 6 months, the kerosene concentration began to decrease in the upper 30 cm of soil (with

C13-C17 n-alkanes disappearing more rapidly compared with Cl0-C12 n-alkanes) and at 21 months was

reduced to trace amounts; however, kerosene was still detected at soil depths of 30-45 +cm. The study

authors interpreted this as indicating reduced aerobic biodegradation at this depth, especially since the

compounds disappeared in the order of their preferential microbial utilization. Seed germination studies

using the contaminated soil 1 year after the spill (0.34% kerosene concentrations) showed that kerosene

delayed seed germination but that the percent germination was unaffected (Dibble and Bartha 1979).

Landfarming techniques (tillage of soil using agricultural implements) developed in The Netherlands to

enhance biodegradation of contaminants demonstrated that after one growing season, kerosene (initial

concentration of 1,000-10,000 mg/kg dry matter) was significantly degraded (final concentration of 500

mg/kg dry matter) in 40 cm of soil (Soczo and Staps 1988).

The addition of nitrogen (as urea) to soil increases the biodegradation potential of kerosene; however,

kerosene was found to inhibit the urease activity of soil microbes by up to 35%, suggesting that sources of

nitrogen other than urea should be used (Frankenberger 1988). The bacterial species in the genera

Achromobacter, Pseudomonas, and Alcaligenes, isolated from the soil of an active oil field in Louisiana,

were able to aerobically degrade kerosene as determined by oxygen uptake (Cooper and Hedrick 1976). Soil

Pseudomonas were able to degrade kerosene to a greater extent than were Enterobucter with stationary

phases occurring after 10 days and 8 days, respectively (Butt et al. 1988). Seven years after the dumping of

sludge containing kerosene at two sites, vegetation at each site showed little recovery. Although the bacterial

biomass had declined at both sites, microbial activity, as determined by carbon dioxide evolution, was greater

at the site that had received more precipitation and had the more aerated soil (Jones 1977).

Oxidation of kerosene by soil microbes, as determined by dehydrogenase activity, increased with increasing

loading rates (up to 60% w/w oil/dry soil) for up to seven days of incubation but decreased thereafter.

Dehydrogenase activity in soil treated with kerosene was 32 µg formazan/g soil/24 hours (Frankenberger and

Johanson 1982).

5.4 LEVELS MONITORED OR ESTIMATED IN THE ENVIRONMENT

Reliable evaluation of the potential for human exposure to JP-5 and JP-8 depends in part on the reliability of

supporting analytical data from environmental samples and biological specimens. In reviewing data on JP-5
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and JP-8 levels monitored or estimated in the environment, it should also be noted that the amount of

chemical identified analytically is not necessarily equivalent to the amount that is bioavailable. The analytical

methods available for monitoring JP-5 and JP-8 in various environmental media are detailed in chapter 6.

5.4.1 Air

JP-5 and JP-8 can enter the atmosphere through evaporation from spills and leaks, vaporization during

fueling operations, and burning in engines. In a “third generation closed aircraft shelter,” which has

approximately three times the interior volume of a “first generation closed aircraft shelter,” the concentration

of JP-8 in the air was measured as 12 mg/m3 during refueling operations. In the immediate vicinity of the

refueler technician, JP-8 concentrations were determined to be below 22 mg/m3 (Air Force 198la). In contrast,

concentrations of JP-4 (a more volatile jet fuel than either JP-5 or JP-8) ranged from 75 to 267 mg/m3 in a

similar structure during fueling operations. Concentrations of JP-4 in a first-generation

shelter ranged from 533 to 1,160 mg/m3 (Air Force 1981a).

A study by Puhala et al. (1997) examined jet fuel vapor exposures at three U.S. Air Force bases in the

United States. At the time of sampling, JP-8 was only used at one base, JP-5 and JP-8 at another, and a

third used only JP-4. Breathing zone samples were collected for workers in aircraft maintenance, fuel

handling, and flight-line positions.

Mean exposure concentrations for all samples collected were 0.01 ppm benzene (SD=0.0l) and 1.33 ppm

naphthas (SD=l.95) for aircraft maintenance positions; 0.01 ppm benzene (SD=0.0l) and 0.61 ppm

naphthas (SD=0.90) for fuel handling positions, and 0.004 ppm benzene (SD=0.005) and 0.33 ppm

naphthas (SD=0.40) for flight-line positions.

5.4.2 Water

No data were located that discussed specific levels of JP-5 or JP-8 in water. During October of 1983, a

leaking pipeline south of Ebensburg, Pennsylvania, released approximately 1,310 barrels of “aviation

kerosene” into a trout stream (Guiney et al. 1987a, 1987b). Total organic carbon (TOC) content in the

stream water was approximately 30-60 ppm during the initial few months following the spill, which is

approximately 1.5-2 times greater than background (Guiney et al. 1987b). During the winter of 1976-1977,
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a leak of unknown quantity in a pipeline at Patuxent NATC in Maryland resulted in surface water

contamination and possible groundwater contamination by JP-5 (Arthur et al. 1992).

5.4.3 Sediment and Soil

No data were located that discussed specific levels of JP-5 or JP-8 in sediments and soil. An unknown

quantity of JP-5 leaked from a pipeline during the winter of 1976-1977 at Patuxent NATC in Maryland,

resulting in several acres of soil contamination to a depth of 20-30 feet (Arthur et al. 1992).

5.4.4 Other Environmental Media

No data were located that discussed specific levels of JP-5 or JP-8 in other environmental media such as

foodor terrestrial or aquatic plants and animals. Concentrations of kerosene-range hydrocarbons in fish

collected during the year following an “aviation kerosene” leak into a trout stream ranged from 2.60 to 14.37

ppm by weight (Guiney et al. 1987b). Shellfish taken from unpolluted waters have been found to contain

between 1 and 12 µg/g wet weight of total hydrocarbons, while fish have been found to contain between 4 and

14 µg/g total hydrocarbons (steam distillable) (Connell and Miller 1980).

5.5 GENERAL POPULATION AND OCCUPATIONAL EXPOSURE

The National Occupational Exposure Survey, conducted by NIOSH between 1980 and 1983, estimated that

1,076,518 employees were exposed to kerosene in the workplace (NOES 1992).

Exposure of the general population to JP-5 and JP-8 is most likely to be limited to populations living on or

near a military installation where JP-5 or JP-8 are utilized. Unintentional exposure to JP-5 and JP-8 may

occur as a result of groundwater contamination from spilled jet fuels or contact with soils that have been

contaminated with jet fuels. Occupational exposure will occur in individuals involved in the production of

kerosene and JP-5 and JP-8, fueling and defueling aircraft, and cleaning up spills and leaks of jet fuel.

