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1. PUBLIC HEALTH STATEMENT

This Statement was prepared to give you information about fuel oils and to emphasize the

human health effects that may result from exposure to them. The Environmental Protection

Agency (EPA) has identified 1,397 sites on its National Priorities List (NPL). Fuel oils have

been found in 2% (26 out of the 1,397) of the NPL sites. However, we do not know how

many of the 1,397 NPL sites have been evaluated for fuel oils. As EPA evaluates more sites,

the number of sites at which fuel oils are found may change. This information is important

for you to know because fuel oils may cause harmful health effects and because these sites

are potential or actual sources of human exposure to fuel oils.

When a chemical is released from a large area, such as an industrial plant, or from a

container, such as a drum or bottle, it enters the environment as a chemical emission. This

emission, which is also called a release, does not always lead to exposure. You can be

exposed to a chemical only when you come into contact with the chemical. You may be

exposed to it in the environment by breathing, eating, or drinking substances containing the

chemical or from skin contact with it.

If you are exposed to hazardous chemicals such as fuel oils, several factors will determine

whether harmful health effects will occur and what the type and severity of those health

effects will be. These factors include the dose (how much), the duration (how long), the

route or pathway by which you are exposed (breathing, eating, drinking, or skin contact), the

other chemicals to which you are exposed, and your individual characteristics such as age,

sex, nutritional status, family traits, lifestyle, and state of health.

1.1 WHAT ARE FUEL OILS?

Fuel oils are petroleum products that are used in many types of engines, lamps, heaters,

furnaces, stoves, and as solvents. Fuel oils come from crude petroleum and are refined to
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meet specifications for each use. Fuel oils are mixtures of aliphatic (open chain and cyclic

compounds that are similar to open chain compounds) and aromatic (benzene and compounds

similar to benzene) petroleum hydrocarbons. In addition, they may contain small amounts of

nitrogen, sulfur, and other elements as additives. The exact chemical composition (i.e.,

precise percentage of each constituent) of each of the fuel oils discussed in this profile may

vary somewhat, depending on the source and other factors. Fuel oils are distinguished from

each other primarily by their boiling point ranges, chemical additives, and uses. In this

profile, six fuel oils are discussed. The fuel oils of interest and common synonyms follow:

- fuel oil no. 1 (the most widely used fuel oil)

- kerosene

- straight-run kerosene

- kerosene

- range oil

- Deobase  (the trade name of a clear, white, deodorized kerosene)

- coal oil

- JP-5 (jet fuel)

- fuel oil no. 1-D

- diesel fuel

- diesel fuel oil no. 1

- fuel oil no. 2

- home heating oil

- gas oil

- no. 2 burner oil

- fuel oil no. 2-D

- diesel fuel oil no. 2

- diesel fuel no. 2

- diesel oil no. 2

- no. 2 diesel
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- fuel oil no. 4

- diesel fuel oil no. 4

- heavy residual fuel oil

- marine diesel fuel

- residual fuel oil no. 4

- fuel oil UNSP (which is not referred to by any synonyms)

In this profile, a fuel oil is referred to by the name used in the cited study. That is, if one

study identifies a fuel oil as fuel oil no. 1, and another study identifies the same fuel oil as

kerosene, the names “fuel oil no. 1” and “kerosene” will be used, respectively. All fuel oils

are liquids at room temperature, although they can evaporate. The rates at which the various

fuel oils will evaporate is dependent on the temperature and the composition of the individual

fuel oil. Most fuel oils are yellowish to light brown in color. They generally have a

kerosene-like odor, are flammable, and burn at temperatures between 177°C and 329°C.

In this profile, fuel oils are discussed together because of the similarities in their chemical and

physical properties. More information on the chemical and physical properties of fuel oils is

provided in Chapter 3. More information on the production and use of fuel oils is found in

Chapter 4.

1.2 WHAT HAPPENS TO FUEL OILS WHEN THEY ENTER THE ENVIRONMENT?

Fuel oils are composed of a large number of different chemicals, and each fuel oil is a

slightly different mixture of these chemicals. Some of these chemicals evaporate into the air

when fuel oils are spilled onto soils or surface waters (e.g., streams, rivers, lakes, or oceans)

or are stored in open containers. Other chemicals in the fuel oils dissolve in water following

spills to surface waters or leaks from underground storage tanks. Some of the chemical

constituents of fuel oils may slowly move down through the soil to the groundwater. Another

group of chemicals in fuel oils can attach to particles in the soil or water and, in water, may

sink down into the sediment. The chemicals that evaporate may break down in air by
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reacting with sunlight, e.g., photooxidation, or other chemicals in the air. The chemicals that

dissolve in water may also be broken down by organisms (primarily bacteria and fungi) in the

soil or water. However, this may take up to a year to occur, if ever, depending on the

environmental conditions. Chemicals that attach to soil or other matter (e.g., marsh sediment)

may remain in the environment for more than a decade. Benzene, toluene, and xylenes

(single-ring aromatic compounds), as well as polycyclic aromatic compounds, are the fuel oil

components about which we have the greatest amount of information. You can find this

information in the ATSDR toxicological profiles for these specific chemicals. See Chapter 5

for more information on what happens to fuel oils when they enter the environment.

1.3 HOW MIGHT I BE EXPOSED TO FUEL OILS?

The most likely way for you to be exposed to fuel oils in the home is if you use a kerosene

heater. If you handle fuel oils or use a fuel oil to clean equipment at your job, or if fuel oils

are stored at your workplace, you may also be exposed to them through contact with the skin

or in the air. Some workers may be exposed to fuel oils through their skin if they come into

contact with them without adequate protection, such as gloves, boots, coveralls, or other

protective clothing. There are no data on background levels of fuel oils that may be found in

the environment or workplace.

You may also be exposed to fuel oils if you swim in waters where fuel oils have been spilled.

If fuel oils have leaked from underground storage tanks and entered underground water, you

may drink contaminated water from a well containing fuel oils. The vapor (the gas phase) of

fuel oils can also move through the soil and enter basements of homes or buildings near areas

where leaks have occurred. Children may also be exposed by playing in soil contaminated

with fuel oils. A major pathway of exposure is washing one’s hands with fuel oils to remove

paint, grease, etc. For more information on how you might be exposed to fuel oils, see

Chapter 5.
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1.4 HOW CAN FUEL OILS ENTER AND LEAVE MY BODY?

Fuel oils can enter and leave your body when you breathe them in the air, when you drink

water or eat food containing them, and when your skin comes into contact with them. This

can occur in the workplace or if you live near an area where fuel oils have been dumped or

spilled. We do not know how much of a fuel oil might be taken up by your body if you

inhale fuel oil vapor, drink contaminated water, or come in contact with fuel oils. We have

no information on what happens to fuel oils once they enter your body. Kerosene has been

found in small amounts in the brain, lung, liver, spleen, and kidney of exposed animals. We

do not know if fuel oils are broken down and leave the body in the urine or the feces. For

more information on how fuel oils can enter and leave your body, see Chapter 2.

1.5 HOW CAN FUEL OILS AFFECT MY HEALTH?

We know very little of the human health effects caused by fuel oils. Daily use of a kerosene

stove for cooking should not cause any breathing problems for most people. People who use

kerosene stoves to cook do not have more colds than people who have other types of stoves.

Breathing moderate amounts of deodorized kerosene (fuel oil no. 1) has been shown to

slightly affect the ability to smell and to cause a taste sensation. Numerous case-studies have

reported accidental poisoning in children as the result of drinking kerosene. These accidents

are probably much more frequent in areas where kerosene is commonly used for cooking and

heating. Drinking kerosene may cause vomiting, diarrhea, swelling of the stomach, stomach

cramps, coughing, drowsiness, restlessness, irritability, and unconsciousness; also, it may be

difficult to breathe, and breathing may be painful. Coughing, pneumonia, and difficult or

painful breathing after drinking kerosene suggest that kerosene has entered the lungs. In

addition, drinking large amounts of kerosene can put you into a coma, cause convulsions, and

may even cause death. When kerosene gets on your skin for short periods, it can make your

skin itchy, red, and sore; sometimes blisters may occur and your skin may peel.
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Breathing fuel oil no. 1 vapor for periods as short as 1 hour may make you feel nauseous,

increase your blood pressure, be irritating to your eyes, or make your eyes bloodshot.

Breathing kerosene or JP-5 vapors can also affect your nervous system. Some of the effects

that have been noted in case studies include headache, light-headedness, anorexia (loss of

appetite), poor coordination, and difficulty concentrating. Breathing diesel fuel vapors for a

long time may damage your kidneys, increase your blood pressure, or lower your blood’s

ability to clot. Constant skin contact (for example, washing) with diesel fuel may also

damage your kidneys.

It appears that repeated contact with fuel oils can cause skin cancer in mice and may cause

liver cancer in mice. However, there is some conflicting information. Further, the fuel oils

were tested only on mice. We do not know if fuel oils can cause cancer in humans. The

International Agency for Research on Cancer (IARC) has determined that residual (heavy)

fuel oils and marine diesel fuel are possibly carcinogenic to humans (Group 2B

classification). In addition, IARC considers that there is not enough information (Group 3

classification) available to determine if distillate (light) fuel oils or distillate (light) diesel

fuels cause cancer. They have also determined that occupational exposures to fuel oils during

petroleum refining are probably carcinogenic to humans (Group 2A classification). We do

not know if fuel oils can cause birth defects or if they affect reproduction. See Chapter 2 for

more information on the health effects of fuel oils.

1.6 IS THERE A MEDICAL TEST TO DETERMINE WHETHER I HAVE BEEN

      EXPOSED TO FUEL OILS?

There is no medical test that shows if you have been exposed to fuel oils. There are methods

to determine if your blood contains some fuel oil components such as benzene, toluene, and

xylenes; however, the concentrations of these compounds in distilled fuels are so low that if

they were detected in your blood, it might not indicate specific or exclusive exposure to fuel

oils. For information on tests for measuring exposure to some individual components of fuel

oils, see the ATSDR toxicological profiles on benzene, toluene, total xylenes, and polycyclic
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aromatic hydrocarbons. See Chapters 2 and 6 for information on symptoms that suggest

exposure to fuel oils.

1.7 WHAT RECOMMENDATIONS HAS THE FEDERAL GOVERNMENT MADE TO

       PROTECT HUMAN HEALTH?

The government has developed regulations and guidelines for fuel oils and some of the

chemicals in them. These are designed to protect the public from the possible harmful health

effects of these chemicals. The Department of Transportation also regulates the transportation

of fuel oils, because they are classified as hazardous materials that are considered to pose a

risk to health, safety, or property when transported.

The Occupational Safety and Health Administration (OSHA) and the Air Force Office of

Safety and Health (AFOSH) regulate levels of petroleum products in the private sector and

Air Force workplaces, respectively. The maximum allowable amount of petroleum products

in the workroom air during an &hour workday, 40-hour workweek, is 400 parts of petroleum

distillates (naphtha) per million parts of air, or more simply stated, 400 ppm.

1.8 WHERE CAN I GET MORE INFORMATION?

If you have any more questions or concerns, please contact your community or state health or

environmental quality department or:

Agency for Toxic Substances and Disease Registry
Division of Toxicology
1600 Clifton Road NE, E-29
Atlanta, Georgia 30333

This agency can also provide you with information on the location of the nearest occupational

and environmental health clinic. These clinics specialize in the recognition, evaluation, and

treatment of illnesses resulting from exposure to hazardous substances.





FUEL OILS 9

2. HEALTH EFFECTS

2.1 INTRODUCTION

The primary purpose of this chapter is to provide public health officials, physicians, toxicologists, and

other interested individuals and groups with an overall perspective of the toxicology of fuel oils and a

depiction of significant exposure levels associated with various adverse health effects. It contains

descriptions and evaluations of studies and presents levels of significant exposure for fuel oils based

on toxicological studies and epidemiological investigations.

2.2 DISCUSSION OF HEALTH EFFECTS BY ROUTE OF EXPOSURE

To help public health professionals address the needs of persons living or working near hazardous

waste sites, the information in this section is organized first by route of exposure--inhalation, oral, and

dermal--and then by health effect--death, systemic, immunological, neurological, developmental,

reproductive, genotoxic, and carcinogenic effects. These data are discussed in terms of three exposure

periods--acute (14 days or less), intermediate (15-364 days), and chronic (365 days or more).

Levels of significant exposure for each route and duration are presented in tables and illustrated in

figures. The points in the figures showing no-observed-adverse-effect levels (NOAELs) or lowest observed-

adverse-effect levels (LOAELs) reflect the actual doses (levels of exposure) used in the

studies, LOAELs have been classified into “less serious” or “serious” effects. These distinctions are

intended to help the users of the document identify the levels of exposure at which adverse health

effects start to appear. They should also help to determine whether or not the effects vary with dose

and/or duration, and place into perspective the possible significance of these effects to human health.

The significance of the exposure levels shown in the tables and figures may differ depending on the

user’s perspective. For example, physicians concerned with the interpretation of clinical findings in

exposed persons may be interested in levels of exposure associated with “serious” effects. Public

health officials and project managers concerned with appropriate actions to take at hazardous waste

sites may want information on the lowest levels of exposure associated with more subtle effects in

humans or animals (LOAEL) or exposure levels below which no adverse effects (NOAEL) have been
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observed. Estimates of levels posing minimal risk to humans (Minimal Risk Levels, MRLs) may be

of interest to health professionals and citizens alike.

Levels of exposure associated with the carcinogenic effects of fuel oils are indicated in Table 2-3.

Estimates of exposure levels posing minimal risk to humans (MRLs) have been made, where data were

believed reliable, for the most sensitive non-cancer effect for each exposure duration. MRLs include

adjustments to reflect human variability and extrapolation of data from laboratory animals to humans.

Although methods have been established to derive these levels (Barnes and Dourson 1988; EPA

1990e), uncertainties are associated with these techniques. Furthermore, ATSDR acknowledges

additional uncertainties inherent in the application of the procedures to derive less than lifetime MRLs.

As an example, acute inhalation MRLs may not be protective for health effects that are delayed in

development or are acquired following repeated acute insults, such as hypersensitivity reactions,

asthma, or chronic bronchitis. As these kinds of health effects data become available and methods to

assess levels of significant human exposure improve, these MRLs may be revised.

Fuel oils are petroleum products whose composition varies with the refinery streams from which they

are blended (Air Force 1989). Fuel oils, which have auto-ignition temperatures between 177°C and

329°C (Coast Guard 1985), are composed primarily of aliphatic hydrocarbons (64%), aromatic

hydrocarbons (35%), and olefinic hydrocarbons (l-2%) (Air Force 1989). The aliphatic constituents

consist of n-alkanes (n-paraffins), branched alkanes (isoparaffins), and cyclic alkanes (cycloparaffins or

naphthenes). Aromatic hydrocarbons include benzene and polycyclic hydrocarbons. These petroleum

products are used both for residential heating oil and for diesel fuel. Diesel fuels are graded

according to the type of engine in which they are used and range from no. 1-D for higher speed and

frequent load changes to no. 4-D for low speed engines.

The purpose of this chapter is to discuss the toxicological effects of fuel oils. There are six types of

fuel oils discussed in this profile: (1) fuel oil no. 1, (2) fuel oil no. I-D, (3) fuel oil no. 2, (4) fuel oil

no. 2-D, (5) fuel oil no. 4, and (6) fuel oil UNSP. However, there are no toxicity data for fuel oils in

general; the available toxicity data are specific for particular fuel oils. Therefore, the toxicity of fuel

oils will be discussed in this chapter by referring to the following fuel oils for which there are data:

(1) fuel oil no. 1, which is also called kerosene, straight-run kerosene, kerosene, range oil, Deobase,

deodorized kerosene, coal oil, and JP-5 (jet fuel); (2) fuel oil no. l-D, which is also known as diesel
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fuel and diesel fuel oil no. 1; (3) fuel oil no. 2, which is also called home heating oil, gas oil, and

no. 2 burner oil; (4) fuel oil no. 2-D, which is also known as diesel fuel oil no. 2, diesel fuel no. 2,

diesel oil no. 2, and no. 2 diesel; (5) fuel oil no. 4, which is also known as diesel fuel oil no. 4, heavy

residual fuel oil, marine diesel fuel, and residual fuel oil no. 4; and (6) fuel oil UNSP. Exposure to

individual fuel oil components or combustion products will not be discussed as it is not known

whether the components or combustion products behave in a toxicologically similar manner to the fuel

oils from which they are derived. For more information regarding the potential toxicity of some fuel

oil components, the Air Force document (1989) and previous ATSDR profiles on benzene (ATSDR

1989), toluene (ATSDR 1990a), xylenes (ATSDR 1991a), and polycyclic aromatic hydrocarbons

(ATSDR 1991b) can be consulted. Since fuel oils are complex and somewhat variable mixtures, it is

not possible to identify the molecular weight for these oils. As such, airborne concentrations of fuel

oils are reported as milligrams per cubic meter (mg/m3).

2.2.1 Inhalation Exposure

Fuel oils can enter the respiratory system as a vapor or an aerosol; in addition, products formed during

the combustion of fuel oils can be inhaled in smoke. A vapor is the gaseous phase of a substance that

is a liquid at standard temperature. Fuel oils have a low vapor pressure (e.g., the saturation

concentration of kerosene in air is approximately 100 mg/m3). An aerosol is the suspension of solid or

liquid particles in a gas (usually air), with particles ranging in size from 0.0001 to over 100 µm.

Smoke is an aerosol formed during incomplete combustion. Due to the low volatility of fuel oils,

human exposure to vapor concentrations above 100 mg/m3 is unlikely. Higher concentrations can be

achieved, however, by increasing the ambient temperature or modifying other physical parameters.

Thus, exposure of the general population to high concentrations of airborne fuel oils would probably

occur only in unusual situations.

2.2.1.1 Death

No studies were located regarding death in humans after inhalation exposure to fuel oils.

Mortality occurred in 3 of 10 mice exposed by inhalation 8 hours/day for 5 days to diesel fuel no. 2

vapors at a concentration of 204 mg/m3; inhalation of 65 or 135 mg/m3 was not lethal to mice (Kainz

and White 1984). Acute inhalation of either 86.9 or 408.8 ppm fuel oil UNSP vapor or 101.8 or
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401.5 ppm diesel fuel vapor did not induce death in rats (API 1979c, 19798). Inhalation of

8,000-16,000 mg/m3 diesel fuel aerosol for 2 or 4 hours was lethal to rats (Dalbey and Lock 1983).

No lethality occurred following single-exposure inhalation of 6,000 mg/m3 diesel fuel aerosol for

4 hours or 2,700 mg/m3 for 6 hours. However, inhalation of 4,000 mg/m3 for 6 hours was lethal

(Dalbey and Lock 1983).

No deaths occurred in rats exposed to 5,000 mg/m3 kerosene (physical form not specified) for 4 hours

(Vernot et al. 1990d). This study is limited because only one concentration level was tested. It is

useful, however, because the concentration used is very high. Inhalation of diesel fuel aerosol

4 hours/day, 2 days/week, for 13 weeks at concentrations up to 1,500 mg/m3 did not induce mortality

in rats (Lock et al. 1984). Intermediate exposures (once per week for 9 weeks or 3 times per week for

3 weeks) to diesel fuel aerosol induced mortality in 6.25% of the rats exposed to a concentration time

product (Ct) of 12,000 mg hour/m3 (Ct = [airborne concentration of aerosolized diesel fuel in mg/m3]

x [duration of exposure in hours]). However, no rats died at a Ct of 8,000 mg hour/m3 (Dalbey et al.

1987). The Ct of 8,000 mg hour/m3, under these conditions, was based on repeated 2- or 6-hour

exposures to 4,000 or 1,330 mg/m3, respectively. The Ct of 12,000 mg hour/m3 was based on repeated

2- or 6-hour exposures to 6,000 or 2,000 mg/m3, respectively. However, dose-response data were not

reported for the individual exposure concentrations used to produce each Ct.

No rats died during 90-day inhalation exposures to 50 or 300 mg/m3 marine diesel fuel vapor (Cowan

and Jenkins 1981) or to 150 or 750 mg/m3 JP-5 vapor (Cowan and Jenkins 1981; Gaworski et al.

1984). No mice died during a 90-day inhalation exposure of 150 or 750 mg/m3 JP-5 vapor (Cowan

and Jenkins 1981; Gaworski et al. 1984). One rat died of pneumonia out of 25 male rats exposed to

100 mg/m3 deodorized kerosene vapor (the maximally achievable vapor concentration at standard

temperature and pressure) for 6 hours per day, 5 days per week for 13 weeks (Carpenter et al. 1976).

The NOAEL and LOAEL values for death after inhalation exposure to fuel oils are recorded in Table

2-l and plotted in Figures 2-1 and 2-2.
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2.2.1.2 Systemic Effects

The highest NOAEL values and all reliable LOAEL values for systemic effects in each species and

duration category for inhalation exposure to fuel oils are recorded in Table 2-l and plotted in

Figures 2-l and 2-2.

Respiratory Effects. Pleural effusions and alveolar infiltrations were noted in a man who had

washed his hair with an unknown amount of diesel fuel (Barrientos et al. 1977). The relative

contributions from inhalation and dermal exposure could not be distinguished in this case. There was

no throat irritation in six volunteers following a 15-minute exposure to a concentration reported to be

140 mg/m3 of deodorized kerosene vapor (Carpenter et al. 1976). The authors used a hot nichrome

wire for the volatilization of their test material and reported that the concentration was probably the

“highest attainable concentration at which vapor analysis is representative of liquid analysis.” The air

saturating concentration of kerosene is considered to approximate 100 mg/m3 (room temperature and

760 mmHg) and is dependent on the constituents of the mixture.

An epidemiological study examined the effects of chronic exposure to jet fuels in factory workers

(Knave et al. 1978). This study found a significant increase in a feeling of heaviness in the chests of

exposed subjects when compared to unexposed controls from the same factory. The data are limited

because the jet fuels were not specified and may not include JP-5, which is the jet fuel of concern in

this profile, and the study did not adjust for the presence of other chemicals. Inhalation exposure is

likely, since jet fuel vapor was detected by the authors; however, dermal and oral (i.e., from eating

contaminated food) exposures cannot be excluded. An estimated time-weighted average of

128-423 mg/m3 was detected in the breathing zones of the workers. However, it is not possible to

associate the specific concentrations with specific effects.

Limited epidemiological data suggest that chronic human inhalation exposure to kerosene vapor and/or

kerosene combustion products from cooking with kerosene stoves does not induce asthmatic

respiratory effects. The presence of kerosene stoves in the homes of Malaysian children was not

associated with chronic cough, persistent wheeze, asthma, or chest illness (Azizi and Henry 1991).

Asthmatic bronchitis and frequent common colds in 3-year-old Japanese children were not associated

with the presence of kerosene stoves in their homes (Tominaga and Itoh 1985). The latter study
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corrected for exposure to passive smoke. These data are of limited usefulness because the duration of

exposure was not reported and the levels of kerosene exposure could not be quantified. Finally, it

cannot be determined whether actual exposure to kerosene occurred in these individuals because

kerosene exposure was assumed to occur if kerosene was used during cooking or if a kerosene stove

was present in the home.

Animal data that pertain to respiratory effects following acute exposure to kerosene by inhalation are

limited, because only one concentration level was tested in each study. Reductions in tidal volume

and dynamic lung compliance, bronchoconstriction, and an increase in pulmonary resistance occurred

in rabbits following inhalation of 32,500 mg/m3 kerosene aerosol (Casaco et al. 1982).

Bronchoconstriction was also induced in guinea pigs that were exposed to 20,400 mg/m3 kerosene

aerosol (Garcia et al. 1988b).

No histopathological changes were noted in the respiratory system of rats or dogs exposed to up to

100 mg/m3 deodorized kerosene vapor for 13 weeks (Carpenter et al. 1976). Inhalation of diesel fuel

aerosol 4 hours/day, 2 days/week, for 13 weeks at concentrations up to 1,500 mg/m3 did not impair

pulmonary function or induce histopathological changes in rats (Lock et al. 1984). However, there

was a dose-related increase in the relative weight of the right lobe of the lung, which was only

significant at the highest exposure level. Elevated numbers of alveolar macrophages in the low- and

high-dose groups were not dose related. Intermediate exposures to diesel fuel aerosol induced damage

to the lung parenchyma of rats exposed to a Ct of 8,000 or 12,000 mg hour/m3 (Dalbey et al. 1987).

In general, respiratory effects were more severe after three exposures/week for 3 weeks than one

exposure/week for 9 weeks at various exposure levels and durations. Thus, the study found that the

respiratory effects were generally more dependent upon the frequency of exposure than the exposure

dose or duration. Dose-response data were not reported for the individual exposure concentrations

used to produce each concentration time product (see discussion in Section 2.2.1.1).

Cardiovascular Effects. Two case studies were found that reported mild hypertension in humans

from acute inhalation exposures to fuel oils. Mild hypertension was noted for 4 days in one of two

individuals following a l-hour exposure to JP-5 vapor while flying a small airplane (Porter 1990).

Delayed mild hypertension was also noted in a man who was exposed to diesel fuel vapor for 10 days

while driving a truck with a fuel injector leak (Reidenberg et al. 1964). The concentration of vapor

was not reported in either study. Palpitations were noted in workers chronically exposed to jet fuel
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according to one epidemiological study (Knave et al. 1978). The limitations of this study are

discussed in detail in Section 2.2.1.2 under Respiratory Effects.

Vasodilation was seen in the ear and tail veins of mice exposed via acute inhalation to 204 or

135 mg/m3 diesel fuel no. 2 vapors. The effect was not seen at 65 mg/m3 (Kainz and White 1984).

Inhalation of kerosene aerosol for an intermediate duration induced aortic plaques in guinea pigs that

resemble those seen in atherosclerosis (Noa and Illnait 1987a). Significant increases in total serum

cholesterol and decreases in high-density lipoprotein (HDL) were also noted. Similar effects were

induced following exposure to kerosene aerosol or kerosene smoke. This study was limited because

only one concentration of kerosene aerosol, within a range of 20,400-34,000 mg/m3, was tested and

the actual exposure level of kerosene smoke was not reported. Inhalation of diesel fuel aerosol

4 hours/day, 2 days/week, for 13 weeks at concentrations up to 1,500 mg/m3 did not induce

histopathological changes in the cardiovascular system of rats (Lock et al. 1984). However, a

statistically significant decrease in blood cholesterol levels was reported in females of the high-dose

group immediately after exposure compared to controls. The authors did not consider this effect to be

treatment related; no data were presented. No microscopic or histopathological changes were noted in

the cardiovascular system of rats or dogs exposed to up to 100 mg/m3 deodorized kerosene vapor for

13 weeks (Carpenter et al. 1976).

Gastrointestinal Effects. Several studies were identified that described gastrointestinal effects in

humans after inhalation exposure to unknown quantities of fuel oils. In one case study, one of two

individuals that were exposed to JP-5 vapor for approximately 1 hour while flying a small airplane

experienced nausea after landing (Porter 1990). This effect subsided within 24 hours. Abdominal

cramps, vomiting, and diarrhea occurred in a man who was exposed to diesel fuel vapor for 10 days

while driving a truck with a fuel injector leak (Reidenberg et al. 1964). Also, nausea, abdominal

cramps, and diarrhea were reported for a man who had washed his hair with a diesel fuel. “On

examination” (no further description of the examination was provided), the abdomen was normal

(Barrientos et al. 1977). A history of epigastric (upper abdominal) pain was noted in a male

subsequent to washing his hands with diesel fuel over several weeks (Crisp et al. 1979). Effects

resulting from inhalation versus dermal exposure could not be distinguished in the two latter cases.

No histopathological changes were noted in the gastrointestinal system of rats or dogs exposed to up

to 100 mg/m3 deodorized kerosene vapor for 13 weeks (Carpenter et al. 1976). Inhalation of diesel
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fuel aerosol 4 hours/day, 2 days/week, for 13 weeks at concentrations up to 1,500 mg/m3 did not

induce histopathological changes in the gastrointestinal system of rats (Lock et al. 1984).

Hematological Effects. Three case studies were found that addressed possible hematological

effects due to acute inhalation exposure to unknown quantities of fuel oils by humans. There were no

blood chemistry changes in either of two individuals following a l-hour exposure to JP-5 vapor while

flying a small airplane (Porter 1990). Subcutaneous hemorrhage, mild nose bleeds, low platelet

counts, and retinal arteriole constriction were reported for a man who was exposed to diesel fuel vapor

for 10 days while driving a truck with a fuel injector leak (Reidenberg et al. 1964). The latter effect

was delayed, occurring 4 weeks after initial exposure. These effects may be indicative of blood

clotting problems. Decreased hemoglobin concentration and an increase in erythrocyte sedimentation

rate were noted in one man after washing his hands with diesel fuel over several weeks (Crisp et al.

1979). Effects resulting from inhalation versus dermal exposure cannot be distinguished in this case.

No exposure-related hematological effects were noted in rats or dogs exposed to up to 100 mg/m3

deodorized kerosene vapor for 13 weeks (Carpenter et al. 1976). Inhalation of diesel fuel aerosol

(4 hours/day, 2 days/week, for 13 weeks) at concentrations ranging up to 1,500 mg/m3 failed to

produce histopathological changes, splenic weight changes, or other hematological effects in rats (Lock

et al. 1984). Intermediate exposures to diesel fuel aerosol induced decreases in the mean red blood

cell count in rats exposed to a Ct of 8,000 or 12,000 mg hour/m3 3 times/week for 3 weeks (Dalbey et

al. 1987). However, the statistical significance of this effect was not clearly reported in the study.

There was no significant effect on white blood cell count in these rats. Dose-response data were not

reported for the individual exposure concentrations used to produce each Ct (see discussion in Section

2.2.1.1).

Musculoskeletal Effects. No studies were located regarding musculoskeletal effects in humans

after inhalation exposure to fuel oils.

No histopathological changes were noted in the musculoskeletal system of rats or dogs exposed to up

to 100 mg/m3 deodorized kerosene vapor for 13 weeks (Carpenter et al. 1976). Only one study of this

effect was located.
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Hepatic Effects. No studies were located regarding hepatic effects in humans after inhalation

exposure to fuel oils.

In a study designed to evaluate the effects of kerosene hydrocarbons on the tissue metabolism of rats

after acute and subchronic exposure, Starek and Vojtisek (1986) exposed groups of male Wistar rats

(131 total animals for both acute and subchronic studies) to kerosene vapors in average concentrations

of 58 (range 33.3-75.0) or 231 (range 181.3-250.2) mg/m3 for 6 hours/day,  6 days/week for 14 consecutive

weeks. Food and water were available ad lib throughout exposure, but animals were fasted

for 18 hours prior to post-dosing tests. Twenty hours after termination of exposure, two types of tests

were conducted: (1) the effects of kerosene on the rate of biotransformation of hexobarbital and

phenacetin were examined by looking at hexobarbital sleeping time and measuring the antipyritic

activity of phenacetin in intact animals; and (2) blood, liver, and muscle tissue were obtained for in

vitro tests to examine pyruvate, lactate, and glucose activity/levels. In the first experiments,

hexabarbital sleeping time remained unchanged in both treatment groups, and the antipyretic activity of

phenacetin was significantly prolonged only in the high-dose (concentration) group. In the second

group of tests, the blood glucose concentration was found to be decreased in both the 58 mg/m3 and

231 mg/m3 exposure groups, while lactate and pyruvate were found to be increased only in the high

concentration group. (This study was used as the basis for derivation of an intermediate MRL for fuel

oil no. 1 for the inhalation route of exposure.) The authors suggest that the decreased circulating

glucose levels may be associated with both increased glycolysis and the inhibition of gluconeogenesis

(kerosene exposure effecting increased glycolysis is supported by the findings of increased concentrations

of lactate and pyruvate in the blood and liver, as well as increased lactate dehydrogenase

activity in the liver). Further, the authors suggest that the increased glycolysis may be the result of the

inhibition of cellular respiration by kerosene, and it was noted that cellular respiration was inhibited in

liver and kidney slices subsequent to the addition of kerosene to the incubation solution.

When exposed to up to 100 mg/m3 deodorized kerosene vapor for 13 weeks, no histopathological

changes in the liver were noted in rats or dogs, and no liver weight changes were noted in dogs

(Carpenter et al. 1976). Inhalation of diesel fuel aerosol 4 hours/day, 2 days/week for 13 weeks at

concentrations up to 1,500 mg/m3 did not induce histopathological or organ weight changes in the

livers of rats (Lock et al. 1984).
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Renal Effects. Renal effects were tested by urinalysis in two individuals who were exposed to JP-5

vapor for approximately 1 hour while flying a small airplane (Porter 1990). No abnormalities in the

urine were reported in this case study for either of these individuals. Acute renal failure was reported

in a man who was exposed to diesel fuel vapor for 10 days while driving a truck with a fuel injector

leak (Reidenberg et al. 1964). Acute renal failure also occurred in a man after washing his hair with

an unknown amount of diesel fuel (Barrientos et al. 1977). In addition, he had oliguria; biopsy

revealed mitosis and vacuolization in renal cells, tubular dilation, and some cellular proliferation in the

glomerulus. Another man developed acute tubular renal necrosis after washing his hands with an

unspecified diesel fuel over several weeks (Crisp et al. 1979). Specifically, patchy degeneration and

necrosis of the proximal and distal tubular epithelium with preservation of the basement membranes

were noted. Also, increased blood urea and serum creatinine levels were noted in this individual.