5.6 POPULATIONS WITH POTENTIALLY HIGH EXPOSURES

Military workers involved in fueling and defueling operations may be exposed to higher levels of JP-5 and

JP-8 than members of the general population (Air Force 1981a). Maintenance workers who monitor jet fuel
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storage tanks may be exposed to JP-5 and JP-8 via inhalation of jet fuel vapors. Maintenance workers may

also be dermally exposed to jet fuels while sampling, gauging, and draining water (condensation) from fuel

storage tanks (NIOSH 1989). Workers in the petroleum industry may receive intermittent inhalation, oral,

and dermal exposure to kerosene and jet fuels during the refining process. Exposure is most likely to occur

during the distillation of crude oil, when monitoring and servicing of equipment are carried out, or when

sampling must be done (Runion 1988). Use of a respirator, protective clothing, and increased ventilation can

all reduce worker exposure to jet fuel vapor. The use of JP-8 rather than JP-4 reduces occupational exposure to

jet fuel vapors for maintenance workers and pilots because the vapor pressure of JP-8 is an order of magnitude

less than JP-4 at 38°C. This results in less vapor being vented from JP-8-fueled aircraft than JP-4-fueled

aircraft (Air Force 1981a). The similarly low volatility of JP-5 suggests that reduced exposure to JP-5 vapors

will also occur in aircraft fueled with JP-5.

5.7 ADEQUACY OF THE DATABASE

Section 104(I)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether adequate

information on the health effects of JP-5 and JP-8 is available. Where adequate information is not available,

ATSDR, in conjunction with the NTP, is required to assure the initiation of a program of research designed to

determine the health effects (and techniques for developing methods to determine such health effects) of

JP-5 and JP-8.

The following categories of possible data needs have been identified by a joint team of scientists from

ATSDR, NTP, and EPA. They are defined as substance-specific informational needs that if met would

reduce the uncertainties of human health assessment. This definition should not be interpreted to mean that

all data needs discussed in this section must be filled. In the future, the identified data needs will be evaluated

and prioritized, and a substance-specific research agenda will be proposed.

5.7.1 Identification of Data Needs

Physical and Chemical Properties. The physical and chemical properties of JP-5 and JP-8 (kerosene)

and their primary component chemicals are well defined and can be used to estimate the fate of these jet fuels

following release to the environment (Air Force 1989b; IARC 1989). However, because jet fuels are

complex mixtures of hydrocarbons, their environmental fate is determined by both the characteristics of the
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mixture and the individual components, making modeling based on physical and chemical properties difficult.

Data needs associated with specific compounds that are components of JP-5 and JP-8 (e.g., benzene, toluene,

xylene, and PAHs) are presented in the ATSDR toxicological profiles for these chemicals (ATSDR 1989,

1990,1995a, 1995b).

Production, Import/Export, Use, Release, and Disposal. According to the Emergency Planning

and Community Right-to-Know Act of 1986,42 U.S.C. Section 11023, industries are required to submit

chemical release and off-site transfer information to the EPA. The Toxics Release Inventory (TRI), which

contains this information for 1994, became available in May of 1996. This database will be updated yearly

and should provide a list of industrial production facilities and emissions.

JP-5 and JP-8 are used primarily as military aviation fuels (Air Force 1989b; IARC 1989). Most releases of

jet fuels are the result of in-flight jettisoning of fuel and spills either on land or water (Arthur et al. 1992;

IARC 1989). Few data are available on current production and import/export volumes for JP-5 and JP-8.

Further information on the production volumes for each jet fuel, environmental releases, and disposal of jet

fuels would aid in assessing the potential for human exposure as a result of accidental or intentional release.

Environmental Fate. The environmental fate of JP-5 and JP-8 is based on the environmental

partitioning of the major hydrocarbon fractions. For aliphatic hydrocarbons, volatilization of lower molecular

weight alkanes and sorption to organic matter for larger aliphatics, followed by biodegradation, are the

primary degradation processes (Air Force 1982a; Cooney et al. 1985; Dean-Ross et al. 1992). Aromatic

components are most susceptible to biodegradation in warm water or soil, although some volatilization may

occur in colder waters (Walker et al. 1976). Jet fuel contaminants that migrate through soil may contaminate

groundwater. The deposition of aliphatics from the water column may persist for over a year (Oviatt et al.

1982). Jet fuel that spills or leaks into soil can migrate both vertically and horizontally (Air Force 1982a). JP-5

and JP-8 jettisoned into the atmosphere probably contribute photochemically to the formation of ozone and

particulates (Air Force 1981b, 1982b), and some of the fuel components and reactant products are probably

transported via wind dispersion. Environmental fate data needs associated with specific compounds that are

components of JP-5 and JP-8 (e.g., benzene, toluene, xylene, and PAHs) are presented in the ATSDR

toxicological profiles for these chemicals (ATSDR 1989, 1990, 1995a, 1995b). Information on light- and

chemical-mediated reactions of jet fuel components would aid in determining the fate of JP-5 and JP-8 in soil

and water. More information on the fate of individual components of JP-5 and JP-8 under varying

environmental conditions, including the interaction of JP-5 and JP-8 with different soil types, would be
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helpful in determining any horizontal and vertical migration patterns of jet fuels in contaminated groundwater

systems.

Bioavailability from Environmental Media. The extent of absorption of JP-5 and JP-8 by inhalation,

oral, and/or dermal routes is unknown. However, toxicity data are available for humans exposed to jet fuels

and kerosene by each of these routes (Porter 1990; Subcommittee on Accidental Poisoning 1962). These

data indicate that absorption does occur. The extent of absorption by these routes depends on the volatility,

solubility, lipophilicity, and other properties of the specific jet fuel components. Several of these component

compounds have been discussed in their individual ATSDR toxicological profiles (e.g., benzene, toluene,

xylene, and PAHs), which should be consulted for further information (ATSDR 1989, 1990,1995a, 1995b).

More data linking exposure levels of jet fuels with biological levels of component chemicals would be useful

in determining which chemicals in the mixture are most likely to be absorbed and by which routes. This

information would aid in determining daily human exposure levels and more accurately assessing the risks

associated with exposure to jet fuels.