Effects resulting from inhalation versus dermal exposure could not be distinguished in the two latter

cases. Based upon these case studies and the finding of kidney damage in mice dermally exposed to

fuel oils (see Section 2.2.3.2 under Renal Effects), it may be possible to absorb fuel oil vapor through

the skin. However, no studies were located that tested dermal absorption of fuel oil vapor in humans

(see Section 2.3.1.3).

Several studies have identified a hydrocarbon-induced nephropathy in male rats that is associated with

exposure to hydrocarbon vapors, including some fuel oils (Bruner 1984; Cowan and Jenkins 1981;

Gaworski et al. 1984). This hydrocarbon-induced nephropathy has only been demonstrated in adult

male rats and has been linked to a specific protein, α2µ-globulin, which is produced under hormonal

control by the liver (Alden 1986). When male rats are exposed to certain hydrocarbons, including

JP-5 and marine diesel fuel, α2µ,-globulin accumulates in hyaline droplets, which can be visualized in

proximal tubule cells. This buildup of α2µ-globulin-containing hyaline droplets is thought to lead to

cell necrosis; the cellular debris accumulates at the corticomedullary junction, causing tubule dilation

and mineralization of the tubules. Studies of 90-day continuous inhalation of 150 or 750 mg/m3 JP-5

vapor (Bruner 1984; Cowan and Jenkins 1981; Gaworski et al. 1984) and 50 or 300 mg/m3 marine

diesel fuel vapor (Bruner 1984; Cowan and Jenkins 1981) have shown that a dose-response

relationship exists for multifocal tubular atrophy and focal tubular necrosis at the corticomedullary

junction in male rats. Granular cysts form from the necrotic debris, which then plug and dilate the

proximal tubules, resulting in chronic necrosis. In all cases of JP-5-induced and marine diesel

fuel-induced nephropathy, dose-dependent formation of cytoplasmic hyaline droplets of the proximal

tubules in the renal cortex is prominent. Increased blood urea nitrogen and creatinine levels were
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found to be associated with this nephropathy in male rats following inhalation of 150 or 750 mg/m3

JP-5 (Cowan and Jenkins 1981). Since humans do not possess α2µ -globulin, this effect in male rats is

not considered germane to human health risk assessment.

This nephropathy has also been identified in male rats exposed to JP-5 by the oral route (see the

discussion of Renal Effects in Section 2.2.2.2). This nephropathy does not appear to be induced by

deodorized kerosene or diesel fuel, at least not under subchronic exposure conditions. No

histopathological changes were noted in the renal system of rats or dogs exposed to up to 100 mg/m3

deodorized kerosene vapor for 13 weeks (Carpenter et al. 1976). No organ weight or histopathological

changes of the renal system were noted in rats following inhalation of diesel fuel aerosol 4 hours/day,

2 days/week, for 13 weeks at concentrations up to 1,500 mg/m3 (Lock et al. 1984). This lesion has

not been noted in female rats, female mice (studies conducted on male mice were not located), or dogs

of either sex when exposed under similar conditions to either JP-5 or marine diesel fuel vapors (Bruner

1984; Cowan and Jenkins 1981; Gaworski et al. 1984).

Dermal Effects. No studies were located regarding dermal effects in humans after inhalation

exposure to fuel oils.

Whole-body inhalation exposure to diesel fuel aerosol 4 hours/day, 2 days/week, for 13 weeks at

concentrations up to 1,500 mg/m3 did not induce skin lesions in rats (Lock et al. 1984).

Ocular Effects. One case study describes eye irritation in two individuals exposed to JP-5 vapor for

approximately 1 hour while flying a small airplane (Porter 1990). Both individuals experienced a

burning sensation in their eyes, and one had itchy, watery eyes 1 day after the exposure. These effects

subsided within 24 hours. Hyperemic conjunctiva were also reported for one of the individuals; this

effect subsided after 4 days. Another case study describes subconjunctival hemorrhages in a man whom

had washed his hair with an unknown amount of diesel fuel (Barrientos et al. 1977). Effects resulting

from inhalation versus dermal exposure could not be distinguished in this case. Eye irritation was not

induced in six volunteers by a 15-minute exposure to 140 mg/m3 deodorized kerosene vapor

(Carpenter et al. 1976). This study is limited since only one concentration was tested. Eye irritation

was also noted in factory workers who were chronically exposed to jet fuel (Knave et al. 1978). The

limitations of the study are discussed in detail in Section 2.2.1.2 under Respiratory Effects.
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No studies were located regarding ocular effects in animals after inhalation exposure to fuel oils.

Body Weight Effects. No studies were located regarding body weight effects for humans after

inhalation exposure to fuel oils.

There was no change in body weight gain in rats exposed to up to 100 mg/m3 deodorized kerosene

vapor for 13 weeks (Carpenter et al. 1976). Inhalation of diesel fuel aerosol 4 hours/day, 2 days/week

for 13 weeks at concentrations of 250-1,500 mg/m3 induced reversible body weight loss at all

exposure levels and decreased food consumption in rats exposed to the mid- and high-exposure levels

(Lock et al. 1984). There were no histopathological or relative adrenal gland weight changes in these

animals. Intermediate exposures to diesel fuel aerosol induced decreases in the mean body weights of

rats exposed to a Ct of 8,000 or 12,000 mg hour/m3 (Dalbey et al. 1987). Weight loss was found to

be dependent upon exposure concentration, frequency, and duration in this study. Dose-response data

were not reported for the individual exposure concentrations used to produce each Ct (see discussion

in Section 2.2.1.1). There was no change in body weight gain in mice or female rats following 90-day

inhalation exposure to 750 mg/m3 JP-5 vapor (Gaworski et al. 1984).

Other Systemic Effects. A man exposed to diesel fuel vapor for 10 days while driving a truck

with a fuel injector leak exhibited systemic edema (Reidenberg et al. 1964). Edema of the scrotum

and ankle were reported in a man who washed his hands with diesel fuel over several weeks (Crisp et

al. 1979). Other effects noted in this man were loin pains, thirst, and severe exhaustion. Effects

resulting from inhalation versus dermal exposure could not be distinguished in this case. Inhalation of

400 ppm home heating oil no. 2 vapor, 408.8 ppm fuel oil UNSP vapor, or 401.5 ppm diesel fuel

vapor by pregnant rats for 10 days did not induce maternal body weight changes (API 1979c, 1979g;

Beliles and Mecler 1983). A dose-response relationship was noted for decreased food and water

consumption with subsequent weight loss and dehydration in mice following 5-day, 8-hour/day acute

inhalation of 204 mg/m3 diesel fuel no. 2 vapors (Kainz and White 1984). These effects were not

induced by 135 mg/m3 of the diesel fuel. Decreased food intake was also noted in pregnant rats

following inhalation of 401.5 ppm diesel fuel vapor; no effects on maternal food intake were noted

following inhalation of 101.8 ppm diesel fuel vapor, 100 or 400 ppm home heating oil vapor, or

86.9 or 408.8 ppm fuel oil UNSP vapor (API 1979c, 1979g; Beliles and Mecler 1983).
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2.2.1.3 Immunological and Lymphoreticular Effects

No studies were located regarding immunological or Lymphoreticular effects in humans or animals

after inhalation exposure to fuel oils.

2.2.1.4 Neurological Effects

In one case study, neurological effects in humans resulting from acute exposure to JP-5 vapor were

reported (Porter 1990). Coordination and concentration difficulties and fatigue were noted in each of

two individuals following a l-hour exposure to JP-5. Other effects included headache, apparent

intoxication, and anorexia. Neither experienced any sensory impairment. The effects subsided within

24 hours for one individual, and within 4 days for the other. Anorexia was also reported in a man

who washed his hands with diesel fuel over several weeks (Crisp et al. 1979). Effects resulting from

inhalation versus dermal exposure could not be distinguished in this case. A man exposed to diesel

fuel vapor for 10 days while driving a truck with a fuel injector leak exhibited severe headaches

approximately 4 weeks after exposure (Reidenberg et al. 1964). In a study of six volunteers, slight

olfactory fatigue was induced in three, while one reported “tasting something,” following a 15-minute

exposure to 140 mg/m3 deodorized kerosene vapor (Carpenter et al. 1976). This study is limited since

only one concentration was tested.

An epidemiological study tested the effects of chronic exposure to jet fuel in factory workers (Knave

et al. 1978). This study found significant increases in neurasthenia (i.e., fatigue, depressed mood, lack

of initiative, dizziness, and sleep disturbances) in the exposed subjects when compared to unexposed

controls from the same factory. Also, attention and sensorimotor speed were impaired in the exposed

workers, but no effects were found on memory function or manual dexterity. Results of an

electroencephalograph (EEG) suggested that the exposed workers may have had instability in the

thalamocortical system. The limitations of the study, which include lack of specification of type of jet

fuel and no adjustment for other chemicals, were discussed in greater detail in Section 2.2.1.2 under

Respiratory Effects.

Kainz and White (1984) exposed (nose only) groups of CD-l mice to concentrations of 65, 135, or

204 mg diesel vapor/m3 of air for 8 hours/day for 5 consecutive days. General appearance and

behavior were observed, as was performance on a series of neurobehavioral tests (square box activity
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test, rotating rod test, inclined plane test, cornea1 reflex test, hot plate test) administered 24 hours

before exposure, on each day of exposure, and 24 hours after the last exposure. Results of the square

box test revealed increased activity at the lowest concentration, little change at the mid-concentration,

and decreased activity (up to 50%) in the high-concentration exposed animals. The rotating rod test

showed decreased performance at the mid- and high-exposures. Results of the hot plate test indicated

an increased sensitivity to heat of the mid- and high-concentration groups on day 1 of exposure, but

tolerance was reported on day 6. The corneal reflex and inclined plane tests showed no differences

from controls at any air concentration. Some degree of ataxia/disturbed gait was observed in all

exposure groups immediately after removal from the exposure chamber, with the severity and duration

of the symptom being dose dependent (all mice returned to normal before the next day’s exposure).

Grooming habits were reported to be poor in the mid- and high-exposure groups. Water consumption

was decreased in the high-dose group, which was reported to appear dehydrated on day 3 of exposure,

and a 30% loss in body weight was also observed in this group. Vasodilation of the ear and tail veins

was seen in the mid- and high-concentration groups on the third day of the experiment. Tremors were

reported in 3 of 10 mice in the mid-exposure group and in 5 of 10 mice in the high-concentration

group while in motion, and 3 of the high-exposure animals died before the end of the experiment.

The results of the Kainz and White (1984) study indicated a time- and dose-dependent response to

diesel vapor, with nonlethal effects all being completely reversible within 24 hours of cessation of

exposure. (This study was used to derive an acute inhalation MRL for fuel oil no. 2-D.)

No histopathological changes were noted in the nervous system of rats or dogs exposed to up to

100 mg/m3 deodorized kerosene vapor for 13 weeks (Carpenter et al. 1975, 1976). Inhalation of diesel

fuel aerosol 4 hours/day, 2 days/week, for 13 weeks at concentrations up to 1,500 mg/m3 did not

induce histopathological changes in the nervous system of rats (Lock et al. 1984). However, peak

response time using the startle reflex assay was increased in rats at all exposure levels, but the greatest

increase occurred in the high-dose group. Neurotoxicity, as measured using the landing footspread,

tail flick, forelimb grip strength, and startle reflex assays, did not occur in rats exposed to a Ct of

8,000 or 12,000 mg hour/m3 diesel fuel aerosol for 3 or 9 weeks (Dalbey et al. 1987).

The highest NOAEL and all reliable LOAEL values for neurological effects after inhalation exposure

to fuel oils are recorded in Table 2-1 and plotted in Figure 2-2.
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2.2.1.5 Reproductive Effects

No studies were located regarding reproductive effects in humans after inhalation exposure to fuel oils.

Inhalation of diesel fuel aerosol 4 hours/day, 2 days/week, for 13 weeks at concentrations up to

1,500 mg/m3 did not induce relative testes weight changes nor histopathological changes in the

reproductive organs of rats (Lock et al. 1984).

The highest NOAEL value for reproductive effects after inhalation exposure to fuel oils is recorded in

Table 2-l and plotted in Figure 2-2.

2.2.1.6 Developmental Effects

No studies were located regarding developmental effects in humans after inhalation exposure to fuel

oils.

No developmental effects (soft tissue changes, skeletal abnormalities, inhibition of fetal growth) were

noted in the fetuses of female rats exposed to 400 ppm home heating oil no. 2, 408.8 ppm fuel oil

UNSP, or 401.5 ppm diesel fuel vapor by inhalation during gestation days 6-15 (API 1979c 1979g;

Beliles and Mecler 1983). Only one study was located for each fuel oil for these effects.

The highest NOAEL values for developmental effects after inhalation exposure to fuel oils are

recorded in Table 2-1 and plotted in Figure 2-l.

2.2.1.7 Genotoxic Effects

No studies were located regarding genotoxic effects in humans after inhalation exposure to fuel oils.

In the only in vivo animal study located regarding genotoxic effects using inhalation as the route of

exposure, male CD-l mice (12/group) exposed to 100 or 400 ppm diesel fuel vapor (6 hours/day,

5 days/week, for 8 weeks) showed no adverse effects with respect to the frequency of dominant lethal

mutations (API 1981).
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Other genotoxicity studies are discussed in Section 2.4.

2.2.1.8 Cancer

There are limited epidemiological data regarding carcinogenicity in humans following chronic

inhalation exposure to kerosene. In one case-control study, there was no association between the use

of kerosene stoves for cooking and bronchial cancer in nonsmoking women (Chan et al. 1979). In

another case-control study, there was no association between renal cell cancer and occupational

exposure to fuel oils, including diesel fuel (Partanen et al. 1991). In the first study, it cannot be

determined whether the individuals were actually exposed to kerosene vapor. Also, there may be

additional or alternative effects resulting from exposure to the combustion products of kerosene, which

may be toxicologically different from the kerosene itself. In the latter study, exposure to other

chemicals may have affected the results, since fuel oil exposure was based upon occupation. Both

studies are limited because they do not quantify the levels of exposure and cannot accurately determine

the duration of exposure to fuel oils. In another study, increased risk of laryngeal cancer was

associated with self-reported exposure to diesel oil (Ahrens et al. 1991). However, the data were

equivocal. Similarly, exposure to “petroleum products,” including diesel fuel, has been associated with

acute leukemia (Lindquist et al. 1991), but the study was very limited in that type of product exposed

to was not described, and included a wide range of product types. A third study associated the use of

kerosene stoves and exposure to “petroleum products” with oral and pharyngeal cancer (Zheng et al.

1992), but suffers the same limitations as Lindquist et al., with the addition that use of kerosene stoves

involves exposure to both kerosene vapor and combustion products.

In a study conducted on rats, no renal tumors were observed during life-time observation following a

90-day continuous exposure to 750 mg/m3 JP-5 vapor or to 300 mg/m3 marine diesel fuel vapor

(Bruner 1984). Since this study was not designed to test carcinogenicity, these data have limited

usefulness.
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2.2.2 Oral Exposure

2.2.2.1 Death

Numerous case studies have described death following the accidental ingestion of kerosene by children

(usually under the age of 5 but as old 15 years). The deaths are usually attributed to lipoidal

pneumonia (Morrison and Sprague 1976; Santhanakrishnan and Chithra 1978; Zucker et al. 1986) that

was probably induced by the aspiration of the kerosene. Specific respiratory effects associated with

death from kerosene ingestion include pneumothorax (Mahdi 1988; Zucker et al. 1986), emphysema

(Mahdi 1988), and pneumonitis (Singh et al. 1981). Cardiac arrhythmia was reported as the cause of

death in one child; however, it was suspected that myocarditis and pulmonary edema may have been

the cause of the rapid deterioration and death of the child (Dudin et al. 1991).

Estimated ingested doses of kerosene associated with death are as low as 1,890 mg/kg, based on

ingestion of 30 mL of kerosene by children 11 months to 2 years of age (Dudin et al. 1991;

Santhanakrishnan and Chithra 1978), and as high as 16,789 mg/kg, based on ingestion of 200 mL of

kerosene by a l-year-old child (Santhanakrishnan and Chithra 1978). No lethality was reported for

children from 10 months to 5 years old following ingestion of estimated doses ranging from 120 to

870 mg/kg and in one instance a dose as high as 1,700 mg/kg of kerosene (Dudin et al. 1991).

Death in rats occurred after acute oral exposure to 12,000 mg/kg kerosene but not after exposures to

8,000-11,200 mg/kg kerosene or 12,150 mg/kg Deobase (Muralidhara et al. 1982). Oral exposure to

4,000 mg/kg kerosene was lethal to 10-day-old rats; this dose level was not tested in adult rats

(Deichmann et al. 1944). Death occurred in two out of six rats subsequent to a single gavage dose of

47,280 mg/kg JP-5, but none died from single doses of 18,912-29,944 mg/kg JP-5 (Parker et al.

1981). One rat exposed to 37,824 mg/kg JP-5 died from a gavage accident. There were no other

deaths in that treatment group.

The acute oral LD50 values for kerosene in guinea pigs and rabbits have been reported to be 16,320

and 22,720 mg/kg, respectively (Deichmann et al. 1944). In guinea pigs, death occurred following

acute oral exposure to 3,760-19,200 mg/kg kerosene. Death in rabbits occurred after acute oral

exposure to 12,800-28,800 mg/kg kerosene but not after exposure to 8,000 mg/kg. These data for

guinea pigs and rabbits are limited, because the methodologies and experimental conditions of this
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study were poorly described. Oral gavage of 6,400 mg/kg/day kerosene, administered for 7-10 days,

was lethal to four out of five male calves; only one dose was tested in this study (Rowe et al. 1973).

Mortality in rats was induced by acute aspiration of 0.05-0.25 mL of kerosene; there was a dose response

relationship for death in this study (Gerarde 1963). Aspiration is induced by placing the test

material into the back of the throat which causes the animal to choke, forcing the test compound into

the respiratory tract. The purpose of using aspiration as a route of exposure in animals is to mimic

human respiratory exposure which occurs during vomiting after ingestion of kerosene. Mortality in

mice was noted following a single exposure to 20 µL kerosene by aspiration (Nouri et al. 1983). This

latter study is limited because only one dose was tested.

All reliable LOAEL values for death in each species and duration category after oral exposure to fuel

oils are recorded in Table 2-2 and plotted in Figure 2-3.

2.2.2.2 Systemic Effects

No studies were located regarding musculoskeletal effects in humans or animals after oral exposure to

fuel oils.

The highest NOAEL and all reliable LOAEL values for systemic effects in each species and duration

category for oral exposure to fuel oils are recorded in Table 2-2 and plotted in Figure 2-3.

Respiratory Effects. Even if the kerosene is initially ingested (accidental ingestion of fuel oils is

most often noted in children under 5 years of age), the respiratory toxicity is usually attributable to the

aspiration of kerosene into the lungs during vomiting (Coruh and Inal 1966; Majeed et al. 1981; Nouri

and Al-Rahim 1970). Based on those case studies that examined at least 50 cases of kerosene

ingestion by children, the respiratory effects that primarily occur from kerosene ingestion are

bronchopneumonia, bronchitis, pneumonitis, lung infiltrates and effusions, cough, dyspnea, and

tachypnea (Akamaguna and Odita 1983; Aldy et al. 1978; Annobil 1983; Annobil and Ogunbiyi 1991;

Mahdi 1988; Santhanakrishnan and Chithra 1978; St. John 1982). Pneumonitis, pulmonary edema,

and/or pneumonia were reported for children and adults who had ingested kerosene (Subcommittee on

Accidental Poisoning 1962). Hypoxia has also been noted in some cases (Dudin et al. 1991). An

epidemiological study found a significant increase in a feeling of heaviness in the chests of workers
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who were chronically exposed to jet fuels by the inhalation, oral, and/or dermal exposure routes

(limitations of the study are discussed in detail in Section 2.2.1.2 in Respiratory Effects) (Knave et al.

1978). A follow-up study was conducted on children who 10 years earlier had been diagnosed with

pneumonitis due to kerosene ingestion and who had abnormal chest radiographs at the time (Tal et al.

1984).

Researchers found an increase in volume of isoflow, a decrease in change in flow while breathing

helium compared to air at 50% vital capacity, and the continued presence of abnormal chest

radiographs. The study suggests that there may be long-term respiratory effects following aspiration of

ingested kerosene.

Several studies have reported estimated levels of exposure which are usually based on the finding of

an empty container near the poisoned child (Agarwal and Gupta 1974; Akamaguna and Odita 1983;

Aldy et al. 1978; Coruh and Inal 1966; Dudin et al. 1991; Nouri and Al-Rahim 1970; Saksena 1969;

Santhanakrishnan and Chithra 1978), although the effects associated with specific doses were not

reported. The Subcommittee on Accidental Poisoning (1962) estimated that ingestion of 10-30 mL

kerosene was associated with pulmonary complications in 11 of the 422 cases studied (the incidence of

the effects, ages associated with the effects, and doses were not reported). These effects also occurred

at doses beyond this range. An estimated oral dose of less than 5,300 mg/kg kerosene resulted in the

death of a 10-month-old girl. Pneumothorax, pneumomediastinum, and death were believed to be the

results of respiratory distress from aspiration of kerosene (Zucker et al. 1986). Respiratory distress

was reported to have resulted in the deaths of a 2-year-old child and a l-year-old child after ingestion

of 30 mL (1,890-1,959 mg/kg) and 200 mL (15,340-16,789 mg/kg) of kerosene, respectively

(Santhanakrishnan and Chithra 1978).

Not all cases of kerosene ingestion result in toxicity. For instance, as many as 56% of the cases

studied were asymptomatic in two of the study populations (Mahdi 1988; Santhanakrishnan and

Chithra 1978). Also, 39% of one population of children had normal lung x-rays following kerosene

ingestion (Annobil and Ogunbiyi 1991). No doses were reported in these cases, although the authors

estimated them as small.

Mononuclear and polymorphonuclear cell infiltration and unspecified pathological lesions were noted

in the lungs of guinea pigs after gavage administration of 3,200-8,000 mg/kg kerosene (Brown et al.
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1974). In mice, aspiration of 20 µL of Kerosene induced pulmonary consolidation and hemorrhage,

pneumonitis, a decrease in pulmonary clearance of Staphylococcus aureus, and an increase in relative

lung weight (Nouri et al. 1983). Dogs exposed to 0.5 mL/kg kerosene by aspiration exhibited

increases in oxygen utilization, intrapulmonary physiologic shunt fraction, and respiratory rate and

decreases in arterial oxygen tension (Goodwin et al 1988). In the aspiration studies, the actual dose

entering the lungs cannot be determined.

Cardiovascular Effects. Tachycardia was noted in children following acute ingestion of kerosene

(Akamaguna and Odita 1983; Coruh and Inal, 1966). In one case study, cardiomegaly, but not heart

failure, occurred in 20% of the cases of kerosene poisoning (Akamaguna and Odita 1983). An

epidemiological study found a significant increase in cardiac palpitations in workers who were

chronically exposed to jet fuels by the inhalation, oral, and/or dermal exposure routes (Knave et al.

1978). The limitations of the study are discussed in detail in Section 2.2.1.2 under Respiratory

Effects.

There were no histopathological changes and no change in the relative heart weight in rats following

exposure by gavage to single doses of up to 12,000 mg/kg kerosene or 12,150 mg/kg Deobase

(Muralidhara et al. 1982). Data for Deobase are limited because effects were reported for only one

dose.

In another study, decreases in heart rate and mean arterial blood pressure occurred in dogs following a

single exposure to 0.5 mL/kg kerosene by aspiration, although these values returned to the control

values within 60 minutes ( Goodwin et al. 1988). The actual dose entering the lungs by aspiration

cannot be determined. The study is limited, however, because only one dose was tested.

Gatrotestinal Effects. The most commonly reported gastrointerinal effect in children following

acute ingestion of kerosene in vomiting (Akamaguna and Odita 1983; Aldy et al. 1978; Mahdi 1988;

Majeed et al. 1981; Nouri and Al-Rahim 1970; Saksena 1969; St. Johns 1982), including bloody vomit

(Nouri and Al-Rahmin 1970). Other effects noted are abdominal pain and/or distension (Akamaguna

and Odita 1983; Mahdi 1988; Majeed et al. 1981; Nouri and Al-Rahim 1970; Sakena 1969),

gastroenteritis (Sakena 1969), and diarrhea (Majeed et al. 1981).
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No diarrhea was noted in rats following exposure by gavage to single doses of up to 12,000 mg/kg

kerosene or 12,150 mg/kg Deobase (Muralidhara et al. 1982).

Hematological Effects. Several case studies reported hematological effects in children following

acute ingestion of kerosene. Increases in leukocyte counts were reported for 37-80% of the respective

study populations (Dudin et al. 1991; Majeed et al. 1981; Nouri and Al-Rahim 1970).

In rats exposed by gavage to single doses of up to 12,000 mg/kg/ kerosene or 12,150 mg/kg Deobase, there was

no change in relative spleen weight and no histopathological changes of the spleen occurred (Muralidhara et al.

1982). Rats had increased hematocrit, decreased white blood cell counts, and increased erythrocyte counts

following exposure by gavage to a single dose of 18,912 mg JP-5/kg (Parker et al. 1981).

Hepatic Effects. No studies were located regarding hepatic effects in humans after oral exposure to

fuel oils.

There was no change in the relative organ weight of the liver in rats following exposure by gavage to

single doses of up to 12,000 mg/kg kerosene or 12,150 mg/kg Deobase (Muralidhara et al. 1982).

Histopathological examination revealed slight cellular infiltration and mild vacuolization of the liver,

but the kerosene and Deobase exposure levels that induced these effects were not specified. A single

exposure to JP-5 induced necrosis in the hepatocytes of rats exposed to 18,912-47,280 mg/kg by

gavage (Parker et al. 1981). In another experiment, a single exposure to 18,912 mg JP-5/kg induced

vacuolization of the periportal hepatocytes within 2 days of gavage, as well as statistically significant

increases in serum glutamic pyruvic transaminase (SGPT), glutamic oxaloacetic transaminase (SGOT),

and lactate dehydrogenase levels, suggesting hepatic damage (Parker et al. 1981).

Renal Effects. Several case studies reported normal urinalysis tests in children following acute

ingestion of kerosene (Dudin et al. 1991; Mahdi 1988; Nouri and Al-Rahim 1970), although

albuminuria was occasionally noted (Dudin 1991; Nouri and Al-Rahim 1970).

There were no changes in relative kidney weights in rats following exposure by gavage to single doses

of up to 12,000 mg/kg kerosene or 12,150 mg/kg Deobase (Muralidhara et al. 1982).

Histopathological examination revealed slight cellular infiltration and mild vacuolization in the kidney
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tissues and slight dilation of the kidney tubules, but the kerosene and Deobase exposure levels that

induced these effects were not specified. Only one study was located that tested for kidney weight

changes.

In another study, hyaline droplets were detected in the kidneys of two male rats that died 48 hours

after a single exposure to 47,280 mg/kg JP-5 by gavage (Parker et al. 1981). This effect was not

apparent in male rats that died within 48 hours of exposure to 47,280 mg/kg or in rats that survived

for 14 days following exposures to 18,912-37,824 mg/kg JP-5. However, hyaline droplets were

apparent in rats that were killed within 2-3 days of exposure to 18,912 mg/kg JP-5. Thus, the effect

appears to be induced within a specific period, between 2 and 14 days, following exposure. A single

exposure to 18,912 mg/kg JP-5 also induced a statistically significant increase in creatinine levels

(Parker et al. 1981). These effects are apparently unique to male rats and are not expected to occur in

humans (see discussion in Section 2.2.1.2 under Renal Effects).

Dermal Effects. Large blisters, erythema, and peeling skin were reported in two cases of apparent

oral exposure to kerosene (Annobil 1988). However, the strong odor of kerosene on one of the

individuals and the kerosene-stained clothing of the other indicate that dermal exposure may have also

occurred in these cases. Exposure levels were not reported.

Alopecia and congestion of the subcutis were noted in rats following exposure by gavage to single

doses of 24 mL JP-5/kg (Parker et al. 1981).

Ocular Effects. No studies were located regarding ocular effects in humans or animals after oral

exposure to fuel oils.

Other Systemic Effects. Fever has been reported in children following ingestion of kerosene

(Akamaguna and Odita 1983; Aldy et al. 1978; Dudin et al. 1991; Mahdi 1988; Majeed et al. 1981;

Nouri and Al-Rahim 1970; Saksena 1969; St. John 1982). In one study, fever was reported with

pulmonary complications for children and adults who had ingested kerosene (Subcommittee on

Accidental Poisoning 1962). It is not known whether the fever was secondary to the pulmonary

effects.
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There were no histopathological changes and no changes in the relative adrenal gland weights in rats

following exposure by gavage to single doses of up to 12,000 mg/kg kerosene or 12,150 mg/kg

Deobase (Muralidhara et al. 1982). Only one study was located that tested for these effects.

2.2.2.3 Immunological and Lymphoreticular Effects

No studies were located regarding immunological effects in humans or animals after oral exposure to

fuel oils.

2.2.2.4 Neurological Effects

In one study, lethargy, semicoma, and/or coma were reported for children and adults who had ingested

kerosene (Subcommittee on Accidental Poisoning 1962). Estimated exposure levels of 10-30 mL

kerosene were associated with complications of the central nervous system in 18 of the 422 study

participants. However, these effects also occurred at doses beyond this range, but the exact exposure

levels are not known. Incidences of the effects and the ages associated with the effects or ingested

doses were not reported.

Several case studies reported neurological effects in children following acute ingestion of kerosene. In

studies that examined 50-205 kerosene poisoning cases, the neurological effects noted most frequently

were unconsciousness or semiconsciousness, drowsiness, restlessness, and irritability (Akamaguna and

Odita 1983; Aldy et al. 1978; Coruh and Inal 1966; Dudin et al. 1991; Mahdi 1988; Majeed et al.

1981; Nouri and Al-Rahim 1970; Saksena 1969; Santhanakrishnan and Chithra 1978; St. John 1982).

Coma and convulsions were also noted in numerous studies, but were usually evident in only one or

two individuals per study population (Coruh and Inal 1966; Dudin et al. 1991; Majeed et al. 1981;

Nouri and Al-Rahim 1970; Saksena 1969; Santhanakrishnan and Chithra 1978).

In one study of 78 children known to have ingested kerosene, coma, convulsions, and death were

noted in two children (aged 11-48 months) after each ingested a quantity of kerosene estimated to be

between 30 mL (1,890 mg/kg) and 50 mL (4,255 mg/kg) (Dudin et al. 1991). The cause of death was

not neurological for these children. Neither coma nor convulsions occurred in children that ingested

3-20 mL of kerosene (equivalent to 126-1,754 mg/kg in children aged 10 months to 5 years).

However, in the majority of the cases of kerosene ingestion, neurological effects were not associated
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with specific reported quantities. There are limited data that suggest that the central nervous system

effects following ingestion of kerosene are due to hypoxia from kerosene-induced respiratory

impairment (Majeed et al. 1981).

An epidemiological study found significant increases in neurasthenia (i.e., fatigue, depressed mood,

lack of initiative, dizziness, and sleep disturbances) in workers who were chronically exposed to jet

fuels by inhalation, oral, and/or dermal exposure (Knave et al. 1978). Also, attention and sensorimotor

speed were impaired, but no effects were found on memory function or manual dexterity. EEG results

suggest that the exposed workers may have had instability in the thalamocortical system. The

limitations of the study are discussed in detail in Section 2.2.1.2 under Respiratory Effects.

Single exposures to 12,000 mg/kg kerosene and 12,150 mg/kg Deobase by oral gavage induced

unsteady gait and drowsiness in rats; however, no neurological effects occurred from exposure to

8,000 mg/kg kerosene (Muralidhara et al. 1982). These data are limited since statistical analysis was

not conducted and effects in the controls were not described. Also, a dose-response relationship

cannot be identified from the Deobase data, since only one dose was tested.

In another study in which mice were exposed to a single dose of 20 µL of kerosene followed by

aspiration, drowsiness, lack of coordination, and behavioral changes occurred (Nouri et al. 1983). The

study is limited because only one dose was tested. The actual dose entering the lungs by aspiration

cannot be determined.

The highest NOAEL and all reliable LOAEL values for neurological effects after oral exposure to fuel

oils are recorded in Table 2-2 and plotted in Figure 2-3.

2.2.2.5 Reproductive Effects

No studies were located regarding reproductive effects in humans or animals after oral exposure to fuel

oils.
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2.2.2.6 Developmental Effects

No studies were located regarding developmental effects in humans or animals after oral exposure to

fuel oils.

2.2.2.7 Genotoxic Effects

No studies were located regarding genotoxic effects in humans after oral exposure to fuel oils.

Inconclusive evidence that fuel oil no. 2 is clastogenic in rats has been reported (Conaway et al. 1984).

Briefly, a bone marrow assay was used in which groups of four Sprague-Dawley rats (sex not

specified) received oral doses of 125, 417, or 1,250 mg/kg/day fuel oil no. 2 for 5 consecutive days.

Animals were then sacrificed, and bone marrow cells were examined for abnormal chromosome

morphology. Marked, but not dose-related, increases in the percentage of aberrant cells and the

percentage of cells with chromatid breaks were seen in all treatment groups. The effect was reported

to be significant at the low and high dose, and the greatest yield of aberrant chromosome figures

occurred in the animals treated with 125 mg/kg/day. Alternatively, cyclohexane/DMSO extract and

DMSO extract of diesel  1 (CAS no. 8008-20-6) and home heating oil (CAS no. 68476-30-2),

administered orally at doses of  1.0, 2.0, and 5.0 g/kg, did not induce increased frequency of

micronuclei in a mouse bone marrow micronucleus assay (McKee et al 1994). It should be noted that

the extraction procedure was used to concentrate the aromatic fraction (with particular interest in the

polynuclear aromatics) of the fuel oils tested.

Other genotoxicity studies are discussed in Section 2.4.

2.2.2.8 Cancer

No studies were located regarding cancer in humans or animals after oral exposure to fuel oils.
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2.2.3 Dermal Exposure

2.2.3.1 Death

No studies were located regarding death in humans after dermal exposure to fuel oils.

Single dermal exposures to 0.5 mL/kg home heating oil no. 2 or diesel fuel were not lethal to rabbits

(API 1979a, 1980a). Daily dermal exposures for 1 week to 0.1 mL kerosene were not lethal to male

mice (Upreti et al. 1989). Death in mice occurred after acute dermal exposures to

20,000-40,000 mg/kg/day marine diesel fuel and 30,000-40,000 mg/kg/day JP-5, but not after

exposures to 2,000-8,000 mg/kg/day marine diesel fuel or 5,000-20,000 mg/kg/day JP-5 (NTP/NIH

1986). Intermediate exposures to 2,000-8,000 mg/kg/day JP-5 for 13 weeks (NTP/NIH 1986) and to

42.2 mg per application JP-5 or 45.5 mg per application marine diesel fuel 3 times per week for

40 weeks (Schultz et al. 1981), were also lethal to mice. Intermediate exposures (13 weeks) to 500 or

1,000 mg/kg/day JP-5, or 2504,000 mg/kg/day marine diesel fuel (NTP/NIH 1986), or 21.1 mg per

application JP-5 3 times per week for 40 weeks, or 22.9 mg per application marine diesel fuel 3 times

per week for 40 weeks (Schultz et al. 1981) were not lethal in mice.

A statistically significant increase in the number of deaths was noted only in female mice following

chronic exposure to marine diesel fuel and JP-5 at doses of 250 and 500 mg/kg/day for both fuel oils

(NTP/NIH 1986). Although the number of deaths in males under these conditions was increased over

that of the controls, the effect was not significant. Deaths were observed as early as week 1 of

exposure to marine diesel fuel and week 2 of exposure to JP-5. The data are limited for each of these

experiments because it was not specified whether the animals were protected against oral exposure

and/or removal of the test material.

The highest NOAEL and all reliable LOAEL values for death in each species and duration category

after dermal exposure to fuel oils are recorded in Table 2-3.

2.2.3.2 Systemic ,Effects

The highest NOAEL and all reliable LOAEL values for systemic effects in each species and duration

category for dermal exposure to fuel oils are recorded in Table 2-3.
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Respiratory Effects. Effusions and alveolar infiltrations of the lung occurred in a man who had

washed his hair with an unknown amount of diesel fuel (Barrientos et al. 1977). Effects resulting

from inhalation versus dermal exposure could not be distinguished in this case. An epidemiological

study found a significant increase in feelings of “thoracic oppression” (no description provided) in

workers who were chronically exposed to jet fuels by the inhalation, oral, and/or dermal exposure

routes (Knave et al. 1978). The limitations of the study are discussed in detail in Section 2.2.1.2

under Respiratory Effects.

No histopathological or organ weight changes were noted in the respiratory system of male mice

following daily dermal exposures for 1 week to 0.1 mL kerosene (Upreti et al. 1989); 13-week

exposures to 2,000-8,000 mg/kg/day JP-5; or chronic exposures to 250 or 500 mg/kg/day of either

marine diesel fuel or JP-5 (NTP/NIH 1986).

Cardiovascular Effects. An epidemiological study found a significant increase in heart palpitations

in workers who were chronically exposed to jet fuels by inhalation, oral, and/or dermal exposure

routes (Knave et al. 1978). The limitations of the study are discussed in detail in Section 2.2.1.2

under Respiratory Effects.

No histopathological changes were noted in the cardiovascular system of mice exposed to

2,000-8,000 mg/kg/day JP-5 for 13 weeks or mice chronically exposed to 250 or 500 mg/kg/day of

either marine diesel fuel or JP-5 (NTP/NIH 1986).

Gastrointestinal Effects. Nausea, abdominal cramps, and diarrhea occurred in a man who had

washed his hair with an unknown amount of diesel fuel (Barrientos et al. 1977). Clinical examination

revealed a normal abdomen. Another man had epigastric pain after washing his hands with diesel fuel

over several weeks (Crisp et al. 1979). Effects resulting from inhalation versus dermal exposure could

not be distinguished in these cases.

No histopathological changes were noted in the gastrointestinal system of mice exposed to

2,000-8,000 mg/kg/day JP-5 for 13 weeks or mice chronically exposed to 250 or 500 mg/kg/day of

either marine diesel fuel or JP-5 (NTP/NIH 1986).
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Hematological Effects. One case study reported that decreased hemoglobin concentration and an

increase in erythrocyte sedimentation rate were noted in one man after washing his hands with diesel

fuel over several weeks (Crisp et al. 1979). Effects resulting from inhalation versus dermal exposure

could not be distinguished in this case.

A decrease in the splenic relative weight, which was not accompanied by histopathological changes,

was noted in male mice following daily dermal exposures for 1 week to 0.1 mL kerosene (Upreti et al.

1989). In addition, decreases in hemoglobin concentration and increases in erythrocyte, white blood

cell, and polymorphonuclear leukocyte concentrations were noted. Females were not tested in this

study. Hematopoiesis of the spleen (extramedullary hematopoiesis) was noted in mice exposed to

500-8,000 mg/kg/day JP-5 for 13 weeks (NTP/NIH 1986). This effect was dose related and was

found to be secondary to dermatitis in mice chronically exposed to 250 or 500 mg/kg/day marine

diesel fuel (NTP/NIH 1986). The appearance of extramedullary hematopoiesis indicates a response to

a hematological change or effect. Hematopoiesis in the liver in female mice was dose dependent and

was directly related to chronic exposures to 250 or 500 mg/kg/day marine diesel fuel (NTP/NIH 1986).

Musculoskeletal Effects. No studies were located regarding musculoskeletal effects in humans

after dermal exposure to fuel oils.

No histopathological changes were noted in the musculoskeletal system of mice chronically exposed to

250 or 500 mg/kg/day of either marine diesel fuel or JP-5 (NTP/NIH 1986).

Hepatic Effects. No studies were located regarding hepatic effects in humans after dermal exposure

to fuel oils.

No histopathological or organ weight changes were noted in the livers of male mice following daily

dermal exposures for 1 week to 0.1 mL kerosene (Upreti et al. 1989). Slight hepatic karyomegaly was

noted in mice exposed to 500-8,000 mg/kg/day JP-5 for 13 weeks (NTP/NIH 1986). Amyloidosis of

the liver occurred in mice chronically exposed to 500 mg/kg/day JP-5 but not in those exposed to

250 mg/kg/day.
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Renal Effects. Acute renal failure occurred in a man who washed his hair with an unknown amount

of diesel fuel (Barrientos et al. 1977). In addition, he had oliguria; biopsy revealed mitosis and

vacuolization in renal cells, tubular dilation, and some cellular proliferation in the glomerulus.

Another man developed acute tubular renal necrosis after washing his hands with an unspecified diesel

fuel over several weeks (Crisp et al. 1979). Specifically, patchy degeneration and necrosis of the

proximal and distal tubular epithelium with preservation of the basement membranes were noted.

Also, increased blood urea nitrogen and serum creatinine levels were noted in this individual. Effects

resulting from inhalation versus dermal exposure could not be distinguished in these cases.

No histopathological or organ weight changes were noted in the kidneys of male mice following daily

dermal exposures for 1 week to 0.1 mL kerosene (Upreti et al. 1989) nor following exposure to

2,000-8,000 mg/kg/day JP-5 for 13 weeks (NTP/NIH 1986). Renal lesions were produced in at least

one sex and at one or both doses levels (100% or 50%) in mice dermally treated three times per week

for 60 weeks with JP-5 or marine diesel fuel (Easley et al. 1982). However, the lesions could not be

duplicated in mice injected intraperitoneally with 100 mg/kg (using a corn oil vehicle) for 3 times per

week for days or in mice injected intraperitoneally with 25 microliters of JP-5 for 2 to 8 weeks. In

contrast to the case study (Barrientos et al. 1977) in which oliguria was manifested as a symptom of

acute diesel fuel toxicity, the dermally treated test animals demonstrated increased urine output,

increased insensitive water loss, and increased water consumption. The inability to reproduce the

lesions and the increased water consumption and loss by intraperitoneal injection led the authors to

speculate that dermal application may be the necessary route of exposure to cause the renal toxicity

(Easley et al. 1982). It should be noted that only abbreviated results were reported. Intermediate and

chronic exposure to petroleum oils was reported to induce a nodular appearance of the kidney as well

as induce tubular atrophy of the renal cortex in mice (Schultz et al. 1981). However, it was not

reported what petroleum fuels induced the kidney injury, although marine diesel fuel and JP-5 were

among those studied. From calculations of the kidney to body weight ratios in mice exposed to

21.l and 42.2 mg JP-5 or 22.9 and 45.5 mg marine diesel fuel for 40 weeks, dose-related trends were

noted in female mice for increased relative kidney weights following JP-5 exposure (right kidney only)

and marine diesel fuel (both kidneys) (Schultz et al. 1981). There were no dose-response trends for

the decreased relative kidney weights in males exposed to either fuel oil. Statistical analysis was not

conducted on the changes in kidney to body weight ratios. Therefore, the significance of the dose-response

trends cannot be confirmed.
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Lymphocytic inflammation of the urinary bladder was noted in mice chronically exposed to 250 or

500 mg/kg/day marine diesel fuel. Amyloidosis of the kidney was found to be secondary to dermatitis

in mice chronically exposed to 500 mg/kg/day JP-5 (NTP/NIH 1986).

Dermal Effects. Experimental data regarding dermal exposure of humans to fuel oils are limited. In

one study, there was a dose-dependent increase in dermatitis from acute exposures to 55-85%

solutions of kerosene (Tagami and Ogino 1973). No effects were noted in these subjects from

exposure to the 40% solution of kerosene. This study is limited because no vehicle controls were

used. Also, each subject was exposed to all test solutions (i.e., four different concentrations of

kerosene), but the chronological spacing of the four treatments is not known. In another study, acute

dermal exposure to 1 mL of kerosene impaired protein synthesis, but not deoxyribonucleic acid (DNA)

or collagen synthesis, in the epidermis (Lupulescu and Birmingham 1975). Hyperemia, cellular

damage of the epidermis, and mild edema also occurred from acute exposure to 1 mL kerosene

(Lupulescu and Birmingham 1976; Lupulescu et al. 1973). Histological changes included

disorganization of the cells, cytolysis, and enlarged intercellular spaces in the stratum corneum and

spinous cells of the epidermis (Lupulescu and Birmingham 1976). Effects had subsided within

72 hours in some individuals (Lupulescu et al. 1973). These studies are limited because each tested

only one dose.

Dermal effects of fuel oils from known or suspected short-term dermal exposures are described in

several case studies. In one study, erythema, bullae, burning, and itching were reported in a

45-year-old man following a 20-minute dermal exposure to kerosene (Mosconi et al. 1988). In another

case study, three males (2-15 years old) and 1 female (2 years old) exhibited blisters, reddening,

flaccid bullae, pustules, soreness, burning, swelling, and denudation of the skin following dermal

exposures to unknown volumes of kerosene (Tagami and Ogino 1973). A third study reported large

blisters, erythema, and peeling skin in two cases of apparent oral exposure to kerosene (Annobil 1988).

However, the strong odor of kerosene on one of the individuals and the kerosene-stained clothing of

the other strongly indicate that dermal exposure may have also occurred in these cases. Exposure

levels were not specified. Dermatosis and erythema were evident in factory workers who were

exposed to kerosene for up to 5 hours daily by handling kerosene-soaked steel parts; exposure levels

were not reported (Jee et al. 1985).
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Male mice treated daily for 1 week with 0.1 mL kerosene had rough skin, edema, and inflammation at

the exposure sites (Upreti et al. 1989). Females were not tested in this study. Female mice treated

with middle distillates including straight-run kerosene for six weeks developed hyperplasia and

necrosis in the epidermis (Ingram et al. 1993) and increased sebocyte counts (Lesnik et al. 1992).

Acute dermal exposures to 1% JP-5 or marine diesel fuel induced mild dermal sensitization in guinea

pigs (Cowan and Jenkins 1981). Skin irritation was not induced in male rabbits by acute exposure to

0.5 mL JP-5 or marine diesel fuel (Schultz et al. 1981). These studies are limited because only one

exposure dose was used in each. Acute dermal exposures to 2,000-40,000 mg/kg marine diesel fuel

and unspecified concentrations of JP-5-induced dermatitis (acanthosis, scaly skin, hair loss,

inflammation, parakeratosis, and/or hyperkeratosis of the skin) in mice (NTP/NIH 1986). This effect

also occurred following 13-week exposures to 4,000 mg/kg/day marine diesel fuel. Intermediate

exposure to 500-8,000 mg/kg/day JP-5 induced slight-to-moderate dermatosis in mice which increased

with dose. Dermal sensitization did not occur in guinea pigs that were dermally exposed to 9 or

10 doses of diesel fuel (API 1979f; Schultz et al. 1981) or 9 doses of JP-5 (Schultz et al. 1981) over a

3-week period. Dermal application of three types of no. 2 fuel oils (low-catalytic cracked [10%],

medium-catalytic cracked [30%], and high-catalytic cracked [50%]) and diesel fuel did not produce

skin sensitization in the guinea pig (Beck et al. 1984), although doses were not reported. Erythema

and edema occurred during the induction phase in the animals exposed to diesel fuel (API 1979f).

Chronic exposures to 250 and 500 mg/kg/day of both marine diesel fuel and JP-5 induced dermatitis

and ulcerations of the skin in mice (NTP/NIH 1986). The incidence and severity of dermatitis and the

incidence of ulcers induced by marine diesel fuel were dose dependent for the chronic exposures. The

severity, but not the incidence, of dermatitis induced by JP-5 was dose dependent for the chronic

exposures. Also, the incidence of ulcers was dose dependent in chronic studies with JP-5. Dermatitis

was also noted in another study in mice that were chronically exposed to either JP-5 or marine diesel

fuel; effective doses were not reported (Easley et al. 1982).

Ocular Effects. Acute exposure to diesel fuel induced ocular effects in one case (Barrientos et al.

1977). Subconjunctival hemorrhages occurred in a man who had washed his hair in an unknown

amount of diesel fuel. Effects resulting from inhalation versus dermal exposure could not be

distinguished in this case. Eye irritation was also noted in factory workers who were chronically

exposed to jet fuel (Knave et al. 1978). The limitations of this study are discussed in detail in Section

2.2.1.2 under Respiratory Effects.
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Ocular irritation was not induced in rabbits by diesel fuel (API 1979b; Beck et al. 1984), marine diesel

fuel, JP-5 (Cowan and Jenkins 1981; Schultz et al. 1981), or three types of no. 2 fuel oils (low-catalytic

cracked [10%], medium-catalytic cracked [30%], an high-catalytic cracked [50%]) (Beck et al.

1984). Draize scores were not reported in the Cowan and Jenkins (1981) study.

Body Weight Effects. No studies were located regarding body weight effects in humans after

dermal exposure to fuel oils.

There was no change in body weight in male mice following daily dermal exposures for 1 week to

0.1 mL kerosene (Upreti et al. 1989). There was no effect on body weight in mice following acute

exposures to 2,000-8,000 mg/kg/day marine diesel fuel (NTP/NIH 1986). Acute exposure to at least

10,000 mg/kg/day JP-5, but not 5,000 mg/kg/day, induced decreases in body weight in mice. A dose-related

trend in decreased body weight gain was noted in male, but not female, mice exposed to 4,000

and 8,000 mg/kg/day JP-5 and 500-4,000 mg/kg/day marine diesel fuel for 13 weeks. For JP-5

exposure, the changes in weight gain compared to the controls were not large, i.e., 5-7%, and

therefore, the significance of the effect could not be determined (NTP/NIH 1986). Dermal application

of total weekly doses of 126.6 and 63.3 mg of JP-5 or 136.5 and 68.2 mg of diesel fuel marine three

times per week for 40 weeks produced significant weight reduction in mice (Schultz et al. 1981);

however, the authors failed to accurately describe the methods and doses. Chronic exposures to 500

(but not 250) mg/kg/day JP-5 and 250 and 500 mg/kg/day marine diesel fuel induced decreases in

body weight relative to controls (NTP/NIH 1986). An increased incidence of amyloid in the adrenal

cortex was found to be secondary to dermatitis in mice chronically exposed to 500 mg/kg/day JP-5

(NTP/NIH 1986).

Other Systemic Effects. Edema of the scrotum and ankle, loin pains, thirst, and severe exhaustion

were reported in a man who washed his hands with diesel fuel over several weeks (Crisp et al. 1979).

Effects resulting from inhalation versus dermal exposure could not be distinguished in this case.

There were no abnormal clinical signs, no histopathological or organ weight changes in the adrenal

glands, and no effects on food or water intake in male mice following daily dermal exposures for

1 week to 0.1 mL kerosene (Upreti et al. 1989). Amyloidosis of the spleen was found secondary to

dermatitis in mice chronically exposed to 500 mg/kg/day JP-5; this effect was not noted following

exposure to 250 mg/kg/day JP-5 (NTP/NIH 1986). Mice exposed to a 50% solution of marine diesel
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fuel for 60 weeks had increases in daily water consumption (Easley et al. 1982). This effect also

occurred in mice exposed to JP-5, but dose levels were not reported. Similarly, dermal application of

JP-5 and diesel marine fuel increased water consumption and urine output (accompanied by a loss in

osmolarity) in mice. Easley and coworkers (1982) speculated that the increased water consumption

may have been the result of impaired renal function (see Section 2.2.3.2 under Renal Effects) and/or

the dehydration of these animals.

2.2.3.3 Immunological and Lymphoreticular Effects

No studies were located regarding immunological effects in humans after dermal exposure to fuel oils.

Decreases in the relative weights of the lymph nodes and thymus were noted in male mice following

daily dermal exposures for 1 week to 0.1 mL kerosene (Upreti et al. 1989). In addition, thymocyte

counts, bone marrow nucleated cell counts, thymic cortical lymphocytes, and the cellularity of the

thymic lobules were decreased. Increases in the cellular populations of the popliteal lymph nodes and

the axial lymph nodes were also present. This study is limited because females were not tested.

Chronic exposure to 500 mg/kg/day JP-5 induced granulocytic hyperplasia in the bone marrow in male

and female mice and hyperplasia in the lymph nodes of female mice (NTP/NIH 1986). Plasmacytosis

of the lymph nodes was found to be secondary to dermatitis in mice chronically exposed to 250 and

500 mg/kg/day of marine diesel fuel.

The highest NOAEL and all reliable LOAEL values for immunological effects after dermal exposure

to fuel oils are recorded in Table 2-3.

2.2.3.4 Neurological Effects

In one case study, anorexia was reported in a man who washed his hands with diesel fuel over several

weeks (Crisp et al. 1979). Effects resulting from inhalation versus dermal exposure could not be

distinguished in this case. An epidemiological study found a significant increase in neurasthenia (i.e.,

fatigue, depressed mood, lack of initiative, dizziness, and sleep disturbances) in workers who were

chronically exposed to jet fuels by either inhalation, oral, and/or dermal exposure (Knave et al. 1978).

Also, attention and sensorimotor speed were impaired in the exposed workers, but no effects were

found on memory function or manual dexterity. Results of EEG tests suggest that the exposed
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workers may have instability in the thalamocortical system. The limitations of the study were

discussed in detail in Section 2.2.1.2 under Respiratory Effects.

Increased response to tactile stimuli and hyperactivity occurred in male mice at initiation of daily

dermal exposures for 1 week to 0.1 mL kerosene (Upreti et al. 1989). Females were not tested in this

study. No histopathological changes were noted in the nervous system of mice exposed to

2,000-8,000 mg/kg/day JP-5 for 13 weeks or mice chronically exposed to 250 or 500 mg/kg/day of

either marine diesel fuel or JP-5 (NTP/NIH 1986).

The highest NOAEL values for neurological effects after dermal exposure to fuel oils are recorded in

Table 2-3.

2.2.3.5 Reproductive Effects

No studies were located regarding reproductive effects in humans after dermal exposure to fuel oils.

No histological changes were noted in the reproductive system of mice dermally exposed to

2,000-8,000 mg/kg/day JP-5 for 13 weeks or in mice chronically exposed to 250 or 500 mg/kg/day of

either marine diesel fuel or JP-5 (NTP/NIH 1986).

The highest NOAEL values for reproductive effects after dermal exposure to fuel oils are recorded in

Table 2-3.

2.2.3.6 Developmental Effects

No studies were located regarding developmental effects in humans or animals after dermal exposure

to fuel oils.

2.2.3.7 Genotoxic Effects

No studies were located regarding genotoxic effects in humans or animals after dermal exposure to

fuel oils.
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Genotoxicity studies are discussed in Section 2.4.

2.2.3.8 Cancer

No studies were located regarding cancer in humans after dermal exposure to fuel oils.

Unspecified skin tumors were identified in C3HF/Bd mice under the following exposure conditions: a

40-week exposure to 22.9 mg (but not 42.2 mg) JP-5 or 23.8 and 45.5 mg marine diesel fuel; a

60-week exposure to 5.7-42.2 mg (the highest incidence was at 11.4 mg) JP-5 or 11.9 and 23.8 mg

(but not 45.5 mg) marine diesel fuel (Schultz et al. 1981). Tumors were more prevalent in females

than males for JP-5 exposure. None of the control animals developed skin tumors and statistical

analysis was not conducted. The tumor incidence was not dose related, and historical control data for

this strain of mouse were not provided.

No skin cancer was reported in B6C3F1 mice chronically exposed to 250 and 500 mg/kg/day of JP-5

(NTP/NIH 1986). There was a 2-6% incidence of squamous cell papilloma and/or carcinoma of the

skin in B6C3F1 mice chronically exposed to 250 (females only) or 500 (both sexes) mg/kg/day marine

diesel fuel. The effect did not occur in the control groups; the statistical significance of these effects

was not reported. Hepatocellular adenoma or carcinoma were noted in males exposed to 250 and

500 mg/kg/day marine diesel fuel. These effects did not occur in female mice at these doses.

Malignant lymphomas were noted in females exposed to 250 mg/kg/day, but not 500 mg/kg/day, JP-5;

therefore, no dose-response relationship was apparent for this effect. A significant negative trend in

the incidence of malignant lymphomas was noted in males of the high-dose group.

The tumorigenic potential of API no. 2 fuel oil was evaluated by dermal application in male and

female C3H/Bdf mice (Witschi et al. 1987). Fifty microliters of the fuel oil was applied neat, or as a

50% or 25% dilution (w/v, in acetone) three times per week. Negative controls consisted of mice

treated with acetone or animals that received no treatment. Positive controls received 50, 25, or

12.5 mg of benzo[a]pyrene dissolved in 50 microliters of acetone. Over all the doses, 15 of the

150 mice developed skin tumors (the first tumor appeared at 75 to 80 weeks), while 299 of the

300 mice treated with benzo[a]pyrene developed skin tumors (first tumor appeared at 19 weeks).

Neither of the negative control groups developed neoplastic lesions).
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Similarly, the dermal carcinogenic activity of 6 Commercial no. 2 heating oils with varied boiling

ranges, points of origin, and composition have been evaluated (Biles et al 1988). The heating oils

were applied neat to male C3H/HeJ mice in 25 microliter aliquots, 3 times per week for lifetime or

until all mice in the test group developed frank carcinomas. The negative controls received a “highly

refined white mineral oil," and the positive controls received four concentrations of catalytically

cracked clarified oil (known to produce a positive dermal tumorigenic response) diluted in white

mineral oil. None of the negative control mice (140 animals) developed tumors, while all of the

positive control groups displayed significantly increased incidence of tumor production. All of the

Commercial no. 2 heating oils induced a significantly increased incidence of tumors (an incidence of

5 animals with tumor per 50 animals was statistically significant, and the heating oil incidence ranged

from 5 to 11 per 50).

No increase in the incidence of tumor-bearing mice was noted in animals treated with 25 mg of

undiluted petroleum diesel three times per week for up to 105 weeks in male and female C3H/HeN

(diesel-treated had an incidence of 2/27 and mineral oil-treated negative controls did not develop any

tumors). Jet A did, however, produce an increased incidence (26%) of tumors (primarily squamous

cell carcinoma and fibrosarcoma) (Clark et al. 1988). It was noted that both types of fuels produced

inflammatory and degenerative changes at the application that led to “early mortality” and that the

nonneoplastic lesions and their attendant effects were so severe that the application of Jet A was

discontinued at week 62.

Furnace oil (CAS no. 68474-30-2) was evaluated for skin carcinogenicity with both lifetime skinpainting

and an initiation/promotion bioassay (Gerhart et al. 1988). Briefly, in the lifetime skinpainting

study, 50 microliters of undiluted furnace oil was applied to 50 male C3H/HeN mice twice

weekly for the lifetime of the animals. A sham negative control group of equal size was run

concomitantly. In the initiation portion of the initiation/promotion bioassay, 30 CD-l mice received

five treatments of 25 microliters or five treatments of 50 microliters of furnace oil, and both groups

were subsequently treated with 50 microliters of  0.1 mg/mL phorbol-12-myristate-13-acetate (PMA)

twice weekly for 25 weeks. Thirty mice received one treatment of 50 microliters of 9,10-dimethyl-

1,2-benzanthracene (DMBA) or 50 microliters of acetone and subsequently were treated with

50 microliters of furnace oil twice weekly for 25 weeks in the promotion component of the

investigation. (Note that Gerhart and coworkers [1988] indicated that the two different strains of mice

were used: C3H mice, which are not commonly used in initiation/promotion studies, and CD-l mice,
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which are considered to be a sensitive model and used extensively in initiation/promotion studies of

carcinogenesis.) In the skin-painting studies, furnace oil produced a significant increase in the

incidence (9/43 in furnace oil group and 0/49 in negative controls) of confirmed skin tumors

(squamous cell carcinoma and fibrosarcoma). Two of the nine tumor-bearing animals developed

squamous cell carcinoma in untreated areas of skin. In contrast, when furnace oil as an initiating

agent, no increase in tumor incidence was observed in animals treated with either 25 or 50 microliters.

However, a significant increase (12/30 vs l/30 in acetone initiated) in histologically confirmed tumor

incidence (squamous cell carcinoma) was observed in mice that were treated with DMBA as an

initiating agent and received furnace oil as the promoting agent.

The tumorigenic activity of no. 2 type fuel oil and hydrodesulfurized kerosene was examined utilizing

an initiation/promotion assay with CD-l mice (API 1989). In the initiation phase of the study, mice

received 5-50 microliter consecutive daily applications of the fuel oils and subsequently were treated

with PMA (0.1 mg/mL) twice weekly for 25 weeks. In the promotion phase of the study, mice

received a single application of DMBA (1.0 mg/mL) and were subsequently treated with one of the

fuel oils twice weekly for 25 weeks. No significant difference in tumor incidence was noted in those

animals treated with either of the fuel oils, when compared to the negative control (initiation with

50 microliters of acetone). However, both the incidence of confirmed tumor (18/30 in animals treated

with no. 2 fuel oil as a promoting agent, 22/30 in animals receiving hydrodesulfurized kerosine as a

promoting agent, and 0/30 in acetone-promoted negative controls) and the latency period were

significantly different than those of the positive controls. The most prevalent tumors were squamous

cell papillomas and keratoacanthomas.

The dermal carcinogenicity of mixtures of petroleum products that have a boiling range approximately

equal to or greater than 370°C has been reported to be primarily related to the polycyclic aromatic

hydrocarbon (PAH) content of the material (Biles 1988). The boiling ranges of the various fuel oils

are as follows: fuel oil no. 1, 175-300°C; fuel oil no. l-D, 193-293°C; fuel oil no. 2, 160-360°C; fuel

oil no. 2-D 282-338°C; fuel oil no. 4, l0l-588°C; fuel oil UNSP, 151-588°C (see Table 3-3). Whereas

some fuel oils contain cracked stocks that are known to contain biologically active PAH, virgin

distillate petroleum products (boiling range approximately 177°C to 370°C), which include various

middle distillate fuel oils, primarily contain saturated species (Biles 1988). Although these virgin

petroleum materials contain low concentrations of PAH, repeated application can induce dermal

tumors. It has been reported that the tumorigenicity of three petroleum- and four coal-derived liquids
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were not consistent with the PAH content of the test materials (Witschi et al. 1987). Similarly, the

dermal carcinogenicity of 10 petroleum-derived fuels (including 6 formulations of no. 2 heating oil)

did not appear to be “directly related” to the aromatic content or the presence of PAH in the materials

(Biles et al. 1988). Gerhart and colleagues (1988) reported that furnace oil induced tumors through

epigenetic or promotional means, even though it contained no detectable concentrations of four- and

five-ring aromatics. In a 2-year skin-painting study of four petroleum middle distillates (including jet

fuel), the authors suggested aromatic and sulfur heterocycles tested were not the source of

tumorigenicity in middle distillates (Freeman et al. 1993). These results suggest that the tumorigenic

potential of the middle distillates is not related to their PAH content.

It has been alternatively hypothesized that the carcinogenic activity of fuel oils is a secondary effect

associated with dermal irritation (Biles et al. 1988; Clark et al. 1988; McKee et al. 1989). Biles and

coworkers (1988) speculated that the irritating properties of middle distillate petroleum fuels played a

role in the mechanism of dermal carcinogenesis in a lifetime skin-painting assay, although the data did

not demonstrate a relationship. In fact, they noted that the test groups with the most severe “degree of

epidermal degeneration and necrosis” demonstrated the lowest tumor yields. Repeated application of

four petroleum-derived distillates (including Jet A and diesel) to mouse skin induced severe

inflammation and degenerative changes; however, the severity and early onset of inflammation was not

always predictive of tumorigenicity (Clark et al. 1988). Similarly, even though dermal application of

dewaxed heavy paraffinic distillate led to a greater incidence of confirmed tumors than did furnace oil

(26/48 and 9/43, respectively), furnace oil induced a greater incidence of nonneoplastic lesions (37/43

vs. 14/48) (Gerhart et al. 1988). McKee and coworkers (1989) ascribed the weak promotional activity

of a lightly refined paraffinic oil to the irritation caused by its repeated application to mouse skin,

partially based on findings that the whole oil and various fractions of the oil were negative for both

mutagenic activity in bacteria and carcinogenic initiating activity.

The role of chronic acanthosis and inflammation in tumor promotion by a middle distillate has been

investigated (Skisak 1991). Briefly, male CD-l mice received a single dermal treatment of

50 microliters of DMBA (initiation) and subsequently were treated with 25, 50, or 100 microliters

(twice weekly for 25 weeks) of hydrodesulfurized kerosine (HK). Dose, washing after treatment, and

topical application of dexamethasone were used to control inflammation. The mice treated with

100 microliters of HK had the greatest tumor incidence (35/53) and the highest degree of acanthosis

throughout the study. While the tumor responses of the 25 and 50 microliter treated groups were
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similar (14/54 and 13/54, respectively), the degree of acanthosis was much more pronounced in the

mice treated with 50 microliters HK. Application of dexamethasone to animals treated with

50 microliters reduced the tumor incidence to 0, although acanthosis was still observed. It is

interesting to note that washing the mice (1 to 2 hours after treatment) with an Ivory soap solution

with 50 microliters of HK increased tumor incidence (22/53) compared to the group treated with

50 microliters HK but not washed. The authors concluded that although hyperplasia may play a role

in the promoting activity, there are other factors involved.

In a 2-year skin-painting study designed to evaluate the role of skin irritation in the tumorigenicity of

middle distillates, 37.5 microliters of jet fuel and steam cracked gas oil were applied two times per

week, and jet fuel was also applied in an intermittent fashion (dosing was suspended when irritation

was noted in 20% of the group and resumed when it was resolved in all but 20%) (Freeman et al.