Food Chain Bioaccumulation.  Data on the bioaccumulation of JP-8 in flagfish, rainbow trout, and

golden shiners suggest that bioaccumulation and biomagnification are low (Klein and Jenkins 1983). Aquatic

organisms are able to bioaccumulate some hydrocarbon fractions; however, depuration occurs if the source of

the contamination is removed (Klein and Jenkins 1983). JP-5 and JP-8 are expected to separate into their

individual hydrocarbon components in the environment, and the bioaccumulation potentials of these

components are believed to be independent of each other. Further studies are needed to determine the

biomagnification potentials of these components up the food chain within aquatic and terrestrial ecosystems.

Specific research needs are presented in the individual ATSDR toxicological profiles on specific hydrocarbon

components such as benzene, toluene, xylenes, and PAHs (ATSDR 1989,1990a, 1995a, 1995b). Research on

the biomagnification of jet fuels as actual mixtures would not be useful because they are not available to the

food chain as mixtures.

Exposure Levels in Environmental Media. Reliable monitoring data for the levels of JP-5 and JP-8

in contaminated media at hazardous waste sites are needed so that the information obtained on levels of JP-5

and JP-8 in the environment can be used in combination with the known body burden of JP-5 and JP-8 to

assess the potential risk of adverse health effects in populations living in the vicinity of hazardous waste sites.

There is limited information available on the levels of jet fuels found in air, soil, or water where jet fuels are

used or stored.  Some information exists on the levels of JP-8 in the air in closed buildings during refueling
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operations (Air Force 198 1 a). Very little information is available for JP-5 or JP-8 concentrations in soil,

water, and other environmental media (Arthur et al. 1992; Guiney et al. 1987a, 1987b; Navy 1988). More

data on levels of jet fuels or their components in the environmental media around facilities where jet fuels are

produced, stored, and used would be useful to assess the potential risk from these likely sources of exposure.

Reliable monitoring data for the levels of JP-5 and JP-8 in contaminated media at hazardous waste sites are

needed so that the information obtained on levels of JP-5 and JP-8 in the environment can be used in

combination with the known body burdens of JP-5 and JP-8 to assess the potential risk of adverse health

effects in populations living in the vicinity of hazardous waste sites.

Exposure Levels in Humans. Populations known to have an increased risk of exposure to JP-5 and

JP-8 and their component hydrocarbons include: workers who manufacture or use the fuels; workers

involved with monitoring and servicing jet fuel storage tanks; people living or working on military

installations where jet fuels are used or stored; and populations living or working near a spill, leak, or

dump site (Air Force 1981a; NIOSH 1989; Runion 1988). Further information is needed to assess the

approximate levels of exposure for these populations. This information is necessary for assessing the need

to conduct health studies on these populations.

Exposure Registries. No exposure registries for JP-5 and JP-8 were located. These substances are not

currently one of the compounds for which a subregistry has been established in the National Exposure

Registry. The substance will be considered in the future when chemical selection is made for subregistries to

be established. The information that is amassed in the National Exposure Registry facilitates the

epidemiological research needed to assess adverse health outcomes that may be related to exposure to this

substance.

5.7.2 Ongoing Studies

An investigation into the development of JP-8 with improved thermal oxidative stability isbeing

conducted by the U.S. Air Force (FEDRIP 1994). The U.S. Navy is conducting an investigation into

developing a membrane extraction process for shipboard recovery of the JP-5 icing inhibitor additive from

water separated from JP-5 aviation turbine fuel. This technology will enable reblending of the additive

(FEDRIP 1994).
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As part of the Third National Health and Nutrition Evaluation Survey (NHANES III), the Environmental

Health Laboratory Sciences Division of the National Center for Environmental Health, Centers for Disease

Control and Prevention, will be analyzing human blood samples for JP-5 and JP-8 and other volatile organic

compounds. These data will give an indication of the frequency of occurrence and background levels of these

compounds in the general population.
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The purpose of this chapter is to describe the analytical methods that are available for detecting, and/or

measuring, and/or monitoring JP-5 and JP-8, its metabolites, and other biomarkers of exposure and effect to

JP-5 and JP-8. The intent is not to provide an exhaustive list of analytical methods. Rather, the intention is

to identify well established methods that are used as the standard methods of analysis. Many of the analytical

methods used for environmental samples are the methods approved by federal agencies and organizations such

as EPA and the National Institute for Occupational Safety and Health (NIOSH). Other methods presented in

this chapter are those that are approved by groups such as the Association of Official Analytical Chemists

(AOAC) and the American Public Health Association (APHA). Additionally, analytical methods are included

that modify previously used methods to obtain lower detection limits, and/or to improve accuracy and

precision.

6.1 BIOLOGICAL SAMPLES

No analytical methods were located for detecting either JP-5 or JP-8 in biological materials. JP-5 and JP-8,

however, are both primarily composed of kerosene (Air Force 1989a; Army 1988; DOD 1992), for which

analytical methods for detection in biological samples do exist. See Table 6-l for a summary of the analytical

methods most commonly used to measure kerosene in biological samples. For more analytical methods

information, see the previous profiles on some of the individual hydrocarbon components of JP-5 and JP-8

(e.g., benzene, toluene, xylenes, and PAHs) (ATSDR 1989, 1990, 1995a, 1995b).

The primary method for detecting kerosene in biological materials such as blood is gas chromatography

(GC). GC may be combined with mass spectroscopy (MS) for peak identification with the gas chromatograph

in the electron impact mode (Kimura et al. 1988,199l). Quantification methods include the use of mass

fragmentography (Kimura et al. 1988). Hydrocarbon components of kerosene are determined based on

analysis of headspace gas above the sample (Kimura et al. 1991). This method is useful to distinguish between

kerosene intoxication and gasoline intoxication since kerosene gives a high toluene peak and has a

pseudocumene-to-toluene ratio only half that of gasoline. Capillary columns were used, with either Porapak,

ChromosorbB, or ChemipakB, giving acceptable results (Kimura et al. 1988). The percent recoveries of these

methods were not provided. Wide-bore capillary columns have also been used (Hara et al. 1988) for GC/MS

analysis combined with flame ionization detectors (FTD). This method determined levels of m-and
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o-xylene (components of kerosene) in the blood, urine, and stomach contents. The sensitivity and precision

of this method was generally good (93-100% recovery).

No analytical methods studies were located for detecting kerosene in biological samples other than blood,

urine, or stomach contents.