1993). Intermittent dosing produced irritation that was less severe than dosing two times per week,

and only l/50 intermittently dosed animals developed tumors, compared with 22/50 in the twice-weekly

dosed group. Freeman and coworkers (1993) stated that chronic skin irritation was necessary,

but insufficient for tumor induction. These data indicate that the irritant properties of fuel oils are not

the ultimate cause of dermal carcinogenicity, although the irritation induced by the repeated application

may play an important role in the mechanism of tumor formation.

Reliable LOAEL values for cancer effects after dermal exposure to fuel oils are recorded in Table 2-3.

2 . 3 TOXICOKINETICS

Few data were available concerning the absorption, distribution, metabolism, and excretion of fuel oils.

Indirect evidence suggests that some fuel oils may be absorbed through the respiratory tract, the

gastrointestinal tract, and percutaneously. Although data concerning the metabolism of fuel oils in

humans could not be located, a single animal study suggested that cytochrome P-448 may be involved

in the metabolism of fuel oil no. 2 (Rahimtula et al. 1982). No quantitative data were found regarding

the excretion of fuel oils.
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2.3.1 Absorption

2.3.1.1 Inhalation Exposure

No studies were located regarding the absorption of fuel oils in humans or animals after inhalation

exposure. However, indirect evidence of gastrointestinal, cardiovascular, hematological, renal, and/or

dermal/ocular effects from case reports in which two pilots were exposed to JP-5 vapor while flying a

small airplane and another man was exposed to diesel fuel vapor while driving a truck indicate that

these fuel oils can be absorbed following inhalation exposure in humans (Porter 1990; Reidenberg et

al. 1964). Effects on animals acutely exposed to fuel oils by inhalation provide indirect evidence for

inhalation absorption in animals (Casaco et al. 1985c; Garcia et al. 1988b; Kainz and White 1984).

2.3.1.2 Oral Exposure

No quantitative data were located regarding the absorption of fuel oils in humans after oral exposure.

However, there is evidence that absorption from the gastrointestinal tract occurs following ingestion of

kerosene by humans (Subcommittee on Accidental Poisoning 1962). In a study of 422 cases,

pulmonary complications were noted in 11 individuals, even though gastric lavage was not

administered nor was vomiting reported (vomiting and gastric lavage could cause aspiration of the

kerosene, thus contributing to the respiratory effects). In this same report, pulmonary complications

occurred in a higher percentage of the individuals that did not receive lavage than in those that were

treated by gastric lavage. This suggests that pulmonary effects of fuel oils may also be the result of

systemic toxicity. Further, administration of gastric lavage within 30 minutes of ingestion further

decreased the number of affected individuals, suggesting that removal of kerosene from the stomach

may have prevented its absorption and subsequent toxicity in these cases. In this same study, there is

also indirect evidence that aspiration from vomiting may induce pulmonary effects since there were

more individuals with respiratory complications when vomiting occurred than when it did not,

regardless of the administration of gastric lavage. It is possible that both absorption and aspiration

contribute to the respiratory effects in these individuals.

Limited animal data and indirect evidence indicate kerosene is poorly absorbed from the

gastrointestinal tract. In one study, kerosene labeled with 3H-toluene or 14C-hexadecane was given to

tracheotomized baboons (15 mL/kg) by nasogastric tube (Mann et al. 1977). The isotopes were
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recovered after 6 hours from the brain, lung, liver, spleen, heart, and kidney; however, the amounts

distributed to the tissue were very small, suggesting that gastrointestinal tract absorption was slight.

The potential absorption of ingested kerosene into the lungs was tested by comparing respiratory

effects from oral exposures in nontracheotomized and tracheotomized monkeys (Wolfsdorf and Kundig

1972). The tracheotomized monkeys who received the kerosene via nasogastric tube could not aspirate

the kerosene; thus, the potential for respiratory exposure by aspiration was prevented. Lung lesions

were seen in the nontracheotomized monkeys, but no lesions were seen in the tracheotomized

monkeys. These data suggest that aspiration of fuel oils, not absorption, is the underlying cause of the

respiratory effects. A lack of pulmonary toxicity was reported in dogs in which aspiration was

prevented. This study supports the theory that pulmonary toxicity following kerosene ingestion is the

result of aspiration of kerosene into the lungs rather than absorption from the gastrointestinal tract

(Dice et al. 1982).

2.3.1.3 Dermal Exposure

Studies of effects on animals following acute, intermediate, and chronic dermal exposure to marine

diesel fuel and JP-5 fuel provide evidence for dermal absorption (NTP/NIH 1986). Case reports

concerning a man who washed his hair with an unknown amount of diesel fuel (Barrientos et al. 1977)

and a man who washed his hands with an unspecified diesel fuel over several weeks (Crisp et al.

1979) provide possible evidence for dermal absorption, but effects resulting from inhalation versus

dermal exposure could not be distinguished in these cases. No other data on the absorption of fuel

oils following dermal exposure in humans or animals were located.

Some case studies suggest that dermal exposure to the vapor of diesel fuel may also result in

absorption via the skin. The studies identify one individual with only vapor exposure and two others

with vapor and/or direct dermal contact with diesel fuel; individuals developed acute renal failure or

renal necrosis (Barrientos et al. 1977; Crisp et al. 1979; Reidenberg et al. 1964). Also, dermal

exposures to marine diesel fuel and JP-5 in mice induced renal damage (Easely et al. 1982). No

studies were located that directly tested dermal absorption of fuel oil vapor.
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2.3.1.4 Other Routes of Exposure

Dogs that had undergone transection of the esophagus exhibited no respiratory or gastrointestinal

effects after injection by syringe of 5, 10, 20, or 30 mL of kerosene (4-17.9 rnL/kg) directly into the

stomach. This study provides indirect evidence that kerosene is poorly absorbed from the

gastrointestinal tract (Wolfe et al. 1970), or alternatively, kerosene is adsorbed but not grossly toxic

unless it is aspirated.

2.3.2 Distribution

2.3.2.1 Inhalation Exposure

No studies were located regarding the distribution of fuel oils in humans or animals after inhalation

exposure.

2.3.2.2 Oral Exposure

No studies were located regarding the distribution of fuel oils in humans after oral exposure.

Very limited animal data indicate that kerosene is absorbed and distributed to various tissues (Mann et

al. 1977). Kerosene, labelled with 3H-toluene or 14C-hexadecane, was given to tracheotomized baboons

(15 mL/kg) by nasogastric tube (Mann et al. 1977). Radioactivity was recovered from the brain, lung,

liver, spleen, heart, and kidney after 6 hours. 3H-Toluene was absorbed and taken up by most tissues

to a greater extent than was 14C-hexadecane; however, the amounts absorbed and distributed were very

small (Mann et al. 1977).

2.3.2.3 Dermal Exposure

No studies were located regarding the distribution of fuel oils in humans or animals after dermal

exposure.
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2.3.3 Metabolism

No studies were located regarding the metabolic pathway of fuel oils in humans. In one animal study,

fuel oil no. 2 applied to the skin of rats induced cutaneous aryl hydrocarbon hydroxylase activity in rat

skin microsomal preparations by causing a three-fold induction of benzo(a)pyrene (BaP) 3-hydroxylase

activity (Rahimtula et al. 1982). In addition, BaP 3-hydroxylase activity was selectively inhibited by

α-naphthoflavone, but not by metyrapone, suggesting that cytochrome P-448 enzymes are induced and

may participate in the metabolism of this fuel oil (Rahimtula et al. 1982).

2.3.4 Excretion

There is no quantitative information on the excretion of fuel oils following inhalation, oral, or dermal

exposure in humans or animals.

2.3.5 Mechanisms of Action

The primary risk from ingestion of kerosene is aspiration during emesis, which may cause

pneumonitis. A number of studies have investigated the biochemical mechanism of the lung response

to the exposure of large concentrations of aerosolized kerosene (Casaco et al. 1982, 1985b, 1985c). It

was suggested that kerosene may induce asthma-like symptoms by acting on the parasympathetic

nervous system either through a direct effect on the vagus nerve or by inhibiting acetylcholinesterase,

resulting in bronchoconstriction. Garcia and Gonzalez (1985), based on their observations that

kerosene caused an “increase in Ca2+ -dependent ATP hydrolysis without increase in the rate of net

calcium accumulation,” concluded that kerosene induced an effect on the membrane of the sarcoplasmic

reticulum vesicles and suggested that the mechanism of kerosene-induced bronchoconstriction

may involve changes in the ionic flow across the cellular membranes to prolong muscle contraction.

Although generalizations regarding the hematological effects of fuel oils on humans cannot be made,

the effect of kerosene on the first two steps of the heme synthetic pathway has been studied in an

animal model. Both hepatic δ-aminolevulinic acid (δ-ALA) dehydratase and δ-ALA synthetase

activities were decreased in female rats after intraperitoneal injection of kerosene, while heme

oxygenase was unaffected (Rao and Pandya 1980). Since δ-ALA synthetase is the rate-limiting

enzyme of the heme biosynthesis pathway, hepatic heme biosynthesis may be inhibited by kerosene.
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It is conceivable that this may be related to the extramedullary hematopoiesis reported in other studies

(NTWNIH 1986); however, there are no direct data to support this.

The biochemical mechanism of CNS depression seen with fuel oils and common to many organic

solvents has not been elucidated. The mechanism of carcinogenesis associated with various

formulations of fuel oils is unknown.

2.4 RELEVANCE TO PUBLIC HEALTH

Information regarding health effects of fuel oils in humans and animals is available for the inhalation,

oral, and dermal routes of exposure. Most of the information in humans is from cases of accidental

ingestion of kerosene that resulted in respiratory, neurotoxic, and to a lesser extent, gastrointestinal

effects. In addition, a few case studies have identified these effects as well as cardiovascular,

hematological, and renal effects in humans after inhalation and/or dermal exposures to fuel oils. Fuel

oils appear to be eye and skin irritants in both animals and humans following direct contact. Animal

data exist for most systemic effects; however, the data are inconclusive for many of the endpoints.

Further, a number of the animal studies utilized an aerosol for exposure, and it should be noted that

the toxicity from an aerosol will typically vary from that of a vapor (the probable form of exposure).

The available epidemiological studies are generally inconclusive, since they cannot exclusively

associate exposures to fuel oils with the adverse effects reported.

Minimal Risk Levels for Fuel Oils

Inhalation

•    An MRL of 0.02 mg/m3 has been derived for acute inhalation exposure to diesel fuel (fuel oil

no. 2). The MRL is based on dose-related neurobehavioral effects (mild transient ataxia and

CNS depression), beginning at 65 mg/m3, in mice exposed to airborne concentrations of fuel

oil of 65, 135, and 204 mg/m3.

•     An MRL of 0.01 mg/m3 has been derived for the intermediate inhalation exposure to

kerosene (also termed fuel oil no. 1). The MRL is based on decreased blood glucose levels

noted in male rats subsequent to exposure to airborne concentrations of kerosene averaging
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 58 mg/m3 for 6 hours/day, 6 days/week for 14 weeks. Rats exposed to an airborne

concentration of kerosene averaging 231 mg/m3 showed a decrease in blood glucose titers, as

well as increased circulating levels of lactate and pyruvate. In addition, mice exposed to 150

or 750 mg/m3 or airborne JP-5 showed hepatocellular fatty changes and vacuolization at the

LOAEL of 150 mg/m3 (Gawororski et al. 1984). Finally, no systemic or neurological effects

were observed in rats or dogs exposed to a deodorized kerosene concentration of 100 mg/m3

(Carpenter et al. 1976).

No chronic inhalation MRLs were derived for fuel oils because available data were not suitable for

MRL derivation. Studies that report lethality or biochemical alterations without attendant pathology

cannot be used for MRL determination

Oral

No acute, intermediate, or chronic oral MRLs were derived for fuel oils because available data were

not suitable for MRL derivation. Studies that report lethality at the lowest dose tested cannot be used

for MRL determinations. Hepatocyte necrosis reported by Parker et al. (1981) occurred at a dose

greater than dose levels at which serious effects occurred in other studies, making these data unsuitable

for derivation of an MRL.

Death. No quantitative lethality data for humans were located from inhalation or dermal exposure to

fuel oils. Based on case studies reporting deaths in humans following ingestion of kerosene, estimated

lethal doses of kerosene range from 1,890 to 16,789 mg/kg (Dudin et al. 1991; Santhanakrishnan and

Chithra 1978). These lethal doses are based upon specific cases in which 30 or 200 mL of kerosene

were ingested by l- and 2-year-old children. No lethality was reported for children from 10 months to

5 years old following ingestion of 126-877.2 mg/kg or 1,754 mg/kg of kerosene, respectively (Dudin

et al. 1991). There are no human data that identify lethal oral doses in adults, and no dose-response

data are available for humans; therefore, it is not possible to determine a specific oral dose of kerosene

at which lethality in humans would not be expected to occur.

A single 6-hour exposure to 4,000 mg/m3 diesel fuel aerosol (Dalbey and Lock 1983) and repeated

exposures (once or three times per week for a total of nine exposures) for 2 hours to 6,000 mg/m3 or

6 hours to 2,000 mg/m3 diesel fuel aerosol (Dalbey et al. 1987) were lethal to rats. However, a single
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4-hour exposure to 6,000 mg/m3 diesel fuel aerosol was not lethal to rats (Dalbey and Lock 1983).

The variability of these diesel fuel data appear to indicate that the cumulative dose may be more

important than the airborne concentration of fuel oil aerosol, although human exposure to such high

concentration of a fuel oil aerosol seems unlikely. Acute and intermediate exposures to moderate

through high concentrations of marine diesel fuel, diesel fuel vapor or aerosol, fuel oil UNSP, JP-5,

and kerosene (API 1979c, 19798; Cowan and Jenkins 1981; Gaworski et al. 1984; Lock et al. 1984;

Vernot et al. 1990d) ranging from 50 mg/m3 marine diesel vapor to 5,000 mg/m3 kerosene were not

lethal to rats. Although it appears that fuel oils may be lethal to humans only at vapor concentrations

that occur at elevated temperatures or as the result of exposure to an aerosol, these data are not

sufficient for such generalizations to be drawn concerning the lethal concentration or cumulative dose

of fuel oils.

The acute oral LD50 in guinea pigs and rabbits for kerosene has been reported to be 16,320 mg/kg and

22,720 mg/kg, respectively (Deichmann et al. 1944). These data suggest that guinea pigs may be

more sensitive to kerosene than rabbits. Similarly, a lethal dose of kerosene of 6,400 mg/kg has been

reported in calves (Rowe et al. 1973), but the lethal dose for rats is 12,000 mg/kg (Muralidhara et al.

1982). Comparison of these data is problematic; however, they do suggest that species differences and

age sensitivity may exist for oral kerosene toxicity, although such differences have not been

established.

For oral exposures, different fuel oils have differing lethality profiles in rats. Acute lethal doses in rats

were reported to be 12,000 mg/kg for kerosene (Muralidhara et al. 1982) and 47,300 mg/kg for JP-5

(Parker et al. 1981). However, an oral dose of 12,200 mg/kg of Deobase was not lethal in rats

(Muralidhara et al. 1982). Although differences in the oral toxicity of fuel oils and differences in

species thresholds of toxicity may exist, the oral toxicity of fuel oils is relatively low. The intestinal

absorption of fuel oils is also relatively low, and aspiration, with its resultant pulmonary effects, is the

primary risk from the ingestion of fuel oils.

Daily dermal exposures for 1 week to 0.1 mL kerosene were not lethal to male mice (Upreti et al.

1989). A minimum lethal dose of 30,000 mg/kg/day was reported for JP-5 from acute dermal

exposure in mice, but this dose was decreased to 2,000 and 250 mg/kg/day following intermediate and

chronic exposures, respectively (NTP/NIH 1986). A similar trend was also reported for dermal
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toxicity in mice exposed to marine diesel fuels (NTP/NIH 1986). Conclusions cannot be drawn from

the available data regarding dermal exposure by humans to fuel oils near hazardous waste sites.

Systemic Effects

Respiratory Effects. There are epidemiological data that found no evidence of respiratory toxicity in

children from exposure to kerosene vapor and combustion products from kerosene stoves used for

cooking (Azizi and Henry 1991; Tominaga and Itoh 1985); however, the importance of such exposures

to individuals living near hazardous waste sites or in the workplace is uncertain. Another

epidemiological study noted thoracic oppression in workers that were chronically exposed to jet fuel

by the inhalation, oral, and/or dermal routes (Knave et al. 1978). However, the jet fuels were not

specified in this study, and therefore, these exposures may not necessarily include fuel oils such as

JP-5. Only one case study was found that reported effusions and alveolar infiltrations from dermal

and/or inhalation exposure to diesel fuel when used as a shampoo (Barrientos et al. 1977). A low

concentration of deodorized kerosene vapor was not irritating to the throat in humans (Carpenter et al.

1976). Animal data indicate that functional parameters of the lung may be affected (Casaco et al.

1982) and bronchoconstriction may occur (Casaco et al. 1982; Garcia et al. 1988b) from acute

inhalation of kerosene aerosol. In one study, intermediate exposure to diesel fuel aerosol induced

damage to the lung parenchyma of rats (Dalbey et al. 1987). This study found that an increase in the

frequency of exposure was more likely to induce respiratory effects than the exposure dose or

duration. However, in each of these cases of respiratory toxicity, relatively high exposure levels were

used. Other animal studies have found no histopathological evidence of respiratory toxicity following

relatively low to moderate intermediate inhalation or acute, intermediate, and chronic dermal exposures

to various fuel oils (Carpenter et al. 1976; Lock et al. 1984; NTP/NIH 1986; Upreti et al. 1989).

These data suggest that bronchoconstriction or respiratory impairment may occur in humans at high

inhalation or dermal exposure levels of kerosene or diesel fuel. Relatively low or moderate exposure

levels may also affect sensitive members of the population, but this cannot be determined from the

data. The data also indicate that humans who are frequently exposed to fuel oils, such as those

exposed occupationally, may be at greater risk of developing respiratory lesions than those with single

or less frequent exposures.

Ingestion of fuel oils, kerosene in particular, has been shown to induce respiratory effects in humans,

although it appears that aspiration is the primary cause of the pulmonary toxicity and the most serious
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feature of ingestion. Numerous studies in animals and humans have evidenced the introduction of

kerosene into the lungs during vomitus and subsequent manifestation of deleterious effects in the

respiratory tract (Coruh and Inal 1966; Dice et al. 1982; Majeed et al. 1981; Nouri and Al-Rahim

1970; Wolfe et al. 1970; Wolfsdorf and Kundig 1972). However, limited absorption from the

gastrointestinal tract into the lungs may also occur (Mann et al. 1977).

Specific effects that have occurred in humans following ingestion of kerosene include

bronchopneumonia, bronchitis, pneumonitis, lung infiltrates and effusions, cough, dyspnea, hypoxia,

and tachypnea (Akamaguna and Odita 1983; Aldy et al. 1978; Annobil 1983; Annobil and Ogunbiyi

1991; Dudin et al. 1991; Mahdi 1988; Santhanakrishnan and Chithra 1978; St. John 1982). The

animal data describing respiratory toxicity are limited but are consistent with the findings in humans.

Oral exposure data for humans are only available for kerosene; therefore, no conclusions can be made

regarding the respiratory toxicity of other fuel oils. However, the similar composition of the various

fuel oils suggests that the effects may also be similar.

A number of studies have investigated the biochemical mechanism of lung response to concentrations

of aerosolized kerosene (ranging up to a mean of 32.5 mg/L). It was indicated that kerosene may

induce asthma-like symptoms by acting on the parasympathetic pathway involving a direct effect on

the vagus nerve or by inhibiting acetylcholinesterase, thus increasing the acetylcholine level in the

trachea, resulting in bronchoconstriction (Casaco et al. 1982, 1985b, 1985c). It has also been reported

that kerosene can affect the calcium pump of the rabbit sarcoplasmic reticulum (Garcia and Gonzalez

1985), suggesting that the mechanism of kerosene-induced bronchoconstriction may involve changes in

the ionic flow across the cellular membranes to prolong muscle contraction.

Curdiovasculur Effects. Mild hypertension from acute inhalation of JP-5 vapor (Porter 1990) or diesel

fuel vapor (Reidenberg et al. 1964) and palpitations from chronic inhalation, dermal, and/or oral

exposures to unspecified jet fuels have been reported in humans (Knave et al. 1978). Tachycardia and

cardiomegaly were reported in children following acute ingestion of kerosene (Akamaguna and Odita

1983; Coruh and Inal 1966). Most of the available animal studies found no histopathological changes

or organ weight changes in the cardiovascular system of rats and mice following inhalation, oral, or

dermal exposures to various fuel oils, including kerosene (Carpenter et al. 1976; Lock et al. 1984;

Muralidhara et al. 1982; NTP/NIH 1986). However, there are some limited data regarding cardiac

effects. Inhalation of 20,400-34,000 mg/m3 of kerosene vapor induced aortic plaques in guinea pigs.
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Further, significant increases in total serum cholesterol and decreases in HDL were noted (Noa and

Illnait 1987a). Vasodilation was reported in mice exposed by inhalation to diesel fuel no. 2 aerosol

(Kainz and White 1984). Aspiration of kerosene decreased heart rate and mean arterial blood pressure

in dogs (Goodwin et al. 1988). Because most of the toxicity findings are specific for kerosene, it is

difficult to draw conclusions regarding the cardiac effects of other fuel oils. However, the similar

composition of the various fuel oils suggests that the effects may also be similar. The potential for

cardiac effects in humans at hazardous waste sites exists; the risk is increased if the individuals are

exposed in confined spaces.

Gastrointestinal Effects. Inhalation of JP-5 vapor induced nausea in one individual. Abdominal

cramps, vomiting, and diarrhea occurred in another man who was exposed to diesel fuel vapor for

10 days (Reidenberg et al. 1964). Inhalation and/or dermal exposure to diesel fuel induced epigastric

pains in a man who washed his hands with diesel fuel (Crisp et al. 1979) and nausea, abdominal

cramps, and diarrhea in another individual who used it as a shampoo (Barrientos et al. 1977).

Ingestion of kerosene induces more severe effects: vomiting, abdominal pain and/or distension,

gastroenteritis, bleeding, and diarrhea (Akamaguna and Odita 1983; Aldy et al. 1978; Mahdi 1988;

Majeed et al. 1981;  Saksena 1969;  St. John 1982;  Nouri and Al-Rahim 1970). No histopathological

changes in the gastrointestinal system were reported in animals exposed to various fuel oils by the

inhalation and dermal routes of exposure (Carpenter et al. 1976; Lock et al. 1984; NTP/NIH 1986).

Also, acute oral exposure to kerosene or Deobase did not induce diarrhea in rats (Muralidhara et al.

1982). These data, though limited, indicate that species variations may exist between humans and rats

following oral exposure to kerosene. Although the data are largely anecdotal, they strongly suggest

that gastrointestinal effects are induced in humans by ingestion of kerosene, inhalation of JP-5 or

diesel fuel vapor, and dermal contact with or inhalation of diesel fuel. It has not been determined

whether these effects would occur as the result of exposure to other fuel oils and if they did at what

exposure levels such effects would occur.

Hematological Effects. Subcutaneous hemorrhage, mild nose bleeds, low platelet counts, and retinal

arteriole constriction were reported for a man who was exposed to diesel fuel vapor for 10 days

(Reidenberg et al. 1964). These effects may be indicative of blood clotting problems. Decreased

hemoglobin concentration and an increase in erythrocyte sedimentation rate were noted in one man

after washing his hands with diesel fuel over several weeks (Crisp et al. 1979). Of 12 patients

admitted to the pediatric intensive care unit of a children’s hospital during a 5-year period due to



FUEL OILS 74

2. HEALTH EFFECTS

respiratory distress associated with hydrocarbon aspiration, 3 showed signs of intravascular hemolysis.

A fourth patient, who had ingested kerosene, had clinically insignificant hemolysis (Algren and

Rodgers 1992). Increases in leukocyte counts from acute ingestion of kerosene (Dudin et al. 1991;

Majeed et al. 1981;  Nouri and Al-Rahim 1970) have; also been reported in humans. No hematological

effects were noted two individuals exposed to JP-5 for a few hours (Porter 1990).

No hematological or splenic effects were reported in rats following oral exposure to kerosene

(Muralidhara et al. 1982), nor were hematological and splenic effects noted in rats and dogs following

inhalation of deodorized kerosene (Carpenter et al. 1976), in rats that inhaled diesel fuel (Lock et al.

1984), or in rats following oral administration of Deobase (Muralidhara et al. 1982).

Decreases in hemoglobin concentration and increases in erythrocyte, white blood cell, and

polymorphonuclear leukocyte concentrations were noted in mice after acute dermal exposure to

kerosene. A decrease in the splenic relative weight, which was not accompanied by histopathological

changes, was also noted (Upreti et al. 1989). Oral exposure to JP-5 increased hematocrit levels,

decreased white blood cell counts, and increased erythrocyte counts in rats (Parker et al. 1981).

However, inhalation of diesel fuel aerosol induced decreases in the mean red blood cell count in rats

and had no effect on white blood cells (Dalbey et al. 1987).

The effect of kerosene on the first two steps of the heme synthetic pathway was studied in an animal

model and demonstrated that hepatic δ-aminolevulinic acid (δ-ALA) dehydratase and δ-ALA

synthetase activities were decreased in female rats after intraperitoneal injection of kerosene. Further,

heme oxygenase was not affected by kerosene under these conditions (Rao and Pandya 1980). Since

δ-ALA synthetase is the rate-limiting enzyme of the heme biosynthesis pathway, hepatic heme

biosynthesis may be inhibited by kerosene.

Generalizations regarding the hematological effects of fuel oils on humans cannot be made because the

available data suggest that each fuel oil may behave differently, that species variation may exist, and

that exposure route may play a role. The similar effects in humans and mice exposed to kerosene

suggest that kerosene may not be species specific and may act similarly on the hematopoietic system

regardless of the exposure route. However, there are not enough data to determine whether these

generalizations can be made. The limited data suggest that inhalation or dermal exposure to diesel

fuel and ingestion of kerosene can induce hematological effects in some individuals; however, it is not
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known if these effects would occur in most individuals, although Algren and Rodgers suggest that

hydrocarbon ingestion may frequently effect intravascular hemolysis.

Musculoskeletal Effects. No studies were located regarding musculoskeletal effects in humans after

inhalation, oral, or dermal exposure to fuel oils. No histopathological changes were noted in the

musculoskeletal systems of rats and dogs exposed by inhalation to up to 100 mg/m3 deodorized

kerosene vapor for 13 weeks (Carpenter et al. 1976). Mice treated dermally with marine diesel fuel

and JP-5 (up to 500 mg/kg/day) also displayed no detectable adverse effects to the musculoskeletal

system (NTP/NIH 1986). The limited information available on animals is not sufficient to assess its

relevance to human health.

Hepatic Effects. Histopathological examination revealed slight cellular infiltration and mild

vacuolization of the livers of rats following gavage with kerosene or Deobase organ weights were

not affected (Muralidhara et al. 1982). Gavage with JP-5 induced increases in serum levels of hepatic

enzymes, hepatocyte necrosis, and vacuolization of the periportal hepatocytes in rats (Parker et al.

1981). Inhalation of 231 mg/m3 kerosene vapor induced increases in blood lactate and pyruvate levels;

exposure to 58 mg/m3 kerosene vapor induced decreases in blood glucose levels in rats (Starek and

Vojtisek 1986). Neither rats nor dogs exhibited histopathological changes in the liver following

inhalation exposure to 20, 48, or 100 mg/m3 deodorized kerosene vapor (Carpenter et al. 1976) or

following inhalation of up to 1,500 mg/m3 diesel fuel aerosol by rats (Lock et al. 1984). No

histopathological changes were noted in the livers of mice following acute dermal exposures to 0.1 mL

kerosene (Upreti et al. 1989). Slight hepatic karyomegaly was noted in mice dermally exposed to

500-8,000 mg/kg/day JP-5 for 13 weeks (NTP/NIH 1986). These data suggest that fuel oils may be

of concern to humans because they affected rats by inhalation and oral exposures and mice by dermal

exposures. However, no human data are available for inhalation, oral, or dermal exposures to fuel oils

with regard to hepatic toxicity. Therefore, the available information is not sufficient to assess the

relevance to human health.

Renal Effects. In one individual, acute renal failure was noted from inhalation and/or dermal exposure

to diesel fuel which was used as a shampoo. Biopsy detected tubular dilation, mitosis, and

vacuolization in renal cells, and some cellular proliferation in the glomerulus in this individual

(Barrientos et al. 1977). Another individual experienced renal failure following inhalation of diesel

fuel vapor for 10 days (Reidenberg et al. 1964). Renal necrosis developed in one man after washing
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his hands with diesel fuel over several weeks (Crisp et al. 1979). Urinalysis was normal following

inhalation of JP-5 by two individuals or ingestion of kerosene by numerous individuals (Dudin et al.

1991; Mahdi 1988; Nouri and Al-Rahim 1970; Porter 1990).

Renal lesions have been produced in mice by dermal application of JP-5 or marine diesel fuel. The

inability to duplicate these lesions with intraperitoneal administration suggested that skin application,

in particular the alteration of skin following repeated dermal application, was necessary to produce the

renal toxicity, and that the renal effects appeared to be secondary to skin injury (Easley et al. 1982).

Lymphocytic inflammation has been induced in the urinary bladder of mice with chronic dermal

application of JP-5 or marine diesel fuel (NTP/NIH 1986). However, acute and intermediate dermal

exposures to kerosene and JP-5, respectively, were not toxic to the renal system of mice (Upreti et al.

1989; NTP/NIH 1986). Although renal damage has occurred in a few individuals exposed to diesel

fuel, it is not known if the general population would exhibit these effects following exposure to these

fuel oils. The effects of JP-5 and kerosene on humans is not known.

Inhalation of JP-5 or marine diesel fuel vapors and oral exposure to JP-5 induce a nephropathy that is

unique to male rats (Bruner 1984; Cowan and Jenkins 1981; Gaworski et al. 1984; Parker et al. 1981).

The progression of this lesion has been noted in several studies, including studies conducted on the

hydrocarbon decalin (decahydronaphthalene) (Alden 1986; Bruner 1984; Cowan and Jenkins 1981;

Gaworski et al. 1984; Parker et al. 1981). Specifically, hyaline droplets are formed in the cytoplasm

of the proximal tubule cells of the cortex. The hyaline droplets contain high concentrations of the

protein α2µ,-globulin. It is believed that this protein accumulates in the cytoplasm of the renal tubule

cells because the degradation of α2µ,-globulin is slowed as a result of to binding with specific

substances, such as fuel oils, or their metabolites. The cells die and are sloughed off. The tubules

near the corticomedullary junction become dilated and are eventually filled with coarsely granular casts

and necrotic debris. This results in nephron obstruction and chronic necrosis.

The nephropathy induced by accumulation of this protein has not been noted in female rats, female

mice (studies conducted on male mice were not located), or dogs of either sex when exposed under

similar conditions to either JP-5 or marine diesel fuel vapors (Bruner 1984; Cowan and Jenkins 1981;

Gaworski et al. 1984). There is no evidence of renal necrosis in humans acutely exposed to JP-5

vapor (Porter 1990). In a case report, one individual exposed to an unspecified diesel fuel for several

weeks exhibited acute tubular necrosis (Crisp et al. 1979). However, renal necrosis did not occur in
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two other individuals acutely exposed to diesel fuel vapor (Barrientos et al. 1977; Reidenberg et al.

1964), although they did exhibit acute renal failure. Based on available data, it does not appear that

the nephrotoxicity attributable to the α2µ-globulin syndrome observed in male rats is relevant to

humans (Olson et al. 1990).

Dermal Effects. Oral and/or dermal exposure to kerosene induced blisters, erythema, and peeling skin

in two cases (Annobil 1988). Dose-related effects in humans from dermal exposures to fuel oils are

based upon limited information. Case studies describe numerous effects in or on the skin following

dermal exposure to kerosene. These effects are itching, blisters, reddening, flaccid bullae, pustules,

soreness, burning, swelling, and denudation (Annobil 1988; Jee et al. 1985; Mosconi et al. 1988;

Tagami and Ogino 1973). There are limited data suggesting that epidermal damage may be induced

by kerosene by impairing protein synthesis, but not DNA or collagen synthesis, in the epidermis

(Lupulescu and Birmingham 1975). However, these data are insufficient to identify the toxic effects

that may occur in humans following dermal exposure to kerosene. Also, cellular destruction was noted

in humans from dermal exposure to kerosene (Lupulescu and Birmingham 1976; Lupulescu et al.

1973), but the implications of these effects have yet to be determined.

Acute, intermediate, and chronic dermal exposures to marine diesel fuel and JP-5 have induced various

degrees of dose-dependent dermatitis in mice (Easley et al. 1982; NTP/NIH 1986). Manifestations of

the dermatitis include: acanthosis, inflammation, parakeratosis, and hyperkeratosis (NTP/NIH 1986).