6.2 ENVIRONMENTAL SAMPLES

Because JP-5 and JP-8 are composed of a complex mixture of hydrocarbons, there are few methods for the

environmental analysis of the actual mixtures (IARC 1989). However, methods are reported for the analysis of

the component hydrocarbons of kerosene. The methods most commonly used to detect the major hydrocarbon

components of kerosene in environmental samples are GCEID and GC/MS. See Table 6-2 for a summary of

the analytical methods used to determine hydrocarbon components in environmental samples. Several of the

components of kerosene and jet fuels have been discussed in detail in their individual toxicological profiles

(e.g., benzene, toluene, xylenes, and PAHs), which should be consulted for more information on analytical

methods (ATSDR 1989,1990,1995a, 1995b).

GC is the most commonly used method to selectively detect, identify, and quantify the volatile hydrocarbon

components of kerosene in air (Andrasko 1983; Baldwin 1977; NIOSH 1994a). Air samples may be

collected on adsorbent tubes such as charcoal, Plorisil®, Tenax®, Porapak®, or Chromosorb®. Active

carbon wires have also been used (Andrasko 1983). The hydrocarbons are extracted from the tubes by

thermal desorption or with a liquid solvent such as carbon disulfide and analyzed on the gas chromatograph.

Precision is good (relative standard deviation = 0.052) using the charcoal tubes (NIOSH 1994a); recovery data

were not reported for the other types of adsorption tubes, although desorption from the active carbon wires

ranged between 90 and 99% recovery, with a detection limit in the ppb range. A Tenax-TA®. Sorbent trap has

been used with subsequent thermal desorption (Andrasko 1983). Combining sample concentration with the

headspace method allows for sampling of smaller air volumes and for other environmental samples, such as

kerosene combustion debris, that have undergone significant evaporation. The headspace method requires

concentrating the sample prior to analysis (Andrasko 1983; Baldwin 1977).

GC/FID and GC/MS have been used to measure the water-soluble components of kerosene in industrial

effluents and estuarine water (Bianchi et al. 1991), sea water (Boylan and Tripp 1971), drinking water
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(Coleman et al. 1984; Dell’Acqua and Bush 1973), and groundwater (Thomas and Delfino 1991). Purgeand-

trap sample preparation methods have been used to determine purgeable (volatile) aromatic compounds in

stream water contaminated by an “aviation kerosene” spill (Guiney et al. 1987b). This method requires a trap

with a Tenax®/ChromosorbB absorbent and the use of a gas chromatograph with a photoionization detector

(PID) (EPA 1991b), an ion trap detector (ITD), or FID (Guiney et al 1987b; Thomas and Delfino 1991). A

modification of the purge-and-trap method uses ambient temperatures, has the advantage of being applicable

to a variety of waters, requires virtually no sample preparation (no solvents are required), and has an analysis

time of approximately 30 minutes (Bianchi et al. 1991). While this method may be used for determining the

presence of petroleum contaminants in water, it cannot distinguish between various sources of this

contamination.

Distinctions between WSFs of mixed hydrocarbons may be made by using solvent extraction of the

watersoluble base/neutral and acid fractions with methylene chloride (EPA 1991b; Thomas and Delfino 1991).

This separation of base/neutral and acid fractions till permit GC resolution of the type of water-soluble

hydrocarbons present in the aqueous phase. Hexane has also been used as a solvent (Dell’Acqua and Bush

1973), as has pentane (Coleman et al. 1984).

A dynamic thermal stripper has also been used to detect low levels (ppb range) of kerosene present in water

samples (Belkin and Esposito 1986). This method traps the fuels on an adsorption tube using helium gas for

purging. The fuel is then thermally desorbed and backflushed to a gas chromatograph with FID. This

method also does not require any solvent and needs only a 15mL sample. Recovery for this method is good

(91-114%) with precision ranging from 6.4 to 14.3% relative standard deviation. A modified Grob closed-

loop-stripping method, which uses a wall-coated open tubular glass capillary column combined with GC/MS,

has been used to extract and quantify low levels (ppt) of hydrocarbons in water samples. The method

continually recirculates an ambient air stream through the 3.8-L water sample for approximately two hours and

collects the vapor on an activated carbon filter, followed by extraction with carbon disulfide and analysis

(Coleman et al. 1981).

GC/FID (Galin et al. 1990a), gas liquid chromatography (GLC) with FID (Midkiff and Washington 1972),

and elevated temperature purge and trap with GC (Chang et al. 1992) have been used to measure jet fuels in

soils. Sediments of a trout stream contaminated with “aviation kerosene” were analyzed for hydrocarbon

residues using GC/FID (Guiney et al. 198713). Carbon tetrachloride is the recommended solvent because

causes less interference with the chromatographic peaks of the jet fuels (Galin et al. 1990a; Midkiff and
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Washington 1972). Synchronous scanning fluorescence spectroscopy can be used to identify kerosene and

other aromatic-containing products in groundwater and soil samples. This analytical method is more efficient

than chromatographic methods, and its spectra are easier to interpret for identification purposes (Pharr et al.

1992).

High-performance liquid chromatography (HPLC), followed by GC/MS, has been used to fractionate and

then quantitate the aliphatic and aromatic hydrocarbons present in liquid fuel precursors in order to determine

the fuel potential of the compounds. Kerosene has the advantage of not requiring any sample preparation. An

alternative method for fractionating and purifying petroleum hydrocarbons prior to GC or HPLC separation

has been developed (Theobald 1988). The method uses small, prepacked, silica or C18 columns that offer these

advantages: rapid separation (approximately 15 minutes for a run); good recovery of hydrocarbons (85% for

the C18 column and 92% for the silica column); reusability of the columns; and for the silica column in

particular, good separation of hydrocarbon from nonhydrocarbon matrices as may occur with environmental

samples.

Tissue of fish from a trout stream contaminated with “aviation kerosene” were analyzed for kerosene-range

hydrocarbon residues using standard GC/FID techniques (Guiney et al. 1987b). GC analyses of the fish

samples revealed greater than 95% recovery.

6.3 ADEQUACY OF THE DATABASE

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether adequate

information on the health effects of JP-5 and JP-8 is available. Where adequate information is not available,

ATSDR, in conjunction with the NTP, is required to assure the initiation of a program of research designed to

determine the health effects (and techniques for developing methods to determine such health effects) of JP-5

and JP-8.

The following categories of possible data needs have been identified by a joint team of scientists from

ATSDR, NTP, and EPA. They are defined as substance-specific informational needs that if met would

reduce the uncertainties of human health assessment. This definition should not be interpreted to mean that

all data needs discussed in this section must be filled. In the future, the identified data needs will be evaluated

and prioritized, and a substance-specific research agenda will be proposed.
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6.3.1 Identification of Data Needs

Methods for Determining Biomarkers of Exposure and Effect.