Dermal irritation was induced in mice by acute dermal exposure to kerosene (Upreti et al. 1989). It is

possible that dermal sensitization by fuel oils occurs only following acute exposures since sensitization

was noted in guinea pigs acutely exposed to JP-5 or marine diesel fuel vapors but not following

intermediate exposures to JP-5 or diesel fuel vapors (API 1979f; Cowan and Jenkins 1981). However,

delayed sensitization was not induced in guinea pigs treated with diesel fuel (Beck et al. 1984), three

formulations of No. 2 fuel oil (Beck et al. 1984), JP-5 (Schultz et al. 1981), or diesel fuel marine

(Schultz et al. 1981). Diesel fuel marine and JP-5 did induce skin irritation in guinea pigs (API

1979f). No signs of dermal lesions were noted in rats following repeated whole-body inhalation

exposure to diesel fuel aerosol (Lock et al. 1984). Whereas dermal exposure to fuel oils (liquid or

vapor) would be expected to induce irritation or possibly dermatitis, the data are not adequate to

evaluate delayed skin sensitization. Furthermore, the data are insufficient to assess the dermal effects

of fuel oils when exposure occurs via the oral or respiratory routes.
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Ocular Effects. JP-5 vapor were irritating to the eyes of two individuals and were associated with

hyperemic conjunctiva in one case (Porter 1990). Eye irritation was also reported in workers who

were chronically exposed to unspecified jet fuels, which may or may not include JP-5 (Knave et al.

1978). Deodorized kerosene vapor were shown to induce eye irritation in some individuals (Carpenter

et al. 1976). Dermal exposure to diesel fuel and/or inhalation of its vapor was associated with

subconjunctival hemorrhages in an individual who used it as a shampoo (Barrientos et al. 1977). In

the only available animal studies, rabbits exposed dermally to diesel fuel (API 1979b), marine diesel

fuel, or JP-5 (Cowan and Jenkins 1981; Schultz et al. 1981) showed no signs of ocular irritation.

These data suggest that fuel oils, in general, may induce eye irritation in some individuals, although

only one or two individuals exhibited ocular or dermal effects from airborne exposures to fuel oils.

Irritation is likely to be more severe if exposure occurs in confined spaces.

Body Weight Effects. In mice, dose-dependent decreases in body weight were induced by

intermediate and chronic dermal exposures to marine diesel fuel. In addition, dose-dependent

decreases in body weight were induced in mice by acute and intermediate dermal exposures to JP-5

(NTP/NIH 1986; Schultz et al. 1981). Both food and water consumption were decreased in mice

exposed to diesel fuel no. 2 aerosol for 8 hours/day, 5 consecutive days (Kainz and White 1984); in

rats exposed to diesel fuel for 2 or 6 hours, once or 3 times per week (for a total of 9 exposures)

(Dalbey et al. 1987); and in rats exposed for 4 hours per day, twice per week for 13 weeks (Lock et

al. 1984). None of these effects were noted in mice following acute dermal exposures to kerosene

(Upreti et al. 1989). No conclusions can be made regarding human health from the animal data since

the significance of decreased body weight and food and water consumption with regard to humans

cannot be determined.

Other Systemic Effects. Inhalation and/or dermal exposure to diesel fuel has been associated with

edema in two individuals (Crisp et al. 1979; Reidenberg et al. 1964). In one of these cases, loin pains,

thirst, and severe exhaustion were also reported (Crisp et al. 1979). Several case studies reported fever

in children following acute ingestion of kerosene (Akamaguna and Odita 1983; Aldy et al. 1978;

Dudin et al. 1991; Mahdi 1988; Majeed et al. 1981; Nouri and Al-Rahim 1970; Saksena 1969; St.

John 1982; Subcommittee on Accidental Poisoning 1962). The effects of oral exposure to kerosene in

children cannot be used to predict possible effects in adults or the effects of other fuel oils by this

route without additional information. Similarly, it cannot be determined whether the effects of diesel
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fuel noted in humans would occur from exposure to other fuel oils or in the general population since

limited information is available.

Immunological and Lymphoreticular Effects. No studies were located regarding

immunotoxicity in humans after inhalation, oral, or dermal exposure or in animals following inhalation

or oral exposure to fuel oils. Dermal application of JP-5 induced granulocytic hyperplasia in the bone

marrow and hyperplasia in the lymph nodes of mice. Dermal treatment of mice with marine diesel

fuel induced plasmacytosis in the lymph nodes; this effect was secondary to dermatitis (NTP/NIH

1986). Decreases in the relative weights of the lymph nodes and thymus were noted in mice following

dermal exposure to kerosene (Upreti et al. 1989). In addition, thymocyte counts, bone marrow

nucleated cell counts, thymic cortical lymphocytes, and the cellularity of the thymic lobules were

decreased. Increases in the cellular populations of the popliteal lymph nodes and the cell population

of the axial lymph nodes were also present. These studies indicate that fuel oils may have an effect

on the immune system of mice, although the toxicological significance of these effects cannot be

determined from the data. There are not enough data to determine whether fuel oils would induce

immunological effects in humans.

Data regarding changes in white blood cell counts were found; however, it cannot be determined

whether these changes indicate hematological or immunological toxicity. Increases in leukocyte counts

from acute ingestion of kerosene (Dudin et al. 1991; Majeed et al. 1981; Nouri and Al-Rahim 1970)

have been reported in humans. Increases white blood cell and polymorphonuclear leukocyte

concentrations were noted in mice after acute dermal exposure to kerosene (Upreti et al. 1989). Oral

exposure to JP-5 decreased white blood cell counts in rats (Parker et al. 1981). However, inhalation of

diesel fuel aerosol had no effect on white blood cells in rats (Dalbey et al. 1987). The conflicting

changes in white blood cell levels may be due to differences in the toxicity of these fuel oils or to

differences in exposure route or both. The similar effects in humans and mice exposed to kerosene

suggests that kerosene may not be species specific and that this fuel oil affects white blood cells in a

similar manner regardless of the exposure route. However, there are not enough data to determine

whether these generalizations can be made.
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Neurological Effects. Numerous neurological effects were reported from kerosene ingestion by

children: unconsciousness or semiconsciousness, drowsiness, restlessness, irritability, and in fewer

cases, coma and convulsions (Akamaguna and Odita 1983;  Aldy et al. 1978;  Coruh and Inal 1966;

Dudin et al. 1991;  Mahdi 1988;  Majeed et al. 1981;  Nouri and Al-Rahim 1970;  Saksena 1969;

Santhanakrishnan and Chithra 1978;  St. John 1982;  Subcommittee on Accidental Poisoning 1962).

Neither coma nor convulsions occurred in children that ingested 3-20 mL of kerosene. This dose is

equivalent to 126-1,754 mg/kg in children aged 10 months to 5 years (Dudin et al. 1991). There are

limited data that suggest that the central nervous system effects noted from ingestion of kerosene are

due to hypoxia which results from kerosene-induced respiratory impairment (Majeed et al. 1981).

Severe headaches occurred in an individual exposed to diesel fuel vapor for 10 days (Reidenberg et al.

1964). Anorexia occurred in a man following dermal and/or inhalation exposure to diesel fuel over

several weeks (Crisp et al. 1979). Other neurological effects were reported following inhalation of

JP-5 vapor in two individuals who had fatigue and coordination and concentration difficulties; other

effects included headache, apparent intoxication, and anorexia. Effects subsided within 24 hours for

one individual and within 4 days for the other (Porter 1990). Sensory impairment did not occur in

these individuals. However, experimental data indicate that olfactory fatigue and taste sensation may

occur in some individuals after a 15-minute inhalation exposure to 140 mg/m3 deodorized kerosene

vapor (Carpenter et al. 1976). These data suggest that the different types of fuel oils may behave

differently under inhalation exposure conditions. The effect of deodorized kerosene may also occur at

lower doses, but this cannot be determined from these data.

Neurasthenia (i.e., fatigue, depressed mood, lack of initiative, dizziness, sleep disturbances) and

impairment of attention and sensorimotor speed were associated with chronic inhalation, oral, and/or

dermal exposures to jet fuel by factory workers (Knave et al. 1978). Nevertheless, it is not known to

which jet fuels the workers were exposed, and confounding by exposure to other chemicals may have

occurred.

Acute inhalation of diesel fuel no. 2 vapor induced dose-dependent ataxia, increased sensitivity to heat,

changes in behavior, and tremors in mice. Also, while ataxia occurred, there was no affect on the

spinal cord reflex for blink response nor on the integrity of the neuromuscular junction based on

responses to the rota rod and inclined plane tests (Kainz and White 1984). In rats, intermediate

inhalation of diesel fuel aerosol induced increased peak response time using the startle reflex assay
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(Lock et al. 1984); however, histopathological changes of the nervous system were not noted in these

rats. Neurotoxicity was not induced using the landing footspread, tail flick, forelimb grip strength, and

startle reflex assays under similar exposure conditions (Dalbey et al. 1987). Oral exposure to kerosene

and Deobase® induced ataxia and drowsiness in rats (Muralidhara et al. 1982). Aspiration of kerosene

induced drowsiness, lack of muscular coordination, and behavioral changes (Nouri et al. 1983) and

dermal exposure induced an increased response to tactile stimuli and hyperactivity (Upreti et al. 1989)

in mice. No histopathological changes were noted in the nervous system of mice following dermal

exposures to JP-5 or marine diesel fuel (NTP/NIH 1986). The information from human and animal

studies indicate that neurotoxicity may occur by all routes of exposure and that all fuel oils may be

neurotoxic. As is common with hydrocarbons, the primary acute neurotoxic effect is central nervous

depression that may be manifest in a number of symptoms.

Developmental Effects. No studies were located regarding developmental effects in humans after

inhalation, oral, or dermal exposure to fuel oils. No developmental effects were noted in rat fetuses

after inhalation exposure of the gestating female to home heating oil no. 2, fuel oil UNSP, or diesel

fuel vapor (API 1979c, 19798; Beliles and Mecler 1983). Since negative effects were noted for

several fuel oils in one species, it is possible that none of the fuel oils induce developmental effects by

inhalation. However, additional data are needed to assess whether developmental effects would occur

in other species, including humans, and/or by oral and dermal exposures.

Reproductive Effects. No studies were located regarding reproductive effects in humans after

inhalation, oral, or dermal exposure to fuel oils. No histological changes were noted in the

reproductive system of mice dermally exposed to JP-5 for 13 weeks or chronically exposed to marine

diesel fuel or JP-5 (NTP/NIH 1986) or in rats following intermediate-duration inhalation of diesel fuel

aerosol (Lock et al. 1984). There is not enough information to assess the human reproductive toxicity

to fuel oils by oral, inhalation, or dermal exposures.

Genotoxic Effects. No genotoxicity studies involving human exposure to fuel oils were identified.

The results from a study employing a human cell line showed that neither 5 nor 50 ppm petroleum-

derived JP-5 (PD-JPS) interfered with Snyder-Theilen feline sarcoma virus (ST-FeSV)-directed

transformation of human foreskin fibroblastic cells (Blakeslee et al. 1983). Higher concentrations

(2100 ppm) were cytotoxic. It was reported that marine diesel fuel failed to inhibit transformation in

this assay, but data were not shown. The study authors consider this in vitro assay to be a useful
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predictor of carcinogenesis since several known carcinogens have been shown to suppress

transformation in cells infected with the ST-FeSV virus by blocking a specific virus gene function

(i.e., transformation); noncarcinogens do not inhibit virus-induced cell transformation in this test

system.

Animal models have primarily yielded negative genotoxicity data. Inhalation of 100 to 400 ppm diesel

fuel  6 hours/day, 5 days/week for 8 weeks did not increase the frequency of dominant lethal

mutations. Cyclohexane/DMSO extract and DMSO extract of diesel 1 (CAS no. 8008-20-6), diesel 2

(CAS no. 64742-47-7), and home heating oil (CAS no. 68476-30-2), administered orally at doses of

1.0,  2.0,  and 5.0 g/kg, did not induce increased frequency of micronuclei in a mouse bone marrow

micronucleus assay (McKee et al. 1994). It should be noted that the extraction procedure was used to

concentrate the aromatic fraction (with particular interest in the polynuclear aromatics) of the fuel oils

tested. Kerosene, administered intraperitoneally , did not increase the frequency of chromosomal

aberrations in bone marrow cells harvested from rats following a one-time exposure to 0.04, 0.13, or

0.4 mL or a 5-day exposure to 0.02, 0.06, or 0.18 ml/day (Conaway et al. 1984). Since the rationale

for selection of 0.4 mL (LD,) as the high dose was not provided and there was no information

regarding toxic effects in the treated animals or cytotoxic effects on the target organ (i.e., bone marrow

cells), the findings do not fully support a negative conclusion for kerosene.

Some data has, however, suggested that fuel oils may have genotoxic activity. Evidence that fuel oil

no. 2 is clastogenic in rat bone marrow has been reported (Conaway et al. 1984). Significant increases

(Wilcoxon rank test) in the percentage of aberrant cells were observed in a rat bone marrow

cytogenetic assay in rats receiving single intraperitoneal (i.p.) injections (2.0 or 6.0 mL/kg diesel fuel)

and in rats receiving daily i.p. injections of 6.0 ml/kg/day for 5 days, although the response was not

dose-related. Similarly, rats that received doses of fuel oil no. 2 (oral gavage; 125, 417, or

1,250 g/kg/day) for 5 consecutive days demonstrated nondose-related increases in the percentage of

aberrant cells and the percentage of cells with chromatid breaks (Conaway et al. 1984). The effect

was significant at the low and high dose, and the greatest yield of aberrant chromosome figures

occurred in the rats treated with 125 g/kg/day.

The genotoxicity of fuel oil no. 2, kerosene, and diesel fuel was also evaluated with the mouse

lymphoma TK+/- forward mutation assay (Conaway et al. 1984). The data reported was insufficient to
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permit a full evaluation of the results; however, the authors considered diesel fuel and kerosene to be

negative and fuel oil no. 2 to be positive.

The cyclohexane/DMSO extract and DMSO extract of diesel 1 (CAS no. 8008-20-6), diesel 2 (CAS

no. 64742-47-7), and home heating oil (CAS no. 68476-30-2) were evaluated for genotoxicity with the

Ames assay (McKee et al. 1994). Diesel 1 extracts did not produce significant increases in revertants.

The DMSO extract of diesel 2 produced a significant increase in the number of revertants, although

the increase was not dose-related. The cyclohexane/DMSO extract of diesel  2 failed to produce a

significant increase in the number of revertants. The DMSO-extract of home heating oil produce a

significant increase in revertants, that was dose-dependent, while the cyclohexane/DMSO extract

induced a dose-related increase in revertants that was less than two times greater than the control. It

should be noted that the modifications to the standard Ames mutagenesis included not only the

extraction step but also the use of S9 at eight times the recommended concentration, and the use of the

TA98 strain exclusively. Kerosene was mutagenic in S. typhimurium TA98 in the presence of

increased concentrations of hamster S9 and nicotinamide adenine dinucleotide phosphate (NADP) in

the S9-cofactor mix (Blackburn et al. 1986).

In contrast to the positive results with kerosene, neither JP-5 nor a marine diesel fuel product were

mutagenic in the Ames assay when activated with S9 (Arochlor-induced rat liver enzymes) (Schultz et

al. 1981). Similarly, neither marine diesel fuel nor JP-5 were mutagenic in well-conducted

S. typhimurium preincubation assays (NTP/NIH 1986). Doses of each agent evaluated without S9

activation and with rat or hamster liver fractions ranged from 3 to 333 µg/plate -S9, from 33 to

3,333 µg/plate +S9 (marine diesel fuel), and from 100 to 10,000 µg/plate +/-S9 (JP-5). Further, fuel

oil no. 2 was not mutagenic up to the limit of solubility (42 mg/plate) in the Salmonella/mammalian

microsome mutagenicity assay (Conaway et al. 1984). It was also reported that kerosene

(0.001-5 µL/plate +/-S9 [plate test] and 6.25-50 µL/mL +/-S9 [preincubation assay]) and diesel fuel

(0.001-5 µL/plate +/-S9 [plate test] and 3.38-25 µL/mL [preincubation assay]) were negative in this

microbial test system.

The inconsistent data reported for the animal models, the human cell assays, and the Ames tests with

the various fuel oils preclude the use of the data for the prediction of genotoxic hazards to humans

(refer to Tables 2-4 and 2-5 for a further summary of these studies).
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Cancer. Human cancer data from epidemiological studies found only equivocal evidence of an

association between cancer and exposures to fuel oils. Several studies examined the association

between “fuel and oil expenditures for farm purposes” and various forms of cancer in central Canadian

farmers (Morrison et al. 1992, 1994; Semenciw et al. 1993). They reported an association between

such expenditures and non-Hodgkin’s lymphoma and multiple myeloma incidence, but the association

was equivocal and not statistically significant. Furthermore, the type of fuels and oils was not

specified, nor was the exposure route described. Scherr and colleagues (1992) reported no additional

relative risk for non-Hodgkin’s lymphoma for subjects occupationally exposed to “gasoline or

kerosene.” No significant increased relative risk for any type of cancer was noted in Swedish Air

Force personnel exposed to military aircraft fuels (including an “unleaded kerosene type jet fuel”).

One study (Partanen et al. 1991) suggests that other chemicals could be present in the occupational

setting, which could alter fuel oil toxicity, though this same study found no significant association

between fuel oil exposure and cancer. Chan and coworkers (1979) examined exposure to kerosene

from kerosene cooking stoves, but exposure to kerosene combustion products may have occurred

instead of, or in addition to, inhalation of kerosene vapor. Therefore, no firm conclusions may be

drawn from this data for human health.

No dermal cancer was noted in B6C3F1 mice following chronic dermal exposure to 250 or 500

mg/kg/day JP-5 (NTP/NIH 1986). However, unspecified skin tumors were noted in C3HF/Bd mice,

but the tumors were not dose related in most exposure conditions (Schultz et al. 1981). There was an

increased incidence of squamous cell papilloma and/or carcinoma in mice chronically exposed to 250

or 500 mg/kg/day marine diesel fuel (NTP/NIH 1986). Hepatocellular adenoma and carcinoma were

noted in male, but not female, mice exposed to 250 or 500 mg/kg/day marine diesel fuel (NTP/NIH

1986). Although a significant increase in hepatocellular carcinomas were observed in mice dermally

treated with middle distillates, the increase was not substantially greater than the incidence noted in

“historical” data from negative control groups (Biles et al. 1988). API no. 2 fuel oil demonstrated low

tumorigenic activity (15/150) in male and female mice dermally treated with the undiluted material or

as a 50% or 25% solution in acetone (Witschi et al. 1987). A low, but significant increase in the

incidence of dermal tumor was noted in male mice treated with six no. 2 fuel oils that varied in

composition (Biles et al. 1988). No increase in tumor incidence occurred in mice receiving dermal

applications of diesel fuel; however, dermal application of Jet A induced an increased incidence (26%)

of neoplastic lesions (Clark et al. 1988). An increase in tumor incidence was noted in mice receiving
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DMBA as an initiating agent and furnace oil as a promoting agent; further, furnace oil produced a

significant increase in the incidence of confirmed skin tumors in a skin-painting assay (Gerhart et al.

1988). An increase in the incidence of confirmed tumor was also noted in animals receiving DMBA

as an initiator and either hydrodesulfurized kerosine or no. 2 fuel oil as a promoting agent (API 1989).

These data suggest that fuel oils can act as a skin or liver carcinogen. However, only one species has

been investigated, limiting the data. Further investigation utilizing other species is required to more

fully elucidate the mechanism of dermal carcinogenesis and the impact of dermal exposure of fuel oils

on humans. (See Section 2.2.3.8 for a more complete review of carcinogenesis data.)

2.5 BIOMARKERS OF EXPOSURE AND EFFECT

Biomarkers are broadly defined as indicators signaling events in biologic systems or samples. They

have been classified as markers of exposure, markers of effect, and markers of susceptibility

(NAS/NRC 1989).

A biomarker of exposure is a xenobiotic substance, its metabolite(s), or the product of an interaction

between a xenobiotic agent and some target molecule(s) or cell(s) that is measured within a

compartment of an organism (NAS/NRC 1989). The preferred biomarkers of exposure are generally

the substance itself or substance-specific metabolites in readily obtainable body fluid(s) or excreta.

Examples of the types of biomarkers indicated above include blood lead (the xenobiotic), urinary

excretion of 2-thiothizolidine-4-carboxylic acid (a metabolite of carbon disulfide), or a DNA adduct

(the product of an interaction between an exogenous material and a macromolecule). Several factors

can confound the use and interpretation of biomarkers of exposure. The body burden of a substance

may be the result of exposures from more than one source. The substance being measured may be a

metabolite of another xenobiotic substance (e.g., high urinary levels of phenol can result from

exposure to several different aromatic compounds). Depending on the properties of the substance

(e.g., biologic half-life) and environmental conditions (e.g., duration and route of exposure), the

substance and all of its metabolites may have left the body by the time biologic samples can be taken.

It may be difficult to identify individuals exposed to hazardous substances that are commonly found in

body tissues and fluids (e.g., essential mineral nutrients such as copper, zinc, and selenium).

Biomarkers of exposure to fuel oils are discussed in Section 2.5.1.
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Biomarkers of effect are defined as any measurable biochemical, physiologic, or other alteration within

an organism that, depending on magnitude, can be recognized as an established or potential health

impairment or disease (NAS/NRC 1989). This definition encompasses biochemical or cellular signals

of tissue dysfunction (e.g., increased liver enzyme activity or pathologic changes in female genital

epithelial cells), as well as physiologic signs of dysfunction such as increased blood pressure or

decreased lung capacity. Note that these markers are often not substance specific. They also may not

be directly adverse, but can indicate potential health impairment (e.g., DNA adducts). Biomarkers of

effects caused by fuel oils are discussed in Section 2.5.2.

A biomarker of susceptibility is an indicator of an inherent or acquired limitation of an organism’s

ability to respond to the challenge of exposure to a specific xenobiotic substance. It can be an

intrinsic genetic or other characteristic or a preexisting disease that results in an increase in absorbed

dose, a decrease in the biologically effective dose, or a change in target tissue response. If biomarkers

of susceptibility exist, they are discussed in Section 2.7, “Populations That Are Unusually Susceptible.”

2.5.1 Biomarkers Used to Identify or Quantify Exposure to Fuel Oils

No biomarkers of exposure were identified for fuel oils in general. However, there have been

suggestions for potential markers for kerosene exposure. These include the odor of kerosene on the

breath suggesting ingestion (Annobil 1988; Zucker et al. 1986) and the odor of kerosene on clothing

suggesting dermal exposure (Annobil 1988; Tagami and Ogino 1973). The odor of distillate fuels are

so similar, however, that the sensitivity and specificity of these markers would be extraordinarily low.

Some components of kerosene, other fuel oils, and their metabolites may be detected in the blood and

urine, although neither the route of exposure nor the origin can be determined. For information on

biomarkers of exposure for some of the constituents of fuel oils, the ATSDR toxicological profiles on

benzene, toluene, total xylenes, and polycyclic aromatic hydrocarbons (ATSDR 1989, 1990a, 1991a,

1991b) can be consulted.

2.5.2 Biomarkers Used to Characterize Effects Caused by Fuel Oils

No specific, quantitative biomarkers of effect for fuel oils were identified.
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2.6 INTERACTIONS WITH OTHER CHEMICALS

Exposures to two or more substances may cause effects that are additive (the combined effect of the

mixture is equal to the sum of the effects of the agents), synergistic (causing an effect that is greater

than the sum of the effects of the agents), or antagonistic (one substance interferes with the action of

another). No information was located regarding the influence of other chemicals on the toxicity of

fuel oils. However, kerosene vapor has been shown to increase the effects of hexobarbital (a sleeping

agent), following acute exposure, and phenacetin (an antipyretic), following subchronic exposure, in

rats (Starek and Vojtisek 1986).

2.7 POPULATIONS THAT ARE UNUSUALLY SUSCEPTIBLE

A susceptible population will exhibit a different or enhanced response to fuel oils than will most

persons exposed to the same level of fuel oils in the environment. Reasons include genetic make-up,

developmental stage, health and nutritional status, and chemical exposure history. These parameters

result in decreased function of the detoxification and excretory processes (mainly hepatic and renal) or

the pre-existing compromised function of target organs. For these reasons we expect the elderly with

declining organ function and the youngest of the population with immature and developing organs will

generally be more vulnerable to toxic substances than healthy adults. Populations who are at greater

risk due to their unusually high exposure are discussed in Section 5.6, “Populations With Potentially

High Exposure.”

No information was located regarding the toxicity of fuel oils in susceptible populations. The human

data, in general, were based upon case studies that reported ingestion of kerosene by children.

Although children were not shown to be particularly susceptible to kerosene in these studies, it was

obvious that children are more likely to be exposed to kerosene accidentally than adults. In particular,

children that are 5 years old or younger often mistakenly drank kerosene because it was accessible to

them.

In one animal study, it was found that younger rats are more susceptible to kerosene toxicity than are

older rats. A single oral dose of 22,400 mg/kg kerosene killed 27% of the adult rats, 66% of the

5-week-old rats, and 100% of the 10-day-old rats (Deichmann et al. 1944). It is not known whether

kerosene would also be more toxic in younger humans as compared to older humans.
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2.8 METHODS OF REDUCING TOXIC EFFECTS

This section will describe clinical practice and research concerning methods for reducing toxic effects

of exposure to fuel oils. However, because some of the treatments discussed may be experimental and

unproven, this section should not be used as a guide for treatment of exposures to fuel oils. When

specific exposures have occurred, poison control centers and medical toxicologists should be consulted

for medical advice.

2.8.1 Reducing Peak Absorption Following Exposure

The mitigation procedures for fuel oils parallel those for hydrocarbon poisoning in general. Inhalation

and ingestion appear to be the most serious routes of exposure. In the case of overexposure by

inhalation, it is suggested that the patient be moved to an area of fresh air and given basic supportive

treatment (CONCAWE 1985; HSDB 1991) including 100% humidified supplemental oxygen as

required (HSDB 1991).

For poisoning by ingestion, the treatment protocol is more complex. As with inhalation, it is

recommended that the patient receive prompt supportive medical care (Bronstein and Currance 1988;

CONCAWE 1985; Goldfrank et al. 1990; Haddad and Winchester 1990; Stutz and Janusz 1988;

Zieserl 1979). The primary concern for the person who has ingested hydrocarbons such as fuel oils or

kerosene is hydrocarbon aspiration either during ingestion or during gastric decontamination.

Aspiration of the hydrocarbon into the lungs can cause hydrocarbon pneumonitis and secondary

infections including pneumonia.

Because of the aspiration risk, a controversy has developed over which (if either) of two gastric

decontamination treatments is better: induced vomiting or gastric lavage. In general, the

recommendation is that no form of gastric emptying be used if the amount of hydrocarbon ingestion is

small (Bronstein and Currance 1988; Ellenhorn and Barceloux 1988; Goldfrank et al. 1990; HSDB

1991; Litovitz and Greene 1988; Shirkey 1971; Zieserl 1979). This is usually the case with accidental

poisonings. If unknown or large amounts (volumes greater than 100 mL) have been ingested, then the

decision of how and/or whether to decontaminate the stomach should be based on the state of the

patient, the hydrocarbon’s viscosity, and the involvement of other more dangerous chemicals. For

conscious patients with operational gag reflexes and without spontaneous emesis, induced vomiting
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seems to be the preferred method of gastric emptying (Ellenhorn and Barceloux 1988; Goldfrank et al.

1990; Ng et al. 1974; Shirkey 1971; Zieserl 1979); otherwise, endotracheal intubation followed by

gastric lavage has been suggested (Ellenhorn and Barceloux 1988; Haddad and Winchester 1990).

For ingestion of large amounts (greater than 30 mL in children) of home or diesel fuel oils, gastric

decontamination has been contraindicated since these hydrocarbons have a high viscosity and are

poorly absorbed (Ellenhorn and Barceloux 1988). The low viscosity of kerosene, however, has

produced conflicting opinions. Some recommend induced emesis to prevent gastrointestinal absorption

(Ellenhorn and Barceloux 1988). On the other hand, others suggest that the low viscosity of kerosene

increases the risk of aspiration (Gerarde 1959; Litovitz and Greene 1988) and therefore do not

recommend gastric decontamination regardless of volume (Bronstein and Currance 1988; CONCAWE

1985; Haddad and Winchester 1990; Litovitz and Greene 1988; Macnamara 1968).

Controversy also exists over whether or not to administer activated charcoal (to bind the hydrocarbon)

or cathartics (Ellenhorn and Barceloux 1988; Goldfrank et al. 1990; Haddad and Winchester 1990;

HSDB 1991; Litovitz and Greene 1988; Shirkey 1971; Stutz and Janusz 1988; Zieserl 1979). Some

question the overall effectiveness of activated charcoal and cathartics (Goldfrank et al. 1990; Litovitz

and Greene 1988; Zieserl 1979). In addition, activated charcoal may cause vomiting (HSDB 1991)

which may or may not be desired. Most agree, however, that if cathartics are administered, they

should be saline cathartics such as magnesium or sodium sulfate or citrate and not oil-based cathartics

such as mineral oil (Ellenhorn and Barceloux 1988; Goldfrank et al. 1990; Haddad and Winchester

1990; Stutz and Janusz 1988).

In general, administration of antibiotics and/or corticosteroids does not appear useful in treating

hydrocarbon pneumonitis (Brown et al. 1974; Goldfrank et al. 1990; Haddad and Winchester 1990;

HSDB 1991; Steele et al. 1972; Wolfsdorf and Kundig 1974; Zieserl 1979). In fact, one study has

suggested that steroid administration may increase bacterial colonization in the lungs (Brown et al.

1974). The use of antibiotics is recommended only to treat secondary lung infections (Haddad and

Winchester 1990; HSDB 1991; Zieserl 1979).

If the skin is exposed to fuel oils, washing the area of contact with large amounts of soapy water is

recommended (CONCAWE 1985; Ellenhorn and Barceloux 1988; Goldfrank et al. 1990; HSDB 1991;

Stutz and Janusz 1988). If blistering or skin loss occurs, then the use of sterile water alone is
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suggested (CONCAWE 1985). For ocular exposure, flushing the eyes liberally with water

(CONCAWE 1985; HSDB 1991; Stutz and Janusz 1988) and, if necessary, using proparacaine

hydrochloride to assist the irrigation (Bronstein and Currance 1988) are the recommended treatment

protocols.

2.8.2 Reducing Body Burden

Little is known about the toxicokinetics of fuel oils, and there are no known methods for the reduction

of body burden.

2.8.3 Interfering with the Mechanism of Action for Toxic Effects

Although lung response to aerosolized kerosene and the effect of kerosene on heme biosynthesis have

been partially investigated, the toxicities of fuel oils as well as their mechanisms are not well defined.

As such, no known therapies are available that disrupt the mechanisms of action.

2.9 ADEQUACY OF THE DATABASE

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with

the Administrator of EPA and agencies and programs of the Public Health Service) to assess whether

adequate information on the health effects of fuel oils is available. Where adequate information is not

available, ATSDR, in conjunction with the National Toxicology Program (NTP), is required to assure

the initiation of a program of research designed to determine the health effects (and techniques for

developing methods to determine such health effects) of fuel oils.

The following categories of possible data needs have been identified by a joint team of scientists from

ATSDR, NTP, and EPA. They are defined as substance-specific informational needs that, if met,

would reduce or eliminate the uncertainties of human health assessment. This definition should not be

interpreted to mean that all data needs discussed in this section must be filled. In the future, the

identified data needs will be evaluated and prioritized, and a substance-specific research agenda may

be proposed.
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2.9.1 Existing Information on Health Effects of Fuel Oils

The existing data on health effects of inhalation, oral, and dermal exposure of humans and animals to

fuel oils are summarized in Figure 2-4. The purpose of this figure is to illustrate the existing

information concerning the health effects of fuel oils. Each dot in the figure indicates that one or

more studies provide information associated with that particular effect. The dot does not imply

anything about the quality of the study or studies. Gaps in this figure should not be interpreted as

“data needs” information (i.e., data gaps that must necessarily be filled).

Information is available on acute, intermediate, and chronic systemic effects, as well as neurological

and cancer effects, following inhalation exposure to fuel oils; death, acute systemic, and neurological

effects following oral exposure to fuel oils; and acute, intermediate, and chronic systemic and

neurological effects following dermal exposure to fuel oils in humans. Information is available on

death, and acute and intermediate systemic effects, as well as neurological, developmental,

reproductive, genotoxic, and cancer effects following inhalation exposure to fuel oils; death, acute

systemic effects, as well as neurological and genotoxic effects following oral exposure to fuel oils; and

death, acute, intermediate, and chronic systemic effects, as well as immunological, neurological,

reproductive, and cancer effects following dermal exposure to fuel oils in animals. Therefore, as

Figure 2-4 shows, the majority of the data on health effects of fuel oils concern inhalation or dermal

exposure of animals; however, there are some data for all routes of exposure in both animals and

humans.