Exposure. No biomarkers of exposure were identified for JP-5 or JP-8. While standard procedures exist for

identifying or quantifying exposure to volatile compounds based on hydrocarbon components in blood, urine,

and stomach contents (Hat-a et al. 1988; Kimura et al. 1988, 1991), none of these are applicable solely to jet

fuels. These methods are sensitive enough to measure the levels at which health effects occur and may be

adequate for determining background levels in the population. However, they cannot distinguish between

exposure to JP-5 and JP-8 and to other types of hydrocarbon mixtures. Biomonitoring studies are needed to

assess exposure to JP-5 and JP-8 adequately.

Effect. No biomarkers of effects were identified for JP-5 or JP-8 because the effects associated with

exposure to jet fuels are not unique for them, i.e., the effects may be caused by other chemicals or

hydrocarbon mixtures. General neurologic effects such as loss of coordination, headache, fatigue,

intoxication, dizziness, difficulty concentrating, moodiness, and sleep disturbances were observed in people

exposed to general “jet fuel” and JP-5 vapors (Knave et al. 1978; Porter 1990). These effects are not used as

biomarkers of effect because they are nonspecific and could also indicate exposure to other chemicals or

hydrocarbons. No standard procedures exist for identifying and quantifying biomarkers of effect for JP-5 or

JP-8.

Methods for Determining Parent Compounds and Degradation Products in Environmental

Media. Methods exist to detect major hydrocarbon components of JP-5 and JP-8 in air (Andrasko 1983;

Baldwin 1977; NIOSH 1994a), water (Bianchi et al. 1991; Boylan and Tripp 1971; Dell’Acqua and Bush

1973; EPA 1991b; Guiney et al. 1987b), sediment (Guiney et al. 1987b), soil (Galin et al. 1990a; Midkiff

and Washington 1972), and biological media (Guiney et al. 1987b). The most commonly used methods are

GC/FlD and GC/MS. These methods are relatively sensitive, selective, and reliable and can be used to detect

the levels of the various components of jet fuels found in the environment and the levels at which health

effects occur.



JP-5 AND JP-8 135

6. ANALYTICAL METHODS

6.3.2 Ongoing Studies

The Environmental Health Laboratory Sciences Division of the National Center for Environmental Health,

Centers for Disease Control and Prevention, is developing methods for the analysis of JP-5 and JP-8 and

other volatile organic compounds in blood. These methods use purge and trap methodology, high resolution

gas chromatography, and magnetic sector mass spectrometry which gives detection limits in the low parts

pertrillion (ppt) range.

No other on-going studies were located for JP-5 or JP-8.
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7. REGULATIONS AND ADVISORIES

The international, national, and state regulations and guidelines regarding JP-5 and JP-8 in air, water, and

other media are summarized in Table 7- 1. There are only a few regulations specific to JP-5 and JP-8;

however, a number of regulations exist for kerosene and other components of jet fuels.

An intermediate inhalation MRL of 3 mg/m3 was derived for JP-5 and JP-8 from the study by Gaworski et al.

(1984) in which hepatocellular fatty changes and vacuolization were observed in mice exposed to JP-5 at 150

mg/m3 continuously for 90 days. Similar effects on the liver were also observed at 750 mg/m3.

EPA has not verified a reference dose (RfD) or reference concentration (RfC) for JP-5 or JP-8 (IRIS 1998).

Under the Hazardous Materials Transportation Act, aviation fuel is designated as a hazardous substance

subject to special requirements for packaging, labeling, and transportation (DOT 1989a, 1989b). EPA has

established guidelines to control air pollution from aircraft and aircraft engines (EPA 1982).
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Acute Exposure-Exposure to a chemical for a duration of 14 days or less, as specified in the Toxicological
Profiles.

Adsorption Coefficient (KOC)-The ratio of the amount of a chemical adsorbed per unit weight of organic
carbon in the soil or sediment to the concentration of the chemical in solution at equilibrium.

Adsorption Ratio (Kd)-The amount of a chemical adsorbed by a sediment or soil (i.e., the solid phase)
divided by the amount of chemical in the solution phase, which is in equilibrium with the solid phase, at a
fixed solid/solution ratio. It is generally expressed in micrograms of chemical sorbed per gram of soil or
sediment.

Bioconcentration Factor (BCF) -The quotient of the concentration of a chemical in aquatic organisms at a
specific time or during a discrete time period of exposure divided by the concentration in the surrounding
water at the same time or during the same period.

Cancer Effect Level (CEL)-The lowest dose of chemical in a study, or group of studies, that produces
significant increases in the incidence of cancer (or tumors) between the exposed population and its
appropriate control.

Carcinogen-A chemical capable of inducing cancer.

Ceiling Value-A concentration of a substance that should not be exceeded, even instantaneously.

Chronic Exposure--Exposure to a chemical for 365 days or more, as specified in the Toxicological Profiles.

Developmental Toxicity-The occurrence of adverse effects on the developing organism that may result
from exposure to a chemical prior to conception (either parent), during prenatal development, or postnatally
to the time of sexual maturation. Adverse developmental effects may be detected at any point in the life span
of the organism.

Embryotoxicity and Fetotoxicity-Any toxic effect on the conceptus as a result of prenatal exposure to a
chemical; the distinguishing feature between the two terms is the stage of development during which the
insult occurred. The terms, as used here, include malformations and variations, altered growth, and in utero
death.

EPA Health Advisory-An estimate of acceptable drinking water levels for a chemical substance based on
health effects information. A health advisory is not a legally enforceable federal standard, but serves as
technical guidance to assist federal, state, and local officials.

Immediately Dangerous to Life or Health (IDLH)-The maximum environmental concentration of a
contaminant from which one could escape within 30 min without any escape-impairing symptoms or
irreversible health effects.

Intermediate Exposure-Exposure to a chemical for a duration of 15-364 days, as specified in the
Toxicological Profiles.
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Immunologic Toxicity-The occurrence of adverse effects on the immune system that may result from
exposure to environmental agents such as chemicals.

In Vitro-Isolated from the living organism and artificially maintained, as in a test tube.

In Viva-Occurring within the living organism.

Lethal Concentration (LO) (LCLO)-The lowest concentration of a chemical in air which has been reported to
have caused death in humans or animals.