2.9.2 Identification of Data Needs

The following are topical sections that identify gaps in the present state of knowledge concerning the

toxicology of fuel oils. Each of the sections identifies specific areas in which additional data are

needed to gain a greater understanding of the toxicity of fuel oils and its constituents as well as of the

biochemical mechanisms of their toxicity. It must be noted, however, that there are finite monies

available for all toxicological research. Hard decisions must be made to determine how (e.g., the

material to be studied, the effect to be investigated, whether human study or animal model) these funds

would best be invested.
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Acute-Duration Exposure. There are many case studies that identify respiratory, neurological, and

gastrointestinal effects as the primary effects in humans induced by acute exposures to fuel oils,

particularly by the oral route (Akamaguna and Odita 1983; Aldy et al. 1978; Annobil 1983; Annobil

and Ogunbiyi 1991; Mahdi 1988; Santhanakrishnan and Chithra 1978; St. John 1982; Subcommittee

on Accidental Poisoning 1962) and, to a lesser extent, by inhalation exposure (Barrientos et al. 1977;

Porter 1990). Dermal irritation is also well documented for both humans (Annobil 1988; Barrientos et

al. 1977; Mosconi et al. 1988; Tagami and Ogino 1973) and animals (NTP/NIH 1986; Upreti et al.

1989) by the dermal route of exposure. A few case studies indicate that cardiovascular, hematological,

and renal effects may occur in humans exposed to the vapors of JP-5 or diesel fuel (Barrientos et al.

1977; Porter 1990; Reidenberg et al. 1964). Renal toxicity may also occur following dermal contact

with diesel fuel (Barrientos et al. 1977).

Dose-response data are largely lacking for the effects noted in both humans and animals. A few

animal studies do contain dose-response data. Decreased food and water consumption, vasodilation,

and neurological effects (reduced coordination, increased sensitivity to heat, changes in behavior,

tremors) were found to be dose-dependent in mice exposed to diesel fuel no. 2 aerosol (Kainz and

White 1984). Dose-response lethality data were found for inhalation exposures to diesel fuel aerosols

(Dalbey and Lock 1983). In addition, there was a dose-response relationship following a single

exposure to kerosene by oral gavage for death, unsteady gait, and drowsiness in rats (Muralidhara et

al. 1982). However, the majority of the animal studies contain negative data (Beliles and Mecler

1983) that have not been verified by more than one study using the same fuel oil, species, and/or route

of exposure, or the studies only tested one dose (Brown et al. 1974; Casaco et al. 1982; Garcia et al.

1988b; Goodwin et al. 1988; Nouri et al. 1983; Upreti et al. 1989). Acute oral LD50 data are available

for kerosene in guinea pigs and rabbits (Deichmann et al. 1944). Additional data are needed regarding

inhalation and dermal exposures in various species to verify the renal toxicity of fuel oils noted in a

few individuals.

Intermediate-Duration Exposure. Only one case study was identified that described intermediate

exposure in one individual who washed his hands with diesel fuel over several weeks (Crisp et al.

1979). The man exhibited epigastral pain, hematological effects, renal necrosis, edema of the scrotum

and ankle, loin pains, thirst, and severe exhaustion. Effects resulting from inhalation versus dermal

exposure could not be distinguished in this case. This is the only study found that identifies renal
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necrosis in humans. The renal necrosis described in this individual resembles a renal nephropathy that

was previously found only in male rats from vapor inhalation and oral exposure to JP-5 and marine

diesel fuel (Bruner 1984; Cowan and Jenkins 1981; Gaworski et al. 1984; Parker et al. 1981). There

are data that show the α2µ-globulin protein, which is responsible for the necrosis in rats, may not exist

in humans (Alden 1986). Also, data are needed to determine whether mechanisms of toxicity, other

than those involving this protein, may exist for the induction of this lesion in both humans and rats.

Also, data from well conducted studies are needed to determine which fuel oils induce this lesion in

various species. Finally, in future cases of human exposure to fuel oils, signs of renal toxicity should

be carefully monitored and results from histological examinations of renal tissue should be reported, if

available.

Animal data are available for intermediate exposures by the inhalation and dermal routes of exposure.

No animal data were located by the oral route. Most of these studies found no evidence of toxicity in

any of the exposure conditions used in each (Carpenter et al. 1976; Bruner 1984; Lock et al. 1984;

NTP/NIH 1986). However, the lack of toxicity in these studies has not been verified by more than

one study using the same fuel oil, species, and/or route of exposure. In one aerosol inhalation study

(Dalbey et al. 1987) there were positive findings for respiratory, hematological, and body weight

effects at higher doses than those used in the studies by Carpenter et al. (vapor) (1979) and Lock et al.

(aerosol) (1984). However, MRLs cannot be derived from these data because the Dalbey et al. study

was not designed to test for a dose-response relationship, and therefore, the exact LOAEL(s) could not

be determined for these effects. In another aerosol study with positive findings, only one

concentration level was tested (Noa and Illnait 1987a).

One well-conducted study in mice describes effects (death, hepatic karyomegaly, and dermatitis) from

dermal exposures to either JP-5 or marine diesel fuel (NTP/NIH 1986). Another study found dose-dependent

increases in blood lactate and pyruvate levels and decreases in blood glucose levels in rats

after inhalation of kerosene vapor (Starek and Vojtisek 1986). In a third study, dose-related increases

in the relative weight of the right lobe of the lung were noted from inhalation of diesel fuel aerosol

(Lock et al. 1984). None of these studies can be used for MRL derivation since the data were

obtained by dermal exposures in one study and the biochemical and organ weight effects induced by

inhalation of the fuel oils were not supported by pathological changes. More data are needed in

animals, and especially in humans, for all routes of exposure to identify the primary toxic effects of

fuel oils from intermediate exposures.
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Chronic-Duration Exposure and Cancer. Epidemiological data regarding respiratory and dermal

effects from chronic exposures to fuel oils in humans are described elsewhere (see Epidemiological

and Human Dosimetry Studies in this section). No other information is available for humans

regarding chronic inhalation or oral exposures to fuel oils. A single animal study addressed

carcinogenicity in animals via inhalation (Bruner 1984); however, the study did not adequately

investigate the subject.  Animal model data were available for the carcinogenic effects of chronic

dermal exposure. It is apparent that chronic dermal application of fuel oils can induce tumorigenesis;

however, both the mechanism of induction and the relevance of fuel oil tumor induction to humans are

poorly defined. Equivocal data were available for the induction of hepatic tumors following dermal

exposure. The data were so limited that the effect could not be evaluated. As such, further

elucidation of the biochemical pathway, the relevance of dermal exposure to humans, and the

incidence of induction of systemic tumorigenesis subsequent to dermal exposure would be of value.

The demonstration of renal toxicity in animal models has been considered significant due, at least in

part, to case studies reporting such toxicity. However, data exist that appear to associate the renal

toxicity with water loss due to skin lesions induced by chronic dermal application of fuel oils rather

than systemic toxicity. Data that clarifies this effect would be of interest.

Genotoxicity. No definite conclusions can be reached from the in vitro human cell and whole

animal genetic toxicology studies that have been performed with fuel oils. Data from bacterial in vitro

assays are inconsistent (see Section 2.4, Genotoxic Effects). A study of the genotoxicity/mutagenicity

of commercially available fuel oils and the various component petroleum streams used in their

formulation would be of value.

Reproductive Toxicity. No information was found regarding reproductive toxicity in humans from

inhalation, oral, or dermal exposures to fuel oils. There were no pathological changes on the

reproductive organs of mice following chronic and/or intermediate dermal exposures to marine diesel

fuel and JP-5 (NTP/NIH 1986) or in rats following intermediate inhalation of diesel fuel aerosol (Lock

et al. 1984). Additional data are needed to identify the toxic potential of fuel oils on the reproductive

system by all routes of exposure.
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Developmental Toxicity. No information was found regarding developmental toxicity in humans

from inhalation, oral, or dermal exposures to fuel oils. Several studies were identified that tested

developmental effects in animals, but only using the inhalation route of exposure. These studies found

no developmental effects in the fetuses of female rats that had been exposed to heating oil, fuel oil

UNSP, or diesel fuel vapors by inhalation during gestation days 6-15 (API 1979c, 19798; Beliles and

Mecler 1983). Additional data are needed to identify the toxic potential of fuel oils regarding

developmental effects by all routes of exposure.

Immunotoxicity. No information was found regarding immunotoxicity in humans from inhalation,

oral, or dermal exposures to fuel oils. Only two animal studies were identified that tested

immunological effects, both using mice. These studies identified cellular effects in the bone marrow,

lymph nodes, and/or thymus and decreases in the relative weights of the lymph nodes and thymus

from acute dermal exposures to kerosene (Upreti et al. 1989) and chronic dermal exposures to JP-5

and marine diesel fuel (NTP/NIH 1986). However, the toxicological significance of these effects on

the immune system cannot be determined from these data. Additional data are needed to identify the

toxic potential of fuel oils on the immune system by all routes of exposure and in different animal

systems.

Neurotoxicity. Epidemiological data regarding neurological effects from chronic exposures to fuel

oils in humans are described elsewhere (see Epidemiological and Human Dosimetry Studies in this

section). Neurological effects from oral exposures are well documented in humans by case studies

(Akamaguna and Odita 1983;  Aldy et al. 1978;  Coruh and Inal 1966;  Dudin et al. 1991;  Mahdi 1988;

Majeed et al. 1981;  Nouri and Al-Rahim 1970; Saksena 1969;  Santhanakrishnan and Chithra 1978; St.

John 1982; Subcommittee on Accidental Poisoning 1962). There is limited information in animals

regarding neurotoxic effects following oral exposure (Muralidhara et al. 1982) or aspiration (Nouri et

al. 1983).

Some information is available to identify neurological effects in humans from inhalation exposures.

The available data indicate that coordination and concentration difficulties, headache, intoxication,

and/or anorexia may be induced by inhalation of JP-5 vapor (Porter 1990), headaches may be induced

by diesel fuel vapor (Reidenberg et al. 1964), and sensory impairment may be induced by deodorized

kerosene vapor (Carpenter et al. 1976). In animals, a few studies were found that document

neurological effects from inhalation of fuel oils. Acute inhalation of diesel fuel no. 2 vapor produced
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behavioral changes, tremors, ataxia, reduced coordination, and increased sensitivity to heat in mice

(Kainz and White 1984). In another study (Lock et al. 1984), peak response time, based on the startle

reflex assay, was increased in rats after intermediate inhalation of diesel fuel aerosol, but at higher

exposure levels than those used in the Kainz study. These studies conflict with the negative

neurotoxicity findings of a second intermediate-duration study in which diesel fuel aerosol was tested

in rats at even higher concentrations (Dalbey et al. 1987). Thus, MRLs cannot be derived from these

data.

Neurotoxicity in humans from dermal exposures has been reported in 1 case study in which anorexia

was noted (Crisp et al. 1979); inhalation exposure may have also occurred. One animal study found

no histopathological changes in the organs of the nervous system in mice following chronic and/or

intermediate dermal exposures to marine diesel fuel and JP-5 (NTP/NIH 1986). However, increased

response to tactile stimuli and hyperactivity occurred in mice from acute dermal exposures to kerosene

(Upreti et al. 1989).

In summary, there is much information regarding the specific neurological effects that may be induced

by oral exposures to kerosene in humans, but dose-response data are lacking for both animals and

humans. More information is needed to identify the inhalation and dermal effects of fuel oils on the

nervous system in both animals and humans.

Epidemiological and Human Dosimetry Studies. There were limited data that indicated that

the use kerosene stoves in the home is not associated with increased respiratory illness (Azizi and

Henry 1991; Tominaga and Itoh 1985), although chronic dermal exposure to kerosene has been related

to Dermatosis (Jee et al. 1985). These studies are of limited use, however, since neither exposure nor

duration of exposure were reported.

A number of effects have been associated with chronic exposure to jet fuel in factory workers (Knave

et al. 1978). These effects included increases in the occurrence of neurasthenia (anxiety and/or mental

depression, fatigue, depressed mood, lack of initiative, dizziness, palpitations, thoracic oppression,

sleep disturbances) and eye irritation. Psychological tests found that attention and sensorimotor speed

were impaired in exposed workers, but there were no effects on memory functions or manual dexterity.

EEG tests suggested that there may have been instability in the thalamocortical system in the exposed

group. However, the type of jet fuels were not noted nor was there a control for exposure to other
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compounds. Inhalation exposure is likely since jet fuel vapor was detected by the study authors;

however, dermal and oral (i.e., eating with contaminated hands) exposures may also be possible.

Limited epidemiological information exists for carcinogenicity in humans following inhalation

exposure to kerosene (vapor) (Chan et al. 1979) and other fuel oils such as diesel fuel (vapor)

(Partanen et al. 1991). These studies either test kerosene exposure by use of kerosene stoves, and so

are limited for the same reasons as the respiratory studies described above, or measure fuel oil

exposures according to occupation. In the latter case, confounding from exposure to other chemicals,

such as gasoline, exists. Both studies are limited since the duration and level of fuel oil exposure were

not identified. Other available data are also reported to be inadequate to assess the carcinogenic

potential of fuel oils (IARC 1989; Lam and Du 1988).

Exposures to fuel oils generally occur in the occupational setting. For this reason, it is difficult to

control for confounding by other chemicals and to identify levels and durations of exposure to specific

fuel oils. Exposure to kerosene may occur in the general population through the use of kerosene

stoves and kerosene heaters. Aside from accidental poisonings in children, however, quantitative

exposures to kerosene are difficult to determine because exposures are likely to be by inhalation or

dermal routes. Also, there is much variability in the ventilation systems, cooking patterns, and

smoking habits in individual homes of the general population, which makes determination of the level

of exposure difficult. Finally, it is not possible to control for confounding by combustion products of

kerosene when testing the effects of kerosene by the inhalation route. Therefore, if future studies are

going to yield useful data concerning the toxicity of fuel oils in humans, rigorous controls must be

planned for any confounding factors.

Biomarkers of Exposure and Effect. No biomarkers of exposure or effect were identified for

fuel oils. Although no standard procedures exist for identifying and quantifying exposure to fuel oils

in general, procedures do exist for identifying and quantifying the hydrocarbon components of fuel

oils, specifically kerosene, in blood, urine, and stomach contents (Hara et al. 1988; Kimura et al. 1988,

1991; Yamaguchi et al. 1992). Another potential biomarker of exposure to kerosene is the distinct

odor of kerosene on the breath or clothing (Annobil 1988; Tagami and Ogino 1973; Zucker et al.

1986). Studies delineating the metabolism and excretion of fuel oils are needed to identify potential

biomarkers of exposure.
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Although not specific for kerosene, aminolevulinic acid (ALA) could potentially be used as an adjunct

or supplemental biomarker for kerosene exposure. Kerosene may affect heme metabolism by

decreasing the activities of enzymes in the heme biosynthetic pathway (hepatic δ-ALA dehydratase and

δ-ALA synthetase) (Rao and Pandya 1980). Therefore, it may be possible that this effect would

generate increased ALA in the urine of exposed individuals. Additional studies of acute, intermediate,

and chronic exposure are needed to identify biomarkers of effects for specific target organs following

exposure to fuel oils.

Absorption, Distribution, Metabolism, and Excretion. No quantitative data were located

regarding the absorption, distribution, metabolism, or excretion of fuel oils following inhalation, oral,

or dermal exposure in humans. No quantitative data were located regarding absorption and

distribution of fuel oils following inhalation or dermal exposure in animals. Very limited data indicate

that kerosene is poorly absorbed from the gastrointestinal tract and is distributed to various tissues,

although accumulation is low (Mann et al. 1977). Another study in humans suggests that respiratory

toxicity may result from both aspiration from vomiting and gastrointestinal absorption (Subcommittee

on Accidental Poisoning 1962). However, aspiration is the primary concern following ingestion.

There is also some suggestion from case studies that renal toxicity may occur in humans following

exposure to diesel fuel vapor (Barrientos et al. 1977; Reidenberg et al 1964), although this possibility

appears remote. Renal toxicity may occur following dermal contact with diesel fuel (Barrientos et al.

1977; Easely et al. 1982). No data were located regarding the metabolism or excretion of fuel oils

following any of the three routes of exposure. Acute, intermediate, and chronic data are needed to

assess the relative rates and extent of absorption, distribution, and excretion of fuel oils with respect to

all three routes of exposure, as well as with respect to time or dose. Also, data are needed to

determine whether dermal absorption of diesel fuel vapor can occur to induce renal toxicity.

Comparative Toxicokinetics. Limited data are available regarding comparative toxicokinetics.

The acute oral LD50 values in guinea pigs and rabbits for kerosene has been reported to be

16,320 mg/kg and 22,720 mg/kg, respectively (Deichmann et al. 1944). These data suggest that there

may be species differences in the oral toxicity of kerosene; however, more data would be needed to

thoroughly examine species variation in toxicokinetics. This information would be useful to identify

similar target organs and to adequately assess which animals can serve as the best models for humans,

as well as to define mechanisms of action.
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Methods for Reducing Toxic Effects. The mitigation procedures for fuel oils parallel those for

hydrocarbon poisoning. Several treatments for hydrocarbon poisoning have been considered

controversial: gastric decontamination, induced emesis versus gastric lavage, and administration of

activated charcoal, cathartics, antibiotics, and corticosteroids. Most studies indicate that antibiotics and

corticosteroids are not effective treatments for hydrocarbon-induced, and specifically kerosene-induced,

pneumonitis (Brown et al. 1974; Goldfrank et al. 1990; Haddad and Winchester 1990; HSDB 1991;

Steele et al. 1972; Wolfsdorf and Kundig 1974; Zieserl 1979). However, more research regarding the

usefulness of cathartics and activated charcoal is needed. In addition, elucidating kerosene’s

toxicokinetic properties of absorption in the gastrointestinal tract would help determine whether gastric

decontamination is worth the risk of pulmonary aspiration. Related to gastric decontamination is the

question of whether induced emesis is safer than gastric lavage. Since there are presently no known

antidotes for hydrocarbon poisoning, research in this area would be beneficial as well.

2.9.3 On-going Studies

No on-going studies evaluating the health effects or toxicokinetics of fuel oils were located.
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3.1 CHEMICAL IDENTITY

Information regarding the chemical identity of fuel oils is located in Table 3-l. Information on the

composition of selected fuel oils, specifically fuel oil no. 2 and kerosene, is presented in Table 3-2.

All of the fuel oil classes discussed in this Profile are refined from crude petroleum and may be

categorized as either a distillate fuel or a residual fuel depending on the method of production. Fuel

oils no. 1 and no. 2 are distillate fuels which consist of distilled process streams. Residual fuel oils

such as fuel oil no. 4 are residues remaining after distillation or cracking, or blends of such residues

with distillates (IARC 1989). Diesel fuels are approximately similar to fuel oils used for heating (fuel

oils no. 1, no. 2, and no. 4). All fuel oils consist of complex mixtures of aliphatic and aromatic

hydrocarbons. The aliphatic alkanes (paraffins) and cycloalkanes (naphthenes) are hydrogen saturated

and compose approximately 80-90% of the fuel oils. Aromatics (e.g., benzene) and olefins (e.g.,

styrene and indene) compose 10-20% and l%, respectively, of the fuel oils. Fuel oil no. 1 (straightrun

kerosene) is a light distillate which consists primarily of hydrocarbons in the C9—C16 range; fuel oil

no. 2 is a heavier, usually blended, distillate with hydrocarbons in the C11-C20 range. Straight-run

distillates may also be used to produce fuel oil no. 1 and diesel fuel oil no. 1. Diesel fuel no. 1 and

no. 2 are similar in chemical composition to fuel oil no. 1 and fuel oil no. 2, respectively, with the

exception of the additives. Diesel fuels predominantly contain a mixture of C10 through C19

hydrocarbons, which include approximately 64% aliphatic hydrocarbons, l-2% olefinic hydrocarbons,

and 35% aromatic hydrocarbons (Air Force 1989). Jet fuels are based primarily on straight-run

kerosene, as well as additives. All of the above fuel oils contain less than 5% polycyclic aromatic

hydrocarbons. Fuel no. 4 (marine diesel fuel) is less volatile than diesel fuel no. 2 and may contain up

to 15% residual process streams, in addition to more than 5% polycyclic aromatic hydrocarbons (IARC

1989). Residual fuel oils are generally more complex in composition and impurities than distillate fuel

oils; therefore, a specific composition cannot be determined (Air Force 1989). Sulfur content in

residual fuel oils has been reported to be from 0.18% to 4.36% by weight.
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3.2 PHYSICAL AND CHEMICAL PROPERTIES 

Information regarding the physical and chemical properties of fuel oils is located in Table 3-3. 
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4.1 PRODUCTION

Fuel oils are produced from refined crude petroleum to meet specifications for a particular use (Air

Force 1989;  IARC 1989). These specifications are designated by the American Society for Testing

and Materials (ASTM) (IARC 1989). Light fuel oils such as fuel oil no. 1 and no. 2 are manufactured

from straight distillation of crude oil, or distillation of crude oil in the presence of a catalyst, and are

chemically enhanced with antioxidants, dispersants, or corrosion inhibitors to meet the requirements

for a specific application. Fuel oil no. 1 is a product of the straight-run distillation of crude petroleum

(HSDB 1991). It consists of a mixture of petroleum hydrocarbons, chiefly of the methane series,

which typically have from 10 to 16 carbon atoms per molecule (HSDB 1991; IARC 1989). The

typical components of the end product of fuel oil no. 1 include paraffins (n-, iso-, monocycle-,

bicycle- and tricycle-), olefins, aromatics, and nitrogen and sulfur impurities (Air Force 1989; IARC

1989). Fuel oil no. 2 is manufactured from the blending of straight-run and catalytically cracked

distillates (IARC 1989). The types of each stream and the proportioned amounts in the resulting fuel

oil depend on the quality of the crude petroleum used for the distillations.

The distillate manufacturing processes of diesel fuel oils, such as fuel oil 1-D and fuel oil 2-D, are

similar to those of fuel oil no. 1 and fuel oil no. 2, respectively (IARC 1989). Fuel oil no. 1-D is

manufactured from a straight-run distillate process. Diesel fuel oil (l-D, 2-D) is defined as the

fraction of petroleum that distills after kerosene (Air Force 1989). Fuel oil no. 2-D is also made from

mixing of straight-run and catalytically cracked distillates (IARC 1989).

Residual fuel oils, such as fuel oil no. 4, are manufactured by the addition of blending stocks to

distillation residues in order to meet viscosity specifications set by ASTM (IARC 1989).   No data

were located for the manufacturing process of fuel oil UNSP.

Although most facilities that refine crude petroleum in the United States produce a fuel oil. no. 1

fraction (HSDB 1991), only producers that market fuel oil no. 1 as an end product are listed as

commercial manufacturers. These manufacturers include Claiborne Gasoline Company (Claiborne and

Union Parish, Louisiana), Continental Oil Company (Acadia Parish, Louisiana), Sun Production
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Company (Starr County, Texas), Exxon Corporation (Pledger County, Texas), Atlantic Richfield

Company (New York, New York), and Shell Oil Company (Houston, Texas) (HSDB 1991). Since

fuel oils nos. 1, 1D,  2,  2-D, and 4, and fuel oil UNSP are not required to be reported under SARA

Section 313, there are no data for these fuel oils in the 1990 Toxics Release Inventory (TRI90 1992).

Between 1970 and 1980, distillate fuel production, which includes the production of diesel fuels,

increased steadily (IARC 1989). The total production volume in 1970 was 2,460,000 barrels, which

increased to 3,167,000 barrels in 1979; however, between 1980 and 1986, distillate fuel production

volumes fluctuated. After 1986, production volume of distillate fuels steadily increased to a maximum

to 3,167,000 barrels in 1990 (API 1991).

Production of kerosene has steadily decreased since 1970 (API 1991). The supply of kerosene

produced in 1970 was 95,600,000  barrels. By 1975, production volume had dropped to 55,500,000

barrels. As of 1990, only 16,400,000 barrels of kerosene were produced. Production volumes of

residual fuel oils showed a sharp increase between 1970 and 1980 and a sharp decline between 1980

and 1985 (IARC 1989). The total production volume of residual fuels in 1970 was 262,000,000

barrels, which increased to 456,000,000 barrels in 1975, 605,000,000 barrels in 1980, decreased to

321,000,000 barrels in 1985, and increased slightly to 346,000,000 barrels in 1990 (API 1991). No

data were located for production volumes of fuel oil UNSP.

4.2 IMPORT/EXPORT

Imports of distillate fuels have varied from year to year since the 1970s. Since 1975, imports of

distillate fuel oils such as fuel oils no. 1 and no. 2 into the United States have been low compared to

the amount of distillate fuel oils produced in the United States (API 1991). Annual import volumes

fluctuated between 57,000,000 barrels in 1975 and 64,000,000 barrels in 1983 with a maximum of

91,250,000 barrels in 1977. From 1984 to 1989, imports of distillate fuels steadily increased from

99,439,000 barrels in 1984 to 111,000,000 barrels in 1989. Imports of kerosene fluctuated between

1975 and 1984 and then showed a steady increase from 1985 to 1987, attaining an annual maximum

of 6,935,000 barrels in 1987. From 1988 to 1990, imports of kerosene deceased to a low of 1,825,000

barrels in 1990 (API 1991).
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Imports of residual fuel oils such as fuel oil no. 4 generally decreased in the period between 1975 and

1989 (API 1991). In 1975, total imports of residual fuel oil were 447,000,000 barrels; however,

imports gradually decreased over this 15-year period to 230,000,000 barrels in 1985. No information

was located regarding diesel fuel imports or unspecified fuel oil imports.

Exports of fuel oil no. 1 between 1972 and 1975 ranged from 14,000 tons in 1972 to 98,000 tons in

1975 (HSDB 1991). Exports of distillate fuel oils (which include fuel oil no. 1, fuel oil no. 2,  diesel

fuel, and fuel oil no. 4) increased almost 100-fold between 1975 and 1990 (API 1991). In 1975, a

yearly average of 365,000 barrels of distillate fuel oils were exported out of the United States. By

1990, exports had increased to an average of 3,900,000 barrels. Little kerosene has been exported

from the United States since the 1970s. In 1971, approximately 365,000 barrels were exported from

the United States. The next 2 years for which export volumes were reported for kerosene were 1983

and 1984, when 365,000 barrels were exported each year. However, between 1986 and 1990, export

volumes doubled from 730,000 barrels in 1986 to 1,820,000 barrels in 1990 (API 1991).

Comprehensive export data for kerosene prior to 1986 are not available. Kerosene exportation

between 1987 and 1989 remained relatively constant with a yearly export average of approximately

547,500 barrels. However, by 1990, the annual export of kerosene was 2,190,000 barrels (API 1991),

an increase of approximately 400%. Residual fuel oil exports also increased, from a daily average of

15,000 barrels in 1975 to 215,000 barrels in 1989 (API 1990).

4.3 USE

Fuel oils have many commercial and military uses. Kerosene, a type of fuel oil no. 1, was chosen as a

jet fuel during the development of the first jet engines, largely because gasoline was in short supply

during wartime (IARC 1989). Fuels that are used currently in jet engines, such as JP-5, are very

similar to kerosene, and are also included in the fuel oil no. 1 designation. At present, fuel oil no. 1 is

used almost exclusively for domestic heating (Air Force 1989) with burners of the vaporizing type

(IARC 1989); although fuel oil no. 1 was used as a jet fuel in the first jet engines (IARC 1989). In

the petroleum industry, fuel oil no. 1 has also been used as an illuminating fuel, a motor fuel, and a

heating fuel (HSDB 1991). In the pesticide industry, fuel oil no. 1 has been used as a vehicle for

insecticides and fungicides (HSDB 1991). Fuel oil no. 1 is also used in kerosene lamps, flares, and

stoves. Fuel oil no. 2 has been primarily used as a home heating oil and as an industrial heating oil
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(IARC 1989). Fuel oil no. 2 is also reported to be used in atomizing-type burners (Air Force 1989;

IARC 1989).

Diesel fuels are most commonly used as transportation fuels for diesel engines (Air Force 1989;  IARC

1989). Fuel oil no. 1-D is used in engines that require frequent load and speed changes (Air Force

1989). Fuel oil no. 2-D has been used for engines that are in industrial or heavy mobile service (Air

Force 1989). Diesel fuels have been used in stationary gas turbines to generate electric power (IARC

1989).

In electric utilities, residual fuel oils, such as no. 4, have been used to process steam for electric plants

(IARC 1989). Fuel oil no. 4 has been used in commercial and industrial burner installations that are

not equipped with preheating facilities (Air Force 1989). In other industries, such as the maritime

industry, plants and factories, and the petroleum industry, residual fuel oils have been used for space

and water heating, pipeline pumping, and gas compression, as well as in road oils, and in the

manufacture.

U.S. consumption of distillate fuels used for heating decreased gradually between 1979 and 1983

(IARC 1989). The annual domestic demand for distillate fuel oils was approximately 1,214,355,000

barrels in 1979, decreasing to 981,850,000 barrels in 1983. The U.S. demand for distillate fuels

subsequently rose from 1984 to 1989, reaching an annual maximum of 1,248,700,000 barrels in 1989

(API 1991). The annual domestic demand for residual fuel oils also decreased between 1979

(1,034,800,000 barrels) and 1985 (475,600,000 barrels). After 1985, the demand varied from an

annual average of 561,000,000 barrels in 1986 to 486,180,000 barrels in 1990 (API 1991). Finally,

the average annual domestic demand for kerosene decreased from 68,990,000 barrels in 1979 to

16,790,000 barrels in 1990 (API 1991).

4.4 DISPOSAL

Incineration is one method of disposal proposed for fuel oils no. 1 and no. 2 (OHM/TADS 1985).

Other methods may be used to disposal of oil spills, including absorption (straw, polyurethane foam,

activated carbon, and peat have been used as absorbents), gelling agents, combustion promoters,

dispersants, and mechanical systems (OHM/TADS 1985). Biodegradation has also been suggested as a

means of disposal for spills onto soil (OHM/TADS 1985). Hydrocarbon-degrading bacteria have been
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shown to degrade petroleum products into smaller units and eventually into nonseparable particles

(Butt et al. 1988). Soil contaminated with fuel oil no. 1 was found to have a growth response of

10 E+6 colony forming units per mL in 7 out of 21 types of bacteria isolated for sample study (Butt et al.

1988). For more information on biodegradation, refer to Chapter 5.
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5.1 OVERVIEW

Fuel oils are complex mixtures of aliphatic and aromatic hydrocarbons whose exposure potentials are

based on the environmental fate of the individual components of the mixtures, particularly n-alkanes,

branched alkanes, benzene and alkylbenzenes, naphthalenes, and PAHs.

Fuel oils may enter the water or soil environment as a result of spills during use or transportation or

from leaking storage facilities or pipelines. The more volatile components of fuel oils (low molecular

weight alkanes) will evaporate from the soil or water and enter the atmosphere where they will be

degraded. The higher molecular weight aliphatic components (>C20) of fuel oils have very low water

solubility and will not volatilize from soils or surface waters. Consequently, these heavier compounds

will remain on the soil or in the water column where they may be adsorbed to particulate organic

matter in water or soil and, in water, will settle to the sediment. They will eventually be biodegraded

by microorganisms in the soils and sediments. The rate and extent of biodegradation are dependent on

the ambient temperature, the presence of a sufficient number of microorganisms capable of

metabolizing these hydrocarbons, the amount of aromatic species in a given oil, and the concentration

of fuel oil. The aromatic components (benzene and alkylbenzenes) of fuel oils tend to partition into

the polar phase of the environment and migrate through the soil to the groundwater. However, these

components of fuel oil are also the most biodegradable.

The National Occupational Exposure Survey conducted by NIOSH between 1980 and 1983 estimated

that 96,345 employees were exposed to fuel oil no. 2, 1,526 workers were exposed to fuel oil no. 4,

and 1,076,518 employees (including 96,255 females) were exposed to kerosene in the workplace.

Worker exposure was most likely in industries associated with machinery and special trade contractors.

General population exposure is potentially the greatest for persons living near an area where fuel oils

have been dumped and have migrated into the groundwater or when fuel oil vapor has penetrated the

soil and may enter basements of buildings.

Fuel oil no. 1 has been identified in 23 of the 1,397 hazardous waste sites that have been proposed for

inclusion on the EPA National Priorities List (NPL), and fuel oil no. 2 has been identified in at least 4
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of the NPL sites (HAZDAT 1991). The frequency of these sites within the United States can be seen

in Figures 5-l and 5-2.

5.2 RELEASES TO THE ENVIRONMENT

Releases of fuel oils are not required to be reported under SARA Section 313;  consequently, there are

no data for these compounds in the 1990 Toxics Release Inventory (TR190 1992).

5.2.1 Air

Fuel oils may be released to air as fugitive emissions from storage facilities or as a result of their use

as fuel for combustion engines; in stoves, lamps, and furnaces; and as solvents. Atmospheric

emissions of a fuel oil may be determined primarily by detection of its volatile hydrocarbon

components. Atmospheric releases of fuel oil no. 1 (kerosene) may be expected as a result of its use

as a solvent for insecticides and fungicides and by evaporation from open containers when used as a

fuel. Indoors, unvented kerosene heaters are a source of sulfur dioxide, nitrogen dioxide, carbon

monoxide, respirable suspended particulate matter, and acids in the vapor and particulate phase

(Koutrakis et al. 1992; WHO 1991). In mobile homes in particular, use of kerosene heaters resulted in

an increase in CO and airborne unburned kerosene fuel, an increase in mutagenicity of particle-phase

organics, and little mutagenicity in the semivolatile organics (Mumford et al. 1991). Emission rates of

carbon monoxide from unvented kerosene heaters in mobile homes were measured to be 10 to

272 µg/kJ for convective heaters, and 57 to 264 µg/kJ for radiant heaters; concentrations of CO

averaged 7.4 ppm with a peak of 11.5 ppm. Hydrocarbon emissions detected at fixed-roof fuel oil and

low vapor pressure distillate storage tanks were only 8% of the emissions estimated for these facilities

using the equations developed by the American Petroleum Institute (Wilson et al. 1978). The

relationships have been quantified between the components in diesel fuel blends, the variables of the

emissions when the fuel is burned, and their biological effects (Westerholm and Egerback 1991).

Combustion from kerosene heaters contributes to the radon progeny particle size distribution in

particles in the size range of 0.02-0.08 µm (Tu et al. 1991). Fuel oil combustion was determined to

be a negligible contributor to atmospheric aerosol particles in the Toyama Prefecture of Japan

(Toriyama et al. 1991). For residential oil furnaces, the mutagenicity of emissions in revertants per

megajoule increases as particulate emissions increase, and emissions are up to 3 orders of magnitude
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less mutagenic than wood smoke from conventional, uncontrolled woodstoves on a per unit of fuel

energy value (EPA 1992).

Fuel oils are released to the atmosphere as vapor when used as smoke screens or fogs by the U.S.

Army; concentrations may range from 13 to 2,000 mg/m3. Deposition of these particles to soil and

water may result in fallout concentrations of 6-60 g/m2 (Army 1986).

5.2.2 Water

Fuel oils may be released to surface waters as a result of fuel spills from transport vessels or from

facilities located adjacent to surface waters, in runoff from industrial facilities where they are used as

fuels or solvents, or from the intentional disposal of excess fuel oils down drains. Kerosene may enter

surface and groundwater as a result of leaking aboveground and underground storage tanks, including

those found at disposal facilities for spent nuclear fuel reprocessing operations (DOE 1989c). In 1988,

a rupture of an aboveground storage tank outside of Pittsburgh, Pennsylvania, released more than

l,000,000 gallons of fuel oil no. 2 into the Monongahela and Ohio Rivers and disrupted local drinking

water supplies (MacKerron and Kiesche 1988). Fuel oils may enter the marine ecosystem as a result

of accidental spills from transport vessels, such as occurred when an oil barge released more than

650,000 liters of fuel oil no. 2 into Buzzards Bay, Massachusetts, in 1969 (EPA 1981); a second spill

occurred in this area in 1974 (Bums and Teal 1979; Teal et al. 1978). Since 1915, ships and barges

containing fuel or oil have sunk in Puget Sound or adjacent waters. Nine of these vessels have been

classified as posing a potential hazard to human health or the aquatic environment because they have

not been salvaged and contain large known reservoirs of fuel or oil, some which may have been

discharged after sinking (EPA 1991d). Between 1986 and 1991, 4.6 million gallons of fuel oil no. 2

and 12.6 million gallons of fuel oil no. 6 were reported released into Newark Bay, New Jersey

(Gunster et al 1993a). A significant source of petroleum to the bay appears to be municipal and

industrial wastewater treatment facilities; over 600,000 gallons of petroleum products have been

discharged since 1982 (Gunster et al 1993b). Approximately 170,000 gallons of diesel fuel arctic

entered the marine ecosystem surrounding Arthur Harbor on the Antarctic Peninsula in 1989 when an

Argentine resupply/tourist ship sank (Karl 1992), and in 1988, 230,000 gallons of Bunker C fuel oil

was released from a barge off the Washington coast (Strand et al 1992).
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Fuel oils that are accidentally released to inland waters are reported to the Emergency Response 

Notification System (ERNS). Total spill volumes of fuel oils released in 1991 were as follows (ERNS 

1992): 

Fuel oil No. of notifications Gallons released 

No. 1 8 43,190 

NO. 1-D                                20 3,292 

No. 2 916 14,558,313 

NO. 2-D 28 2,769 

No. 4 35 12,239 

Storm runoff from an industrial site in Rhode Island used by oil distributors, scrap metal dealers, and 

metal finishers contained a hydrocarbon product resembling fuel oil no. 2. This product comprised 4% 

of the total petroleum hydrocarbons detected in the runoff, most of which were associated with 

crankcase oil (Latimer et al. 1990). Two freighters collided off the coast of South Africa in 1992; the 

freighter transporting 160 tons of marine fuel oil and 53 tons o        f gas oil sank (Molden 1992). 

5.2.3 Soil 

Fuel oils may be released to soil as a result of accidental spills (Strayer et al. 1983; Rosenblatt and 

Montemagno 1992) and leaking from underground storage tanks or pipelines. Hydrocarbon 

contamination (due to diesel fuel spillage and leakage related to ship and boating activities) has been 

measured in sediment samples in Arthur Harbor on the Antarctic Peninsula (Kennicutt et al. 1992a),

Also, approximately 200,000 gallons of liquid hydrocarbons were released into the underlying soil at a 

fuel-storage terminal in northern Virginia. The soil vapor above the resultant hydrocarbon plume and 

the groundwater below were analyzed for total and individual petroleum hydrocarbons (Mushrush et al. 

1994). 
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5.3 ENVIRONMENTAL FATE

5.3.1 Transport and Partitioning

The transport and dispersion of fuel oils are dependent on the water solubility and volatility of the

aliphatic and aromatic hydrocarbon fractions. Lower molecular weight hydrocarbons such as n-alkanes

may volatilize relatively quickly from both water and soil, while larger aliphatics (greater than C9

chain length) may be sorbed to organic particles in water or soil. Aromatic hydrocarbons will be

dissolved in the aqueous phase in both soil and water and may undergo some volatilization.

Aerosol oil particles of SGF-1, a distillate oil chemically similar to fuel oil no. 2, used by the military

to generate oil fogs (particle diameter of 0.5-1.2 µm) may remain aloft for approximately 1 hour, may

be transported 1-10 km (average of 5 km) downwind during this time, and, with the exception of

evaporative losses, will be deposited to soil or surface waters (Army 1986; Liss-Suter et al. 1978).

The solubility of fuel oil no. 2, particularly the alkane and isoprenoid fractions, in seawater is

increased by the presence of fulvic acid, although the solubilities of phenanthrene or anthracene, both

polycyclic aromatic hydrocarbons, are unaffected by the presence of humic materials (Boehm and

Quinn 1973). Unfiltered Narragansett Bay water was able to dissolve 1,560 µg/L of fuel oil no. 2,

although removal of dissolved organic material from the water reduced the solubility by 33-60%

(Boehm and Quinn 1974). The water-dissolved fraction of JP-5 fuel was stable for 24 days (Edgerton

et al. 1987).

The microlayer at the air-water interface may be composed of different fuel oil hydrocarbons than the

subsurface waters. When fuel oil no. 2 was added below the surface of a marine ecosystem, the

microlayer was enriched for both saturated and aromatic hydrocarbons compared with the subsurface

water, with a significantly greater proportion of total saturates compared with aromatics. The

hydrocarbons in the microlayer were predominantly higher molecular weight hydrocarbons, greater

than C18 for saturates and phenanthrene (F2) for aromatics. This indicates that there is transport of all

the hydrocarbons from the water column to the microlayer and weathering of the hydrocarbons by

evaporation once in the microlayer (Gearing and Gearing 1982b). Weathering of fuel oil spills on

water surfaces is dependent on the vapor pressures of the hydrocarbon components and can be

correlated with the evaporation rates of the alkanes present in the fuel oil mixture. Components with



FUEL OILS 124

5. POTENTIAL FOR HUMAN EXPOSURE

vapor pressures higher than n-octane rapidly evaporate from the surface of the fuel oil spill while those

with vapor pressures lower than n-octadecane persist and may result in a more viscous residue,

eventually retarding the evaporation of other components (Regnier and Scott 1975.

Addition of fuel oil no. 2 to a laboratory marine ecosystem showed that the insoluble, saturated

hydrocarbons in the oil were slowly transported to the sediment on suspended particulate material.

The particulate material contained 40-50% of the total amount of aliphatics added to the system and

only 3-21% of the aromatic fraction (Oviatt et al. 1982). This indicates that most aromatic

hydrocarbons are dissolved in the water (Coleman et al. 1984), whereas the aliphatic hydrocarbons are

not (Gearing et al, 1980; Oviatt et al. 1982). In a similar experiment, when fuel oil no. 2 was added

continuously to a marine ecosystem for 24 weeks, oil concentrations in the sediment remained low

until 135 days after the additions began, but then increased dramatically to levels that were 9% of the

total fuel oil added (108 g/tank) and 12% of the total fuel oil saturated hydrocarbons. The fuel oil

concentrations in the sediment began to decrease quite rapidly after the maximum levels were reached.

The highest sediment concentrations of saturated hydrocarbons (106-527 µg/g) were found in the

surface flocculent layer, with concentrations decreasing with sediment depth from 22 µg/g to not

detectable at 2-3 cm below the sediment surface. Fuel oil was being transported to the sediments

adsorbed to suspended material in the water column with smaller particles (<45 µm) containing

2.2 times more fuel oil than larger particles (>45 µm) (Wade and Quinn 1980). Although

biodegradation may remove many of the soluble, aromatic hydrocarbons, a residue of 10-20% of the

total added oil, composed primarily of branched alkanes, cycloalkanes, and aromatics, may remain in

the top 2 cm of the sediment for over a year (Gearing et al. 1980; Oviatt et al. 1982). A spill of fuel

oil no. 2 to waters off Massachusetts showed that the oil was detected at distant monitoring locations

46 months after the spill, although the concentration in the sediments remained the greatest in the

vicinity of the original spill. Oil continued to move in pulses from more polluted areas to less

polluted areas for several years after the spill, with much of the oil being exhumed from sediments in

the shallower waters as a result of storm action (EPA 1981). Movement of the oil to adjacent salt

marshes indicated that the oil was sorbed to the anoxic sediments where it persisted (Bums and Teal

1979).

The partitioning of fuel oil no. 2 and kerosene into drinking water after 17 hours of incubation resulted

in only 1.0% of the fuel oil and 0.7% of the kerosene being dissolved in the water. Further analysis

of these fuels indicated that although each compound contains approximately 50% aliphatic
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1989). Desorption of a simulated kerosene applied to three types of soil, each with a moisture content

at 70% of field capacity, was found to be complete after 30 days of exposure to the atmosphere with

the slowest desorption from the soil having the greatest organic content (Yaron et al. 1989). Kerosene

loss from a dune sand, a loamy sand, and a silty loam soil after 50 days showed that volatilization of

all kerosene components was greatest from the dune sand and loamy sand soils. The larger pore size

of these types of soil compared with the silty loam soil was thought to be the reason for the increased

volatilization (Galin et al. 1990a). Movement of kerosene through three grades of sand was affected

mainly by volatilization of the C9—C13 components with a subsequent increase in the viscosity of the

remaining kerosene residue and a decrease in the infiltration rate through the inert porous media (Galin

et al. 1990b).

The movement of kerosene through various types of soil over a 12 hour period was studied. Upward,

downward, and lateral movement was greatest in soil of the mica/kaolinite type (11% clay

content) 40, 102, and 45 cm, respectively. Movement through soils that were primarily kaolinite

(clay content of 26-52%), regardless of the direction, ranged between 20 and 33 cm (EPA 1986b).

Application of herbicides such as S-ethyl dibutylthiocarbamate to a field using kerosene or fuel oil no.

2 as solvents (up to a volume of 40 gallons per acre) increased the inactivation of the herbicide on

soil, whereas acetone, benzene, or xylene did not. The accelerated inactivation possibly resulted from

a change in surface tension that facilitated the volatilization of the herbicide from the soil (Danielson

and Gentner 1970).

Studies on the permeability of compacted micaceous soil used as a potential liner for landfills found

that the permeability of the soil to kerosene and diesel fuel was 3-4 orders of magnitude greater for

kerosene and 1-1..5 orders greater for diesel fuel compared with water (EPA 1984).

Aquatic organisms are known to bioconcentrate hydrocarbons. Addition of fuel oil no. 2 (containing

38% aromatics) to a commercial shrimp pond gave an initial concentration of approximately 0.03 ppm

for total naphthalenes. The concentration of total naphthalenes (toxic components of fuel oil) peaked

at approximately 0.3 ppm in the water after 48 hours and slowly decreased to background levels after

38 days. Sediment concentrations of the total naphthalenes rose from 0 ppm at 6 hours after the

application of the fuel oil to 2 ppm at day 1, peaked at 14 days (9 ppm), and slowly declined to

1.5 ppm at 296 days. The concentrations of total naphthalenes in shrimp, clams, and oysters peaked at

24, 48, and 72 hours, respectively, with maximum concentrations in each organism exceeding the
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naphthalene concentrations in the ambient water. When the contaminated organisms were placed in

clean water after 38 days of exposure in the shrimp pond, depuration (to background levels) was

complete after 10 days for shrimp and after 47 days for oysters, indicating that the concentrations in

marine organisms are more closely correlated with water concentrations than with sediment

concentrations of aromatic hydrocarbons (Cox et al. 1975). Lobsters exposed to a pulse of fuel oil no.

2, which simulated a small spill, were found to bioconcentrate PAHs (components of the fuel oil) in

the hepatopancreas and muscle tissue within 34 days after exposure. PAH levels continued to be

elevated at days 10 and 11; however, depuration to control levels occurred by day 20-21 (Williams et

al. 1989, 1991).

Mussels (Mytilis edulis) exposed to a small spill (approximately 6,000 liters) of fuel oil no. 2 were

followed for 86 days post-spill to assess the uptake and retention of the fuel oil components. Alkanes,

cycloalkanes, and aromatic concentrations increased significantly in the mussel tissue the 1st day;

however, by day 5 post-spill, the n-alkanes were barely detectable, and by day 21, the concentration of

the unresolved complex mixture of alkanes-cycloalkanes was 30% of the day 1 concentrations.

Concentrations of lower molecular weight aromatics (e.g., naphthalenes) decreased before the higher

molecular weight aromatics (e.g., phenanthrenes). The biological half-lives of some fuel oil no. 2

components in mussels were as follows: n-C16--0.2 days; n-C23--0.8 days; C-2 naphthalene--0.9 days;

C-3 naphthalene--1.5 days; phenanthrene--2.1 days; and unresolved complex mixture--2.8-3.9 days

(Farrington et al. 1982a). Similar results were found in sea scallops (Aequipecten irrudians), which

showed a gradual depletion of straight chain and branched chain hydrocarbons after exposure to fuel

oil no. 2. However, the more toxic aromatic hydrocarbons were retained in scallop tissue for several

months after exposure (Blumer et al. 1970). Sea mullet exposed to 5 ppm kerosene in sea water had a

kerosene-like taint after 24 hours of exposure. In another study, oysters exposed to fuel oil no. 2 at

400 ppm for 8 hours accumulated 312 ppm of PAHs and 8.7-21.8 ppm of naphthalenes in their

tissues; however, over 90% of the n-paraffins were released within 24 hours when the oysters were

returned to oil-free water. Depuration of the aromatic hydrocarbons was much slower. When shrimp,

clams, and fish were exposed to the water-soluble fraction of fuel oil no. 2, shrimp rapidly

accumulated total naphthalenes for an hour then released them, clams accumulated the naphthalenes at

a slower but constant rate for 24 hours, and the fish accumulated the naphthalenes very rapidly during

2 hours of exposure; all three species rapidly released the accumulated naphthalenes when placed in

oil-free water with low or undetectable levels at 14 days (Anderson and Neff 1977).
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5.3.2 Transformation and Degradation

The fate of four petroleum mixtures has been evaluated using three approaches-evaluating the fate of

(1) indicator chemicals, (2) the mixture of the whole with a surrogate, and (3) the hydrocarbon mixture

as a whole. The four mixtures were crude oil, JP-5, mineral spirits, and diesel. The choice of

approach requires the consideration of availability and quality of data on the mixture, the mobility and

toxicity of the mixture, and the availability of site data (Custance et al. 1992).

5.3.2.1 Air

No studies on the transformation or degradation of fuel oils in the atmosphere were located. However,

volatile components of fuel oils such as benzene, toluene, xylenes, and PAHs may be expected to enter

the atmosphere where they are subjected to degradation processes. Further information on the

atmospheric degradation of selected volatile hydrocarbons are presented in the ATSDR toxicological

profiles for these chemicals (ATSDR 1989, 1990a, 1991a, 1991b).

5.3.2.2 Water

The photooxidation of fuel oil no. 2 in water is quite rapid in sunlight. The rate is four times that of

coal liquids, producing two photooxidant pools with reaction rate constants of 0.58/minute and

0.037/minute. The faster reacting photooxidant was tentatively identified as hydrogen peroxide and

the slower reacting pool as a mixture of indane and tetralin hydroperoxides (Herbes and Whitley

1983). Two mechanisms appear to result in the formation of the peroxides: (1) reaction of free

radicals with triplet oxygen to produce peroxy radicals and hydroperoxides, which in turn continue the

chain reaction; and (2) formation of hydroperoxides by direct addition of excited singlet oxygen to

reactive acceptors in the oil such as olefins. These reactions reached a maximum after approximately

90 hours of irradiation. Other photodegradation products of fuel oil exposed to ultraviolet radiation

include phenols (linear increase in concentration during 165 hours of irradiation), naphthols, and

carboxylic acids (Larson et al. 1977, 1979).

Biodegradation of fuel oils is dependent on the degradation of the various hydrocarbon fractions

present in the oils. The relative order for biodegradation of the hydrocarbon fractions from the mostreadily

degraded to the least is as follows: n-alkanes, iso-alkanes, olefins, low molecular weight
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aromatics (at low, non-toxic concentrations), PAHs, and cycloalkanes (Bartha and Atlas 1977;

Edgerton et al. 1987).

Water and sediment samples taken from Muddy Creek in the Rhode River of Chesapeake Bay were

inoculated with 0.1% (volume/volume) of fuel oil no. 2 and incubated for 28 days. Growth of aerobic

bacteria and fungi was enhanced by the addition of the fuel oil, although growth of yeast was inhibited

(Walker and Colwell 1975). A mixed culture of estuarine bacteria was observed to degrade fuel oil

no. 2 by 55% in 28 days with the primary microorganisms being Bacillus and Pseudomonas.

Degradation of aromatic components was significantly greater than the n-alkanes (Walker et al. 1976).

Microorganisms readily able to degrade hydrocarbons were found in the Neuse River estuary in North

Carolina. Although the estuary was relatively free of hydrocarbon contamination, 63% of the bacteria

and 71% of the fungi isolated from surface water samples were able to utilize kerosene as the sole

carbon source (Buckley et al. 1976). Weathered kerosene (volatile components were allowed to escape

prior to testing) was spiked with four marker hydrocarbons, and the degradation of the markers was

monitored. All four markers were degraded by a water-sediment mixture from an “oiled arm” of an

Ohio lake; more rapid degradation was associated with mixtures taken from relatively polluted areas of

the lake (Cooney et al. 1985), suggesting that biodegradation is enhanced by the presence of

acclimated microorganisms. Marine bacteria capable of using fuel oil nos. 1,  2,  and 4 were isolated

from Narragansett Bay, Rhode Island. Most of the bacteria were found to utilize the aliphatic

components of the fuel oils, primarily hexadecane, while only a few of the bacteria were able to

degrade the aromatic components. The bacteria were able to degrade the hexadecane at 0°C but

degradation was significantly improved when the incubation temperature was increased to 8°C and

16°C; similar but not such dramatic effects were seen in the degradation of naphthalene with increased

temperature (Cundell and Traxler 1976).

The degradation of hydrocarbons fractions of fuel oil no. 2 was studied using a marine microcosm

under different temperature, light, and biological activity regimes. Initial fuel oil concentrations

ranging from 151 to 189 µg/L were found to decrease exponentially under all regimes, with

temperature having the greatest effect on the half-lives of the component hydrocarbons. In cold water

(0-2 °C), the half-life for total hydrocarbons was greater than 10 days, while in warmer water

(17-21°C) the half-life decreased to approximately 30 hours. In cold water, saturated hydrocarbons

were removed more rapidly than aromatic hydrocarbons, but in warmer water the half-lives of the
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fractions were similar. For the saturated hydrocarbons, the half-life increased with increasing

molecular weight or with branched or cyclic moieties, i.e., small n-alkanes (C-12) had the shortest

half-life in both warm and cold water. Poisoning the microcosm to eliminate biodegradation had no

effect on the degradation of saturated hydrocarbons other than n-alkanes, but decreased the rate of

aromatic degradation by half, indicating that biodegradation is a significant removal process for both

n-alkanes and aromatics. Saturated hydrocarbons other than n-alkanes are most likely to be removed

by adsorption to particulate material in the water followed by sedimentation or the formation of a

micelle, which may rise to the surface of the water and evaporate. In cold water, aromatics are most

likely to be removed by volatilization, whereas in warmer water, biodegradation is the more important

removal process. Photooxidation did not appear to be a significant removal process for either

hydrocarbon fraction (Gearing and Gearing 1982a).

Fuel oil no. 2 (average water column concentration 182 µg/L) was added to the Marine Ecosystems

Research Laboratory (MERL) system for 5.5 months with a 2-month recovery period. Hydrocarbon

concentrations were then measured in the sediment and benthic organisms (Glyceru americana, a

carnivorous polychaete, and Crepidulu sp., the common slipper shell). The alkane-cycloalkane and

aromatic fractions in the benthic organisms were suggestive of partially degraded fuel oil no. 2, and

for the aromatic hydrocarbons, were at least an order of magnitude greater than in the control tank.

Phenanthrenes, although present at lower concentrations in fuel oil no. 2 than naphthalenes, were

present at greater concentrations in the benthic organisms, suggesting that there is a bioaccumulation

potential for these compounds. Organism-specific differences show that organisms in close contact

with the sediment had relatively higher concentrations of lower molecular weight naphthalenes, as

these compounds are more readily retained in the sediment than the water column. Similarly,

organisms that live in the water column contained fewer naphthalenes. These results indicate that fuel

oil no. 2 degradation products are taken up by benthic organisms, that they may be selectively retained

in both sediments and aquatic organisms, and may thus enter the food chain (Farrington et al. 1982b).

After 3 months of exposure in a marine intertidal zone, the concentration of fuel oil no. 2 in the mean

lower low water (MLLW) area and 2 feet above the MLLW area had decreased by 30% and 53%,

respectively (NOAA 1982). Straight-chain alkanes degrade more readily than branched alkanes with a

ratio of 1.67 (n-C17/pristine), although this ratio will decrease as biodegradation of the n-alkanes

progresses (Blumer et al. 1970; EPA 1981). Following spills of fuel oil no. 2 into Buzzards Bay,

Massachusetts, the concentrations of aromatic hydrocarbons decreased by a factor of 5 within

6 months of the spills with lighter molecular weight compounds decreasing at a faster rate than the
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heavier molecular weight compounds. Aromatics such as naphthalenes and phenanthrenes were still

present in the marsh sediments at concentrations above background, 6.5 years after the spills (Teal et

al. 1978). The oil was sorbed to the anoxic marsh sediments, although biodegradation and dissipation

resulted in the decrease of n- and branched alkanes from the surface sediment within 4 years. Even

8 years after the spill, some sediments contained over 1,200  ppm petroleum hydrocarbons, with

naphthalene and heavier aromatics expected to persist for many more years (Burns and Teal 1979).

Twenty years after the spill, some sediments contained trace amounts of biodegraded fuel oil (Teal et

al. 1992).

Petroleum residues were measured in the northern Arabian Sea to assess the contamination following

the oil spills resulting from the Gulf War in 1991. Little change in variables related to oil pollution

took place in any compartment of the marine environment-water, plankton, fish, and sediments

(Sengupta et al. 1993).

Groundwater contamination by fuel oil no. 2 and gasoline was detected in wells of a residential area of

Rhode Island. While the total hydrocarbon content of the groundwater samples taken at one particular

well decreased from 2,350 to 1,580 µg/L over a 19-month period and the percentage of hydrocarbons

associated with gasoline also decreased from 58% to 22%, the percentage of hydrocarbons attributable

to fuel oil no. 2 increased from 42% to 78% These data indicate that the gasoline hydrocarbons are

more readily removed compared with the higher molecular weight hydrocarbons from fuel oils (Zheng

and Quinn 1988).

5.3.2.3 Soil

Microbial degradation in soils is greatest for the aromatic fractions of fuel oils, while the

biodegradation of the aliphatic hydrocarbons decreases with increasing carbon chain length.

Evaporation is the primary fate process for these aliphatics (Air Force 1989).

A single application of approximately 21, 14, or 13 g/kg soil of home heating oil no. 2 to outdoor

plots in Pennsylvania (silt loam), Oklahoma (sandy loam), and Texas (clay loam) was degraded by

86%, 90%, and 86%, respectively, after 1 year, with degradation being independent of temperature

differences. Very little oil was present in runoff and leachate water from the sites; however, analysis

of ether-extractable compounds in the leachate at the plots suggested that incomplete degradation of
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some individual components in the oils was taking place. Of the six oils tested, no. 2 home heating

oil resulted in the largest increase in the number of hydrocarbon-utilizing microorganisms in the plots,

and it was the most lethal to soil nematodes (Raymond et al. 1975, 1976). The degradation of

kerosene in soil was further studied when a pipeline ruptured and showered a wheat field with

kerosene. After 6 months, the kerosene concentration began to decrease in the upper 30 cm of soil

(with C13-Cl7 n-alkanes disappearing more rapidly compared with C10-C12  n-alkanes) and at

21 months was reduced to trace amounts; however, kerosene was still detected at soil depths of

30-45 +cm. The authors interpreted this as indicating reduced aerobic biodegradation at this depth,

especially since the compounds disappeared in the order of their preferential microbial utilization.

Seed germination studies using the contaminated soil 1 year after the spill (0.34% kerosene

concentrations) showed that kerosene delayed seed germination but that the percent germination was

unaffected (Dibble and Bartha 1979). Landfarming techniques (tillage of soil using agricultural

implements), developed in the Netherlands to enhance biodegradation of contaminants, demonstrated

that after one growing season, kerosene (initial concentration of l,000-10,000 mg/kg dry matter) was

significantly degraded (final concentration of 500 mg/kg dry matter) in 40 cm of soil (Soczo and Staps

1988).

Application of diesel oil or fuel oil (type unspecified) to soil at 1% or 10% showed that, based on

carbon dioxide evolution, degradation did occur. After 12 weeks, the applications of 1% diesel oil and

fuel oil were degraded by 45% and 23%, respectively, whereas the 10% applications showed that only

10% of each oil was degraded in this time. Carbon dioxide evolution did not increase with increasing

time, indicating that microbial populations were not increasing (Flowers et al. 1984). Addition of

nitrogen (as urea) to the soil increases the biodegradation potential of diesel oil and kerosene;

however, both oils were found to inhibit the urease activity of soil microbes by up to 47% and 35%,

respectively, suggesting that sources of nitrogen other than urea should be used (Frankenberger 1988).

The bacterial species in the genera Achromobacter, Pseudomonas, and Alcaligenes, isolated from the

soil of an active oil field in Louisiana, were able to aerobically degrade kerosene as determined by

oxygen uptake (Cooper and Hedrick 1976). Soil Pseudomonas were able to degrade kerosene to a

greater extent than were Enterobacter with stationary phases occurring after 10 days and 8 days,

respectively (Butt et al. 1988). Seven years after the dumping of sludge containing kerosene at two

sites, vegetation at each site showed little recovery. Although the bacterial biomass had declined at
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both sites, microbial activity, as determined by carbon dioxide evolution, was greater at the site that

had received more precipitation and had the more aerated soil (Jones 1977).

Oxidation of kerosene (fuel oil no. 1) and diesel fuel (fuel oil no. 2) by soil microbes, as determined

by dehydrogenase activity, increased with increasing loading rates for both fuel oils (up to 60% w/w

oil/dry soil) for up to 7 days of incubation but decreased thereafter. Dehydrogenase activity in soil

treated with diesel fuel was almost twice that of soils treated with kerosene (56 and 32 pg formazan/g

soil/24 hours, respectively) (Frankenberger and Johanson 1982).

Biodegradation of fuel oils in sediments is inhibited under anaerobic conditions (Bartha and Atlas

1977). Under anaerobic conditions, some soil microorganisms are capable of nitrate reduction using

fuel oils as the carbon source, although nitrite may be an unwanted by-product. However, the addition

of a small amount of oxygen (0.2 volume percent oxygen) to the medium can accelerate the

degradation of the oil without the concomitant production of nitrite (Riss and Schweisfurth 1987).

Thirteen months after the spill in 1988 of 230,000 gallons of Bunker C fuel oil off the Washington

coast, only trace levels of oil were found in surface sediments (Strand et al. 1992).

5.4 LEVELS MONITORED OR ESTIMATED IN THE ENVIRONMENT

5.4.1 Air

No data were located on concentrations of fuel oils in workplace or ambient air.

5.4.2 Water

Analysis of drinking water from Cincinnati, Ohio, in February of 1980, showed the presence of

numerous hydrocarbons associated with petroleum products at concentrations ranging from 5 ng/L, for

naphthalene to 843 ng/L for benzene (Coleman et al. 1984).

Kerosene was detected at monitoring wells (concentrations were not reported) located at the perimeter

of a spent nuclear fuel processing plant in western New York State in 1983. The kerosene had been

used as an extractant during plant operations from 1966 to 1972 (DOE 1989c).
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Groundwater samples taken from monitoring wells at gasoline stations undergoing remediation in

Florida contained both kerosene and fuel oil at unspecified concentrations (Thomas and Delfino

1991a).

Fuel oil no. 2 was detected along with gasoline in groundwater wells in Tiverton, Rhode Island. Over

a 19-month period, total hydrocarbon concentrations in the water from one well decreased from 2,350

to 1,580 µg/L during which time the proportion of hydrocarbons associated with fuel oil increased

from 42% (987 µg/L) to 78% (1,232 µg/L), probably as a result of the more rapid degradation of the

gasoline (Zheng and Quinn 1988).

Kerosene was detected in a whole water sample from monitoring wells for municipal intakes in

California in the µg/L range (STORET 1992).

Background concentrations of total hydrocarbons in Narragansett Bay, Rhode Island, ranged from 0.7

to 4.0 µg/L (Gearing and Gearing 1982a).

5.4.3 Soil

No data were located on levels of fuel oils detected in soils.

5.4.4 Other Environmental Media

Shellfish taken from unpolluted waters have been found to contain between 1 and 12 µg/g wet weight

of total hydrocarbons while fish have been found to contain between 4 and 14  µg/g total hydrocarbons

(steam distillables) (Connell and Miller 1980). Following a spill of fuel oil no. 2 in the Cape Cod

Canal in Massachusetts, edible mussels (Mytilus edulis) contained average concentrations of various

hydrocarbons up to 4.69 µg/g dry weight on day 1 of the spill; background hydrocarbon levels in the

controls did not exceed 0.29 µg/g (Farrington et al. 1982a). Limpets in close proximity to onshore

accumulations of hydrocarbon contaminants caused by diesel fuel spillage and leakage related to ship

and boating activities in Arthur Harbor on the Antarctic Peninsula have incorporated PAHs into their

tissues (Kennicutt et al. 1992b). However, 2 years after the release of 150,000 gallons of diesel fuel in

the harbor, little spill-related contamination could be detected in intertidal limpets (Kennicutt and

Sweet 1992).
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No data were located that discussed concentrations of fuel oils in other environmental media such as

food or terrestrial plants and animals.

5.5 GENERAL POPULATION AND OCCUPATIONAL EXPOSURE

The National Occupational Exposure Survey, conducted by NIOSH between 1980 and 1983, estimated

that 96,345 employees (including 590 females) were exposed to fuel oil no. 2,  1,526 employees were

exposed to fuel oil no. 4 and 1,076,518 employees were exposed to kerosene in the workplace (NOES

1992). Most exposure to fuel oil no. 2 was in the electric, gas, and sanitary services industries;

exposure to fuel oil no. 4 was greatest in the primary metal industries, and exposure to kerosene was

greatest for machinists.

Exposure of the general population to fuel oils is most likely to occur as a result of the use of

kerosene and other fuel oils in heaters, furnaces, and combustion engines. Spills of number 2 fuel oil

in residential basements can pose a significant health risk; a spill of 21 gallons would present a risk

for 8 days or longer (Kaplan et al. 1993). Unintentional exposure to fuel oils may occur as a result of

groundwater contamination from spilled fuel oils or contact with soils that have been contaminated

with fuel oils.

5.6 POPULATIONS WITH POTENTIALLY HIGH EXPOSURES

The extent of potential high exposures to various segments of the population appears to be largely

unknown. Workers in the petroleum industry may receive intermittent skin exposure to kerosene and

other fuel oils during the refining process. Exposure is most likely to occur during the distillation of

crude oil, when monitoring and servicing of equipment are carried out, or when sampling must be

done (Runion 1988).