Lethal Concentration(50) (LC50)-A calculated concentration of a chemical in air to which exposure for a
specific length of time is expected to cause death in 50% of a defined experimental animal population.

Lethal Dose(LO) (LDLO)-The lowest dose of a chemical introduced by a route other than inhalation that is
expected to have caused death in humans or animals.

Lethal Dose(50) (LD50)-The dose of a chemical which has been calculated to cause death in 50% of a
defined experimental animal population.

Lethal Time(50) (LT50)-A calculated period of time within which a specific concentration of a chemical is
expected to cause death in 50% of a defined experimental animal population.

Lowest-Observed-Adverse-Effect Level (LOAEL)-The lowest dose of chemical in a study, or group of
studies, that produces statistically or biologically significant increases in frequency or severity of adverse
effects between the exposed population and its appropriate control.

Malformations-Permanent structural changes that may adversely affect survival, development, or function.

Minimal Risk Level-An estimate of daily human exposure to a dose of a chemical that is likely to be
without an appreciable risk of adverse noncancerous effects over a specified duration of exposure.

Mutagen-A substance that causes mutations. A mutation is a change in the genetic material in a body cell.
Mutations can lead to birth defects, miscarriages, or cancer.

Neurotoxicity-The occurrence of adverse effects on the nervous system following exposure to chemical.

No-Observed-Adverse-Effect Level (NOAEL)-The dose of chemical at which there were no statistically
or biologically significant increases in frequency or severity of adverse effects seen between the exposed
population and its appropriate control. Effects may be produced at this dose, but they are not considered to
be adverse.

Octanol-Water Partition Coefficient (Kow)-The equilibrium ratio of the concentrations of a chemical in
n-octanol and water, in dilute solution.

Permissible Exposure Limit (PEL)-An allowable exposure level in workplace air averaged over an 8-hour
shift.
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q1*-The upper-bound estimate of the low-dose slope of the dose-response curve as determined by the
multistage procedure. The ql* can be used to calculate an estimate of carcinogenic potency, the incremental
excess cancer risk per unit of exposure (usually ug/L for water, mg/kg/day for food, and ug/m3 for air).

Reference Dose (RfD)-An estimate (with uncertainty spanning perhaps an order of magnitude) of the daily
exposure of the human population to a potential hazard that is likely to be without risk of deleterious effects
during a lifetime. The RfD is operationally derived from the NOAEL (from animal and human studies) by a
consistent application of uncertainty factors that reflect various types of data used to estimate RfDs and an
additional modifying factor, which is based on a professional judgment of the entire database on the chemical.
The RfDs are not applicable to nonthreshold effects such as cancer.

Reportable Quantity (RQ)-The quantity of a hazardous substance that is considered reportable under
CERCLA. Reportable quantities are (1) 1 pound or greater or (2) for selected substances, an amount
established by regulation either under CERCLA or under Sect. 3 11 of the Clean Water Act. Quantities are
measured over a 24-hour period.

Reproductive Toxicity-The occurrence of adverse effects on the reproductive system that may result from
exposure to a chemical. The toxicity may be directed to the reproductive organs and/or the related endocrine
system. The manifestation of such toxicity may be noted as alterations in sexual behavior, fertility, pregnancy
outcomes, or modifications in other functions that are dependent on the integrity of this system.

Short-Term Exposure Limit (STEL)--The maximum concentration to which workers can be exposed for
up to 15 min continually. No more than four excursions are allowed per day, and there must be at least 60
mm between exposure periods. The daily TLV-TWA may not be exceeded.

Target Organ Toxicity-This term covers a broad range of adverse effects on target organs or physiological
systems (e.g., renal, cardiovascular) extending from those arising through a single limited exposure to those
assumed over a lifetime of exposure to a chemical.

Teratogen-A chemical that causes structural defects that affect the development of an organism.

Threshold Limit Value (TLV)-A concentration of a substance to which most workers can be exposed
without adverse effect. The TLV may be expressed as a TWA, as a STEL, or as a CL.

Tie-Weighted Average (TWA)-An allowable exposure concentration averaged over a normal 8-hour
workday or 40-hour workweek.

Toxic Dose (TD50)-A calculated dose of a chemical, introduced by a route other than inhalation, which is
expected to cause a specific toxic effect in 50% of a defined experimental animal population.

Uncertainty Factor (UF)-A factor used in operationally deriving the RfD from experimental data. UFs are
intended to account for (1) the variation in sensitivity among the members of the human population, (2) the
uncertainty in extrapolating animal data to the case of human, (3) the uncertainty in extrapolating from data
obtained in a study that is of less than lifetime exposure, and (4) the uncertainty in using LOAEL data rather
than NOAEL data. Usually each of these factors is set equal to 10.
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ATSDR MINIMAL RISK LEVEL

The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) [42 U.S.C. 9601
et seq.], as amended by the Superfund Amendments and Reauthorization Act (SARA) [Pub. L. 99-4991,
requires that the Agency for Toxic Substances and Disease Registry (ATSDR) develop jointly with the U.S.
Environmental Protection Agency (EPA), in order of priority, a list of hazardous substances most commonly
found at facilities on the CERCLA National Priorities List (NPL); prepare toxicological profiles for each
substance included on the priority list of hazardous substances; and assure the initiation of a research program
to fill identified data needs associated with the substances.

The toxicological profiles include an examination, summary, and interpretation of available toxicological
information and epidemiologic evaluations of a hazardous substance. During the development of
toxicological profiles, Minimal Risk Levels (MRLs) are derived when reliable and sufficient data exist to
identify the target organ(s) of effect or the most sensitive health effect(s) for a specific duration for a given
route of exposure. An MRL is an estimate of the daily human exposure to a hazardous substance that is
likely to be without appreciable risk of adverse noncancer health effects over a specified duration of exposure.
MRLs are based on noncancer health effects only and are not based on a consideration of cancer effects. These
substance-specific estimates, which are intended to serve as screening levels, are used by ATSDR health
assessors to identify contaminants and potential health effects that may be of concern at hazardous waste sites.
It is important to note that MRLs are not intended to define clean-up or action levels.

MRLs are derived for hazardous substances using the no-observed-adverse-effect level/uncertainty factor
approach. They are below levels that might cause adverse health effects in the people most sensitive to such
chemical-induced effects. MRLs are derived for acute (1-14 days), intermediate (15-364 days), and chronic
(365 days and longer) durations and for the oral and inhalation routes of exposure. Currently, MRLs for the
dermal route of exposure are not derived because ATSDR has not yet identified a method suitable for this
route of exposure. MRLs are generally based on the most sensitive chemical-induced end point considered to
be of relevance to humans. Serious health effects (such as irreparable damage to the liver or kidneys, or birth
defects) are not used as a basis for establishing MRLs. Exposure to a level above the MRL does not mean that
adverse health effects will occur.
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MRLs are intended only to serve as a screening tool to help public health professionals decide where to look
more closely. They may also be viewed as a mechanism to identify those hazardous waste sites that are not
expected to cause adverse health effects. Most MRLs contain a degree of uncertainty because of the lack of
precise toxicological information on the people who might be most sensitive (e.g., infants, elderly,
nutritionally or immunologically compromised) to the effects of hazardous substances. ATSDR uses a
conservative (i.e., protective) approach to address this uncertainty consistent with the public health principle of
prevention. Although human data are preferred, MRLs often must be based on animal studies because relevant
human studies are lacking. In the absence of evidence to the contrary, ATSDR assumes that humans are more
sensitive to the effects of hazardous substance than animals and that certain persons may be particularly
sensitive. Thus, the resulting MRL may be as much as a hundredfold below levels that have been shown to be
nontoxic in laboratory animals.

Proposed MRLs undergo a rigorous review process: Health Effects/MT& Workgroup reviews within the
Division of Toxicology, expert panel peer reviews, and agencywide MRL Workgroup reviews, with
participation from other federal agencies and comments from the public. They are subject to change as new
information becomes available concomitant with updating the toxicological profiles. Thus, MRLs in the
most recent toxicological profiles supersede previously published levels. For additional information
regarding MRLs, please contact the Division of Toxicology, Agency for Toxic Substances and Disease
Registry, 1600 Clifton Road, Mailstop E-29, Atlanta, Georgia 30333.
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USER’S GUIDE

Chapter 1

Public Health Statement

This chapter of the profile is a health effects summary written in non-technical language. Its intended
audience is the general public especially people living in the vicinity of a hazardous waste site or chemical
release. If the Public Health Statement were removed from the rest of the document, it would still
communicate to the lay public essential information about the chemical.

The major headings in the Public Health Statement are useful to find specific topics of concern. The topics
are written in a question and answer format. The answer to each question includes a sentence that will direct
the reader to chapters in the profile that will provide more information on the given topic.

Chapter 2

Tables and Figures for Levels of Significant Exposure (LSE)

Tables (2- 1,2-2, and 2-3) and figures (2-1 and 2-2) are used to summarize health effects and illustrate
graphically levels of exposure associated with those effects. These levels cover health effects observed at
increasing dose concentrations and durations, differences in response by species, minimal risk levels (MRLs)
to humans for noncancer end points, and EPA’s estimated range associated with an upper- bound individual
lifetime cancer risk of 1 in 10,000 to 1 in 10,000,000. Use the LSE tables and figures for a quick review of the
health effects and to locate data for a specific exposure scenario. The LSE tables and figures should always be
used in conjunction with the text. All entries in these tables and figures represent studies that provide reliable,
quantitative estimates of No-Observed-Adverse- Effect Levels (NOAELs),
Lowest-Observed-Adverse-Effect Levels (LOAELs), or Cancer Effect Levels (CELs).
The legends presented below demonstrate the application of these tables and figures. Representative
examples of LSE Table 2-l and Figure 2-l are shown. The numbers in the left column of the legends
correspond to the numbers in the example table and figure.

LEGEND

See LSE Table 2-1

1) Route of Exposure One of the first considerations when reviewing the toxicity of a substance using
these tables and figures should be the relevant and appropriate route of exposure. When sufficient data
exists, three LSE tables and two LSE figures are presented in the document. The three LSE tables
present data on the three principal routes of exposure, i.e., inhalation, oral, and dermal (LSE Table
2-1, 2-2, and 2-3, respectively). LSE figures are limited to the inhalation (LSE Figure 2-l) and oral (LSE
Figure 2-2) routes. Not all substances will have data on each route of exposure and will not therefore have
all five of the tables and figures.
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2) Exposure Period Three exposure periods - acute (less than 15 days), intermediate (15-364 days), and
chronic (365 days or more) are presented within each relevant route of exposure. In this example, an
inhalation study of intermediate exposure duration is reported. For quick reference to health effects
occurring from a known length of exposure, locate the applicable exposure period within the LSE table
and figure.

3) Health Effect The major categories of health effects included in LSE tables and figures are death,
systemic, immunological, neurological, developmental, reproductive, and cancer. NOAELs and
LOAELs can be reported in the tables and figures for all effects but cancer. Systemic effects are
further defined in the “System” column of the LSE table (see key number 18).

4) Key to Figure Each key number in the LSE table links study information to one or more data points
using the same key number in the corresponding LSE figure. In this example, the study represented by
key number 18 has been used to derive a NOAEL and a Less Serious LOAEL (also see the 2 “18r” data
points in Figure 2- 1).

5) Species The test species, whether animal or human, are identified in this column. Section 2.5,
“Relevance to Public Health,” covers the relevance of animal data to human toxicity and Section 2.3,
“Toxicokinetics,” contains any available information on comparative toxicokinetics. Although
NOAELs and LOAELs are species specific, the levels are extrapolated to equivalent human doses to
derive an MRL.

6) Exposure Frequency/Duration The duration of the study and the weekly and daily exposure regimen
are provided in this column. This permits comparison of NOAELs and LOAFLs from different
studies. In this case (key number 1 S), rats were exposed to 1 ,1,2,2-tetrachloroethane via inhalation for
6 hours per day, 5 days per week, for 3 weeks. For a more complete review of the dosing regimen refer
to the appropriate sections of the text or the original reference paper, i.e., Nitschke et al. 1981.

7) System This column further defines the systemic effects. These systems include: respiratory,
cardiovascular, gastrointestinal, hematological, musculoskeletal, hepatic, renal, and dermal/ocular.
“Other” refers to any systemic effect (e.g., a decrease in body weight) not covered in these systems. In
the example of key number 18, 1 systemic effect (respiratory) was investigated.

8) NOAEL A No-Observed-Adverse-Effect Level (NOAEL) is the highest exposure level at which no
harmful effects were seen in the organ system studied. Key number 18 reports a NOAEL of 3 ppm for
the respiratory system which was used to derive an intermediate exposure, inhalation MRL of 0.005
ppm (see footnote “b”).

9) LOAEL A Lowest-Observed-Adverse-Effect Level (LOAEL) is the lowest dose used in the study that
caused a harmful health effect. LOAELs have been classified into “Less Serious” and “Serious”
effects. These distinctions help readers identify the levels of exposure at which adverse health effects
first appear and the gradation of effects with increasing dose. A brief description of the specific
endpoint used to quantify the adverse effect accompanies the LOAEL. The respiratory effect reported
in key number 18 (hyperplasia) is a Less serious LOAEL of 10 ppm. MRLs are not derived from
Serious LOAELs.

10) Reference The complete reference citation is given in chapter 8 of the profile.
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11) CEL A Cancer Effect Level (CEL) is the lowest exposure level associated with the onset of
carcinogenesis in experimental or epidemiologic studies. CELs are always considered serious effects.
The LSE tables and figures do not contain NOAELs for cancer, but the text may report doses not
causing measurable cancer increases.

12) Footnotes Explanations of abbreviations or reference notes for data in the LSE tables are found in the
footnotes. Footnote “b” indicates the NOAEL of 3 ppm in key number 18 was used to derive an MRL
of 0.005 ppm.

LEGEND

See Figure 2-1

LSE figures graphically illustrate the data presented in the corresponding LSE tables. Figures help the reader
quickly compare health effects according to exposure concentrations for particular exposure periods.

13) Exposure Period The same exposure periods appear as in the LSE table. In this example, health
effects observed within the intermediate and chronic exposure periods are illustrated.

14) Health Effect These are the categories of health effects for which reliable quantitative data exists. The
ame health effects appear in the LSE table.

15) Levels of Exposure concentrations or doses for each health effect in the LSE tables are graphically
displayed in the LSE figures. Exposure concentration or dose is measured on the log scale “y” axis.
Inhalation exposure is reported in mg/m3 or ppm and oral exposure is reported in mg/kg!day.

16) NOAEL In this example, 18r NOAEL is the critical endpoint for which an intermediate inhalation
exposure MRL is based. As you can see from the LSE figure key, the open-circle symbol indicates to a
NOAEL for the test species-rat. The key number 18 corresponds to the entry in the LSE table. The
dashed descending arrow indicates the extrapolation from the exposure level of 3 ppm (see entry 18 in
the Table) to the MRL of 0.005 ppm (see footnote “b” in the LSE table).

17) CEL Key number 38r is 1 of 3 studies for which Cancer Effect Levels were derived. The diamond
symbol refers to a Cancer Effect Level for the test species-mouse. The number 38 corresponds to the
entry in the LSE table.

18) Estimated Upper-Bound Human Cancer Risk Levels This is the range associated with the upper-bound
for lifetime cancer risk of 1 in 10,000 to 1 in 10,000,000. These risk levels are derived from the EPA’s
Human Health Assessment Group’s upper-bound estimates of the slope of the cancer dose response
curve at low dose levels (ql*).

19) Key to LSE Figure The Key explains the abbreviations and symbols used in the figure.
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Chapter 2 (Section 2.5)

Relevance to Public Health

The Relevance to Public Health section provides a health effects summary based on evaluations of existing
toxicologic, epidemiologic, and toxicokinetic information. This summary is designed to present interpretive,
weight-of-evidence discussions for human health end points by addressing the following questions.

1 . What effects are known to occur in humans?

2 . What effects observed in animals are likely to be of concern to humans?

3 . What exposure conditions are likely to be of concern to humans, especially around hazardous
      waste sites?

The section covers end points in the same order they appear within the Discussion of Health Effects by Route
of Exposure section, by route (inhalation, oral, dermal) and within route by effect. Human data are presented
first, then animal data. Both are organized by duration (acute, intermediate, chronic). In vitro data and data
from parenteral routes (intramuscular, intravenous, subcutaneous, etc.) are also considered in this section. If
data are located in the scientific literature, a table of genotoxicity information is included.

The carcinogenic potential of the profiled substance is qualitatively evaluated, when appropriate, using
existing toxicokinetic, genotoxic, and carcinogenic data. ATSDR does not currently assess cancer potency or
perform cancer risk assessments. Minimal risk levels (MRLs) for noncancer end points (if derived) and the end
points from which they were derived are indicated and discussed.

Limitations to existing scientific literature that prevent a satisfactory evaluation of the relevance to public
health are identified in the Data Needs section

Interpretation of Minimal Risk Levels

Where sufficient toxicologic information is available, we have derived minimal risk levels (MRLs) for
inhalation and oral routes of entry at each duration of exposure (acute, intermediate, and chronic). These
MRLs are not meant to support regulatory action; but to acquaint health professionals with exposure levels at
which adverse health effects are not expected to occur in humans. They should help physicians and public
health officials determine the safety of a community living near a chemical emission, given the concentration
of a contaminant in air or the estimated daily dose in water. h4RLs are based largely on toxicological studies in
animals and on reports of human occupational exposure.

MRL users should be familiar with the toxicologic information on which the number is based. Chapter 2.5,
“Relevance to Public Health,” contains basic information known about the substance. Other sections such as
2.7, “Interactions with Other Substances,” and 2.8, “Populations that are Unusually Susceptible” provide
important supplemental information.

MRL users should also understand the MRL derivation methodology. MRLs are derived using a modified
version of the risk assessment methodology the Environmental Protection Agency (EPA) provides (Barnes
and Dourson 1988) to determine reference doses for lifetime exposure (RfDs).
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To derive an MRL, ATSDR generally selects the most sensitive endpoint which, in its best judgement,
represents the most sensitive human health effect for a given exposure route and duration. ATSDR cannot
make this judgement or derive an MRL unless information (quantitative or qualitative) is available for all
potential systemic, neurological, and developmental effects. If this information and reliable quantitative data
on the chosen endpoint are available, ATSDR derives an MRL using the most sensitive species (when
information from multiple species is available) with the highest NOAEL that does not exceed any adverse
effect levels. When a NOAEL is not available, a lowest-observed-adverse-effect level (LOAEL) can be used to
derive an MRL, and an uncertainty factor (UF) of 10 must be employed. Additional uncertainty factors of 10
must be used both for human variability to protect sensitive subpopulations (people who are most susceptible
to the health effects caused by the substance) and for interspecies variability (extrapolation from animals to
humans). In deriving an MRL, these individual uncertainty factors are multiplied together. The product is then
divided into the inhalation concentration or oral dosage selected from the study. Uncertainty factors used in
developing a substance-specific MRL are provided in the footnotes of the LSE Tables.
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