The use of kerosene as a solvent in paints and insecticides increases the likelihood of exposure by

painters, particularly when spray applicators are used (Fidler et al. 1987), and in exterminators. Use of

a respirator, alternate application methods (brush or roller), and increased ventilation can all reduce

worker exposure to the solvent vapor.
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Workers in a ball-bearing manufacturing plant in Taiwan had severe dermatitis as a result of exposure

to kerosene that was used as a degreasing agent. Eczema and erythema were also prevalent among the

workers (Jee et al. 1985).

5.7 ADEQUACY OF THE DATABASE

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with

the Administrator of EPA and agencies and programs of the Public Health Service) to assess whether

adequate information on the health effects of fuel oils is available. Where adequate information is not

available, ATSDR, in conjunction with NTP, is required to assure the initiation of a program of

research designed to determine the health effects (and techniques for developing methods to determine

such health effects) of fuel oils.

The following categories of possible data needs have been identified by a joint team of scientists from

ATSDR, NTP, and EPA. They are defined as substance-specific informational needs that, if met,

would reduce or eliminate the uncertainties of human health assessment. This definition should not be

interpreted to mean that all data needs discussed in this section must be filled. In the future, the

identified data needs will be evaluated and prioritized, and a substance-specific research agenda may

be proposed.

5.7.1 Identification of Data Needs

Physical and Chemical Properties. The physical and chemical properties of some fuel oils and

their primary component chemicals, specifically kerosene and fuel oil no. 2, are well defined and can

be used to estimate the fate of these fuel oils following release to the environment (Air Force 1989;

IARC 1989). However, the physical and chemical properties of other fuel oils such as no. l-D,

no. 2-D, and no. 4, are not well defined, and data should be gathered in order to estimate the fate of

these oils in the environment. Data needs associated with specific compounds that are components of

fuel oils (e.g., benzene, toluene, xylene, and PAHs) are presented in the ATSDR toxicological profiles

for these chemicals (ATSDR 1989, 1990a, 1991a, 1991b).
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Production, Import/Export, Use, and Release and Disposal. Fuel oils are used primarily as

heating oils and in engines (Air Force 1989). Most releases of fuel oils are the result of spills either

on land or water (EPA 1981; Strayer et al. 1983). Few data are available on current production

volumes for specific fuel oils such as fuel oil no. 4. Further information on the production volumes

for each fuel oil, environmental releases, and disposal of fuel oils would aid in assessing the potential

for human exposure as a result of accidental or intentional release.

Environmental Fate. The environmental fate of fuel oils is based on the environmental partitioning

of the major hydrocarbon fractions. For aliphatic hydrocarbons, volatilization of lower molecular

weight alkanes and sorption to organic matter for larger aliphatics, followed by photooxidation and

biodegradation, respectively, are the primary degradation processes (Gearing et al. 1980; Oviatt et al.

1982). Aromatic components are most susceptible to biodegradation in warm water or soil, although

some volatilization may occur in colder waters (Walker et al. 1976; Gearing and Gearing 1982a).

Aromatics, however, are also water soluble and therefore are the most likely fuel oil components to

leach through soil into groundwater (Strayer et al. 1983). Aliphatics that sediment out of the water

column may persist for over a year (Oviatt et al. 1982). Photooxidation may also be a significant

degradation process for fuel oils in surface waters (Larson et al. 1977, 1979). The movement and

persistence of fuel oils in water and soils is well studied. Further data on the atmospheric reactions of

fuel oils would be helpful in determining the transport of fuel oils through air.

Bioavailability from Environmental Media. The extent of absorption of fuel oils by inhalation,

oral, and/or dermal routes is unknown. However, toxicity data are available for humans exposed to

various fuel oils by each of these routes (Porter 1990; Reidenberg et al. 1964; Subcommittee on

Accidental Poisoning 1962). These data indicate that absorption does occur. The extent of absorption

by these routes depends on the volatility, solubility, lipophilicity, and other properties of the specific

fuel oil components. Several of these component compounds have been discussed in their individual

ATSDR toxicological profiles (e.g., benzene, toluene, xylene, PAHs, and lead), which should be

consulted for further information (ATSDR 1989, 1990a, 1990b, 1991a, 1991b). More data linking

exposure levels of fuel oils with biological levels of component chemicals would be useful in

determining which chemicals in the mixture are most likely to be absorbed and by which routes. This

information would aid in determining daily human exposure levels and more accurately assessing the

risk associated with exposure to fuel oils.
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Food Chain Bioaccumulation. Studies of the accidental and intentional release of fuel oils to the

aquatic environment indicate that aquatic organisms are able to bioaccumulate some hydrocarbon

fractions, particularly PAHs (Farrington et al. 1982b); however, depuration does occur if the source of

the contamination is removed (Cox et al. 1975; Williams et al. 1989). Further studies are needed to

determine the biomagnification potential of the hydrocarbon components of fuel oils, particularly

PAHs, up the food chain within aquatic and terrestrial ecosystems. Specific research needs are

presented in the individual ATSDR toxicological profiles on specific hydrocarbon components such as

benzene, toluene, total xylenes, and polycyclic aromatic hydrocarbons (ATSDR 1989, 1990a, 1991a,

1991b). Research on the biomagnification of fuel oils as actual mixtures would not be useful because

they are not available to the food chain as mixtures.

Exposure Levels in Environmental Media. There is limited information available on the levels

of fuel oils found in soil or water where fuel oils are used or stored. Most monitoring studies have

been conducted in the aquatic environment following an accidental spill (EPA 1981; Teal et al. 1978).

More data on levels of fuel oils or their components in the air, water, and soil around facilities where

fuel oils are produced, stored, and used would be useful. Data on levels in contaminated surface

water, groundwater, and soil are needed to assess the potential risk from these likely sources of

exposure.

Exposure Levels in Humans. Workers who use fuel oils in manufacturing and those involved in

their transfer may experience increased dermal and inhalation exposures. Workers in the petroleum

refining industry, particularly those involved with monitoring and servicing unit equipment, including

fuel oil storage tanks, are known to have increased exposure to fuel oils such as kerosene (Runion

1988). Further information is needed to assess the approximate levels of exposure for these

populations.

Exposure Registries. No exposure registries for fuel oils were located. These substances are not

currently compounds for which a subregistry has been established in the National Exposure Registry.

These substances will be considered in the future when chemical selection is made for subregistries to

be established. The information that is amassed in the National Exposure Registry facilitates the

epidemiological research needed to assess adverse health outcomes that may be related to the exposure

to these substances.
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A registry does exist for benzene, a component of fuel oils. More information on the benzene

exposure registry can be found in the ATSDR toxicological profile for benzene (ATSDR 1989).

5.7.2 On-going Studies

No on-going studies on the exposure or environmental fate of fuel oils were located.
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The purpose of this chapter is to describe the analytical methods that are available for detecting and/or

measuring and monitoring fuel oils in environmental media and in biological samples. The intention is

not to provide an exhaustive list of analytical methods that could be used to detect and quantify fuel

oils. Rather, the intent is to identify well-established methods that are used as the standard methods of

analysis. Many of the analytical methods used to detect fuel oils in environmental samples are the

methods approved by federal organizations such as EPA and the National Institute for Occupational

Safety and Health (NIOSH). Other methods presented in this chapter are those that are approved by

groups such as the Association of Official Analytical Chemists (AOAC) and the American Public

Health Association (APHA). Additionally, analytical methods are included that refine previously used

methods to obtain lower detection limits, and/or to improve accuracy and precision.

6.1 BIOLOGICAL MATERIALS

Fuel oils are mixtures of aliphatic and aromatic hydrocarbons (Air Force 1989). Most analytical

methods for detecting fuel oils in biological media focus on the detection of kerosene components, as

this is a commonly used fuel for residential heaters. Analytical methods for detecting other fuel oils in

biological media were not located. See Table 6-l for a summary of the analytical methods most

commonly used to measure kerosene in biological materials. For more analytical methods information,

see the previous profiles on some of the individual components of fuel oils (e.g., benzene, toluene,

total xylenes, and PAHs) (ATSDR 1989, 1990a, 1991a, 1991b).

The primary method for detecting kerosene in biological materials such as blood is gas

chromatography (GC). GC may be combined with mass spectroscopy (MS) for peak identification

with the gas chromatograph in the electron impact mode (Kimura et al. 1988, 1991). Quantification

methods include the use of mass fragmentography (Kimura et al. 1988). Hydrocarbon components of

kerosene are determined based on analysis of headspace gas above the sample (Kimura et al. 1991).

This method is useful for distinguishing between kerosene intoxication and gasoline intoxication as

kerosene gives a high toluene peak and has a pseudocumene-to-toluene ratio only half that of gasoline.

Capillary columns are used, with either Porapak, Chromosorb, or Chemipak, giving acceptable

results (Kimura et al. 1988). The percent recoveries of these methods were not provided. Wide-bore
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capillary columns have also been used (Hara et al. 1988) for GC/MS analysis combined with flame

ionization detectors (FID). This method determined levels of m- and o-xylene (components of

kerosene) in the blood, urine, and stomach contents. The sensitivity and precision of this method was

generally good (93-100% recovery).

No analytical methods studies were located for detecting fuel oils in biological samples other than

blood, urine, or stomach contents.

6.2 ENVIRONMENTAL SAMPLES

Because fuel oils are composed of a mixture of hydrocarbons, there are few methods for the

environmental analysis of fuel oils as a whole, but methods are reported for the analysis of their

component hydrocarbons. The methods most commonly used to detect the major hydrocarbon

components of fuel oils in environmental samples are GC/FID and GC/MS. See Table 6-2 for a

summary of the analytical methods used to determine fuel oils in environmental samples. Several of

the components of fuel oils have been discussed in detail in their individual toxicological profiles (e.g.,

benzene, toluene, total xylenes, and PAHs), which should be consulted for more information on

analytical methods (ATSDR 1989, 1990a, 1991a, 1991b).

GC is the most commonly used method to selectively detect, identify, and quantify the volatile

hydrocarbon components of fuel oils in air (Andrasko 1983; Baldwin 1977; NIOSH 1994). Air

samples may be collected on adsorbent tubes such as charcoal, Florisil, Tenax, Porapak, or

Chromosorb®. Active carbons wires have also been used (Andrasko 1983). The hydrocarbons are

extracted from the tubes by thermal desorption or with a liquid solvent such as carbon disulfide and

analyzed on the gas chromatograph. Precision is good (relative standard deviation = 0.052) using the

charcoal tubes (NIOSH 1994); recovery data were not reported for the other types of adsorption tubes,

although desorption from the active carbon wires ranged between 90% and 99% recovery, with a

detection limit in the ppb range. A Tenax-TA sorbent trap has been used with subsequent thermal

desorption (Andrasko 1983). Combining sample concentration with the headspace method allows for

sampling of smaller air volumes and for other environmental samples, such as kerosene combustion

debris, that have undergone significant evaporation; the headspace method requires concentrating the

sample prior to analysis (Andrasko 1983; Baldwin 1977). An exploratory study indicates that, with
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additional research, the microanalytical evolved gas analysis technique (EGA) can be further developed

to measure kerosene soot in indoor aerosols (Daisey and Gundel 1991).

GC/FID and GC/MS have been used to measure the water-soluble components of fuel oils, particularly

kerosene, in industrial effluents and estuarine water (Bianchi et al. 1991), sea water (Boyland and

Tripp 1971), drinking water (Coleman et al. 1984; Dell’Acqua and Bush 1973), and groundwater

(Thomas and Delfino 1991a). Purge-and-trap sample preparation methods have been used to

determine purgeable (volatile) aromatic components of fuel oils. This method requires a trap with a

Tenax/Chromosorb absorbent and the use of a gas chromatograph with a photoionization detector

(PID) (EPA 1991c), an ion trap detector (ITD), or FID (Thomas and Delfino 1991a). A modification

of the purge-and-trap method uses ambient temperatures, has the advantage of being applicable to a

variety of waters, requires virtually no sample preparation (no solvents are required), and has an

analysis time of approximately 30 minutes (Bianchi et al. 1991). While this method may be used for

determining the presence of petroleum contaminants in water, it cannot distinguish between various

sources of this contamination, e.g., between gasoline, kerosene, and diesel oil.

Distinctions between water-soluble fractions of mixed hydrocarbons may be made by using solvent

extraction of the water-soluble base/neutral and acid fractions with methylene chloride (EPA 1991c;

Thomas and Delfino 1991a). This separation of base/neutral and acid fractions will permit the GC

resolution of the type of water soluble hydrocarbons present in the aqueous phase. Hexane has also

been used as a solvent (Dell’Acqua and Bush 1973), as has pentane (Coleman et al. 1984).

A dynamic thermal stripper has also been used to detect low levels (ppb range) of fuel oil no. 2 and

kerosene present in water samples (Belkin and Esposito 1986). This method traps the fuels on an

adsorption tube using helium gas for purging. The fuel is then thermally desorbed and backflushed to

a gas chromatograph with FID. This method also does not require any solvent and needs only a

15 mL sample. Recovery for this method is good (91-114%) with precision ranging from 6.4 to

14.3% relative standard deviation. A modified Grob closed-loop-stripping method, which uses a wall-coated

open tubular glass capillary column combined with GC/MS, has been used to extract and

quantify low levels (ppt) of hydrocarbons in water samples. The method continually recirculates an

ambient air stream through the 3.8-liter water sample for approximately 2 hours and collects the vapor

on an activated carbon filter, followed by extraction with carbon disulfide and analysis (Coleman et al.

1981). An optical fiber fluorescence spectroscopy system has been used for real-time in situ
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measurements of low levels (at ppb of diesel fuel marine equivalent) of petroleum hydrocarbons in

seawater, showing temporal and spatial variability (Lieberman et al 1993).

A qualitative method for determining diesel oil in water has been proposed that is based on changes in

the internal reflection of an optical fiber coated with an organophilic compound caused by the presence

of hydrocarbons. The method does not require any sample preparation but is limited to relatively high

concentrations of contaminants, e.g., 17 mg/L for diesel oil (Kawahara et al. 1983). An alternative

method uses a Fourier transform infrared spectrometer (FTIR). This method has the advantage of no

sample preparation, a short analysis time (20-30 seconds), and good accuracy (±20%). A detection

limit of 0.5 ppb has been determined for a l-liter sample of sea water; 10 mL is sufficient if a

detection limit of 0.05 ppm is acceptable. The FTIR may be coupled with a GC or liquid

chromatography for the analysis of complex mixtures (Mille et al. 1985).

GC/FID (Galin et al. 1990a), gas liquid chromatography (GLC) with FID (Midkiff and Washington

1972), and elevated temperature purge and trap with GC (Chang et al. 1990) have been used to

measure fuel oils in soils. An enzyme immunoassay has been developed using a monoclonal antibody

reagent that detects gasoline and diesel fuel in soil; commercialization of this assay will offer

significant advantages over current testing methods of gasoline and fuel contamination levels in soil

(Allen et al. 1992b). GLC has also been used to determine fuel oils in marine sediments (Gearing et

al. 1980) and other environmental samples such as paper, cloth, and wood (Midkiff and Washington

1972). Extraction is used to concentrate the sample because fuel oils do not provide sufficient vapors

to allow the use of a headspace sampling method. Carbon tetrachloride is the recommended solvent as

it causes less interference with the chromatographic peaks of the fuel oils (Galin et al. 1990a; Midkiff

and Washington 1972). Quantification of fuel oil hydrocarbons from sediments is a more elaborate

process. Following extraction, the saturated and olefinic hydrocarbon fraction is separated from the

aromatic hydrocarbon fraction using thin-layer chromatography or column chromatography. Fractions

are subsequently analyzed by GLC (Gearing et al. 1980). Recovery, sensitivity, and levels of detection

data were not reported. Quantification of oils and grease, by gross weight only, in soils and sludges

may be accomplished by extraction with a Soxhlet apparatus using either trichlorotrifluoroethane

(APHA 1985) or methylene chloride (Martin et al. 1991) as the solvent, although this method may not

be used to identify the specific type of oil or grease present in the soil sample. Synchronous scanning

fluorescence spectroscopy can be used to identify kerosene, fuel oil number 2, fuel oil number 5, and

other aromatic-containing products in groundwater and soil samples. This analytical method is more
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efficient than chromatographic methods, and its spectra are easier to interpret for identification

purposes (Pharr et al. 1992). Fluorescence spectroscopy has been used for in situ detection of

petroleum hydrocarbon plumes in soil; this technique allows for measurements in soils before

monitoring wells are drilled and is thus independent of the fractionation and transport problems

inherent when sampling well fluids (Apitz et al. 1992).

The age of diesel oil in the subsurface soil environment can be determined by utilizing the fact that the

composition of the diesel oil (the ratio between n-alkanes and isoprenoids) changes due to

biodegradation. In one study, the ratio of C17  to pristane was highly correlated with the residence time

of diesel fuel at 12 test locations (Christensen et al 1993).

A set of neural networks has been trained to identify seven classes of petroleum hydrocarbon based

fuels from their fluorescence emission spectra; this technique correctly identified at least 90% of the

test spectra (Andrews and Lieberman 1994).

High-performance liquid chromatography (HPLC), followed by GC/MS, has been used to fractionate

and then quantitate the aliphatic and aromatic hydrocarbons present in liquid fuel precursors in order

to determine the fuel potential of the compounds. Kerosene had the advantage of not requiring any

sample preparation. Other light fuel oils may require the use of methylene chloride as a solvent prior

to HPLC analysis (Lamey et al. 1991). The sensitivity, precision, and recovery of this method were

not reported. An alternative method for fractionating and purifying petroleum hydrocarbons prior to

GC or HPLC separation has been developed (Theobald 1988). The method uses small, prepacked,

silica or C18 columns that offer the advantage of rapid separation (approximately I5 minutes for a run);

good recovery of hydrocarbons (85% for the C18 column and 92% for the silica column); reusability of

the columns;  and for the silica column in particular, good separation of hydrocarbon from nonhydrocarbon

matrices as may occur with environmental samples. Infrared analysis and ultraviolet

spectroscopy were used to analyze the aromatic content in diesel fuels; these methods are relatively

inexpensive and faster than other available methods, such as mass spectrometry, supercritical fluid

chromatography, and nuclear magnetic resonance (Bailey and Kohl 1991).

Due to the tendency of hydrocarbons in the soil to undergo subsurface oxidation, measuring CO2

levels in the soil gas could be used as a cost-effective field screening tool. In one soil-gas survey,

CO2 levels in soil gas correlated well with petroleum hydrocarbons in the soil (Diem et al. 1988).
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A two-dimensional supercritical fluid chromatography (SFC) system has been developed for the

determination of saturates, alkenes, and mono-, di-, and tri-aromatics in diesel fuel. This technique

results in a short analysis time (less than 8 minutes) and good relative standard deviations at low

alkene content (Andersson et al. 1992).

The principal method for detecting kerosene or its components in biota is GC (Blamer et al. 1970;

Farrington et al. 1982a; Newton et al. 1991). Aliphatic and aromatic hydrocarbon components of fuel

oils taken up by shellfish (whole mussels without shells) were isolated by column chromatography

following extraction. Both the alka.ne/cycloalkane and alkene/aromatic fractions were analyzed by GC

with recoveries in the range of 67-100% for alkanes and 71-78% for some aromatics; these aromatics

were also analyzed using GC/MS with recoveries between 49% and 74% (Farrington et al. 1982a).

Determination of hydrocarbons may also be accomplished by fractionating the hydrocarbon

components. Extraction of hydrocarbons from contaminated shellfish may be accomplished using

Soxhlet extraction with methanol followed by reextraction with pentane. The extracts are then dried

and concentrated prior to injection into the GC (Blumer et al. 1970). Other data on detection limits

and precision were not provided.

6.3 ADEQUACY OF THE DATABASE

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with

the Administrator of EPA and agencies and programs of the Public Health Service) to assess whether

adequate information on the health effects of fuel oils is available. Where adequate information is not

available, ATSDR, in conjunction with NTP, is required to assure the initiation of a program of

research designed to determine the health effects (and techniques for developing methods to determine

such health effects) of fuel oils.

The following categories of possible data needs have been identified by a joint team of scientists from

ATSDR, NTP, and EPA. They are defined as substance-specific informational needs that, if met,

would reduce or eliminate the uncertainties of human health assessment. This definition should not be

interpreted to mean that all data needs discussed in this section must be filled. In the future, the

identified data needs will be evaluated and prioritized, and a substance-specific research agenda may

be proposed.
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6.3.1 Identification of Data Needs

Methods for Determining Biomarkers of Exposure and Effect. No biomarkers of exposure

were identified for fuel oils because, while standard procedures exist for identifying or quantifying

exposure to fuel oils based on hydrocarbon components in blood, urine, and stomach contents (Hara et

al. 1988; Kimura et al. 1988, 1991), none of these are applicable solely to fuel oils. These methods

are sensitive enough to measure the levels at which health effects occur and may be adequate for

determining background levels in the population; however, they cannot distinguish between exposure

to different fuel oils or other types of hydrocarbon mixtures. Analytical methods are needed for

measuring the hydrocarbon components of fuel oils in lungs. Biomonitoring studies are needed to

adequately assess exposure to fuel oils.

No biomarkers of effects were identified for fuel oils because the effects associated with exposure to

fuel oils are not unique for them, i.e., the effects may be caused by other chemicals or hydrocarbon

mixtures. Analytical methods do exist for determining angiotensin-converting enzyme activity in the

lungs. This enzyme may be used to determine the lung damage caused by a fuel oil. Analytical

methods are needed to determine whether the tissue damage is specific to fuel oils and the target

organs.

Methods for Determining Parent Compounds and Degradation Products in

Environmental Media. Methods exist to detect major hydrocarbon components of fuel oils in air

(Andrasko 1983; Baldwin 1977; NIOSH 1994), water (Bianchi et al. 1991; Boyland and Tripp 1971;

Dell’Acqua and Bush 1973; EPA 1991c), sediment (Gearing et al. 1980), and soil (Galin et al. 1990a;

Midkiff and Washington 1972). The most commonly used methods are GC/FID and GC/MS. These

methods are relatively sensitive, selective, and reliable, and can be used to detect the levels of the

various components of fuel oils found in the environment and levels at which health effects occur.

6.3.2 On-going Studies

No on-going analytical methods studies were located.
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7. REGULATIONS AND ADVISORIES

The international, national, and state regulations and guidelines regarding fuel oils in air, water, and

other media are summarized in Table 7-l. There are only a few regulations that are specific to a

particular fuel oil and these are indicated in the table.

An acute inhalation MRL of 0.02 mg/m3 was derived for fuel oil no. 2. The MRL is based on a

LOAEL value of 65 mg/m3 for neurobehavioral effects (mild transient ataxia and CNS depression) in

mice exposed to airborne concentrations of fuel oil no. 2.

An intermediate inhalation MRL of 0.01 mg/m3 was derived for fuel oil no. 1. The MRL is based on

decreased blood glucose levels in male rats exposed to airborne concentrations of kerosene averaging

58 mg/m3 for 6 hours/day, 6 days/week for 14 weeks. Rats exposed to airborne concentrations of

kerosene averaging 231 mg/m3 showed a decrease in blood glucose titers, as well as increased

circulating levels of lactate and pyruvate.

The EPA has no oral reference dose (RfD) or inhalation reference concentration (RfC) for any of the

fuel oils.

Under the Hazardous Materials Transportation Act, fuel oils are designated as hazardous substances

subject to special requirements for packaging, labeling, and transportation (DOT 1989a, 1989b).
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Acute Exposure -- Exposure to a chemical for a duration of 14 days or less, as specified in the
Toxicological Profiles.

Adsorption Coefficient (Koc) -- The ratio of the amount of a chemical adsorbed per unit weight of
organic carbon in the soil or sediment to the concentration of the chemical in solution at equilibrium.

Adsorption Ratio (Kd) -- The amount of a chemical adsorbed by a sediment or soil (i.e., the solid
phase) divided by the amount of chemical in the solution phase, which is in equilibrium with the solid
phase, at a fixed solid/solution ratio. It is generally expressed in micrograms of chemical sorbed per
gram of soil or sediment.

Bioconcentration Factor (BCF) -- The quotient of the concentration of a chemical in aquatic
organisms at a specific time or during a discrete time period of exposure divided by the concentration
in the surrounding water at the same time or during the same period.

Cancer Effect Level (CEL) -- The lowest dose of chemical in a study, or group of studies, that
produces significant increases in the incidence of cancer (or tumors) between the exposed population
and its appropriate control.

Carcinogen -- A chemical capable of inducing cancer.

Ceiling Value -- A concentration of a substance that should not be exceeded, even instantaneously.

Chronic Exposure -- Exposure to a chemical for 365 days or more, as specified in the Toxicological
Profiles.

Ct -- A means of expressing concentration as a convenient mechanism for establishing an exposure
mechanism. Specifically, it is the product of airborne concentration of aerosolized diesel fuel (mg/m3)
and duration of exposure (hours).

Developmental Toxicity -- The occurrence of adverse effects on the developing organism that may
result from exposure to a chemical prior to conception (either parent), during prenatal development, or
postnatally to the time of sexual maturation. Adverse developmental effects may be detected at any
point in the life span of the organism.

Embryotoxicity and Fetotoxicity -- Any toxic effect on the conceptus as a result of prenatal exposure
to a chemical; the distinguishing feature between the two terms is the stage of development during
which the insult occurred. The terms, as used here, include malformations and variations, altered
growth, and in utero death.

EPA Health Advisory -- An estimate of acceptable drinking water levels for a chemical substance
based on health effects information. A health advisory is not a legally enforceable federal standard,
but serves as technical guidance to assist federal, state, and local officials.
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Immediately Dangerous to Life or Health (IDLH) -- The maximum environmental concentration of
a contaminant from which one could escape within 30 min without any escape-impairing symptoms or
irreversible health effects.

Intermediate Exposure -- Exposure to a chemical for a duration of 15-364 days, as specified in the
Toxicological Profiles.

Immunologic Toxicity -- The occurrence of adverse effects on the immune system that may result
from exposure to environmental agents such as chemicals.

In vitro -- Isolated from the living organism and artificially maintained, as in a test tube.

In vivo -- Occurring within the living organism.

Lethal Concentration(LO) (LCLo) -- The lowest concentration of a chemical in air which has been
reported to have caused death in humans or animals.

Lethal Concentration(50) (LC50) -- A calculated concentration of a chemical in air to which exposure
for a specific length of time is expected to cause death in 50% of a defined experimental animal
population.

Lethal Dose(Lo) (LDLo) -- The lowest dose of a chemical introduced by a route other than inhalation
that is expected to have caused death in humans or animals.

Lethal Dose(50) (LD50) -- The dose of a chemical which has been calculated to cause death in 50% of a
defined experimental animal population.

Lethal Time(50), (LT50) -- A calculated period of time within which a specific concentration of a
chemical is expected to cause death in 50% of a defined experimental animal population.

Lowest-Observed-Adverse-Effect Level (LOAEL) -- The lowest dose of chemical in a study, or
group of studies, that produces statistically or biologically significant increases in frequency or severity
of adverse effects between the exposed population and its appropriate control.

Malformations -- Permanent structural changes that may adversely affect survival, development, or
function.

Minimal Risk Level -- An estimate of daily human exposure to a dose of a chemical that is likely to
be without an appreciable risk of adverse noncancerous effects over a specified duration of exposure.

Mutagen -- A substance that causes mutations. A mutation is a change in the genetic material in a
body cell. Mutations can lead to birth defects, miscarriages, or cancer.

Neurotoxicity -- The occurrence of adverse effects on the nervous system following exposure to
chemical.

No-Observed-Adverse-Effect Level (NOAEL) -- The dose of chemical at which there were no
statistically or biologically significant increases in frequency or severity of adverse effects seen
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between the exposed population and its appropriate control.  Effects may be produced at this dose, but they are
not considered to be adverse.

Octanol-Water Partition Coefficient (Kow) -- The equilibrium ratio of the concentrations of a chemical in n-
octanol and water, in dilute solution.

Permissible Exposure Limit (PEL) -- An allowable exposure level in workplace air averaged over an 8-hour
shift.

q1* -- The upper-bound estimate of the low-dose slope of the dose-response curve as determined by the
multistage procedure.  The q1* can be used to calculate an estimate of carcinogenic potency, the incremental
excess cancer risk per unit of exposure (usually :g/L for water, mg/kg/day for food, and :g/m3 for air).

Reference Dose (RfD) -- An estimate (with uncertainty spanning perhaps an order of magnitude) of the daily
exposure of the human population to a potential hazard that is likely to be without risk of deleterious effects
during a lifetime.  The RfD is operationally derived from the NOAEL (from animal and human studies) by a
consistent application of uncertainty factors that reflect various types of data used to estimate RfDs and an
additional modifying factor, which is based on a professional judgment of the entire database on the chemical. 
The RfDs are not applicable to nonthreshold effects such as cancer.

Reportable Quantity (RQ) -- The quantity of a hazardous substance that is considered reportable under
CERCLA.  Reportable quantities are (1) 1 pound or greater or (2) for selected substances, an amount established
by regulation either under CERCLA or under Sect. 311 of the Clean Water Act.  Quantities are measured over a
24-hour period.

Reproductive Toxicity -- The occurrence of adverse effects on the reproductive system that may result from
exposure to a chemical.  The toxicity may be directed to the reproductive organs and/or the related endocrine
system.  The manifestation of such toxicity may be noted as alterations in sexual behavior, fertility, pregnancy
outcomes, or modifications in other functions that are dependent on the integrity of this system.

Short-Term Exposure Limit (STEL) -- The maximum concentration to which workers can be exposed for up
to 15 min continually.  No more than four excursions are allowed per day, and there must be at least 60 min
between exposure periods.  The daily TLV-TWA may not be exceeded.

Target Organ Toxicity -- This term covers a broad range of adverse effects on target organs or physiological
systems (e.g., renal, cardiovascular) extending from those arising through a single limited exposure to those
assumed over a lifetime of exposure to a chemical.

Teratogen -- A chemical that causes structural defects that affect the development of an organism.

Threshold Limit Value (TLV) -- A concentration of a substance to which most workers can be exposed
without adverse effect.  The TLV may be expressed as a TWA, as a STEL, or as a CL.

Time-Weighted Average (TWA) -- An allowable exposure concentration averaged over a normal 8-hour
workday or 40-hour workweek.
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Toxic Dose (TD50) -- A calculated dose of a chemical, introduced by a route other than inhalation,
which is expected to cause a specific toxic effect in 50% of a defined experimental animal population.

Uncertainty Factor (UF) -- A factor used in operationally deriving the RfD from experimental data.
UFs are intended to account for (1) the variation in sensitivity among the members of the human
population, (2) the uncertainty in extrapolating animal data to the case of human, (3) the uncertainty in
extrapolating from data obtained in a study that is of less than lifetime exposure, and (4) the
uncertainty in using LOAEL data rather than NOAEL data. Usually each of these factors is set equal
to 10.
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APPENDIX A

USER’S GUIDE

Chapter 1

Public Health Statement

This chapter of the profile is a health effects summary written in nontechnical language. Its intended
audience is the general public especially people living in the vicinity of a hazardous waste site or
substance release. If the Public Health Statement were removed from the rest of the document, it
would still communicate to the lay public essential information about the substance.

The major headings in the Public Health Statement are useful to find specific topics of concern. The
topics are written in a question and answer format. The answer to each question includes a sentence
that will direct the reader to chapters in the profile that will provide more information on the given
topic.

Chapter 2

Tables and Figures for Levels of Significant Exposure (LSE)

Tables (2-1, 2-2, and 2-3) and figures (2-l and 2-2) are used to summarize health effects by duration
of exposure and end point and to illustrate graphically levels of exposure associated with those effects.
All entries in these tables and figures represent studies that provide reliable, quantitative estimates of
No-Observed-Adverse-Effect Levels (NOAELs), Lowest-Observed-Adverse-Effect Levels (LOAELs)
for Less Serious and Serious health effects, or Cancer Effect Levels (CELs). In addition, these tables
and figures illustrate differences in response by species, Minimal Risk Levels (MRLs) to humans for
noncancer end points, and EPA’s estimated range associated with an upper-bound individual lifetime
cancer risk of 1 in 10,000 to 1 in 10,000,000. The LSE tables and figures can be used for a quick
review of the health effects and to locate data for a specific exposure scenario. The LSE tables and
figures should always be used in conjunction with the text.

The legends presented below demonstrate the application of these tables and figures. A representative
example of LSE Table 2-l and Figure 2-l are shown. The numbers in the left column of the legends
correspond to the numbers in the example table and figure.

LEGEND

See LSE Table 2-1

(1). Route of Exposure One of the first considerations when reviewing the toxicity of a substance
using these tables and figures should be the relevant and appropriate route of exposure. When
sufficient data exist, three LSE tables and two LSE figures are presented in the document. The
three LSE tables present data on the three principal routes of exposure, i.e., inhalation, oral, and
dermal (LSE Table 2-1, 2-2, and 2-3, respectively). LSE figures are limited to the inhalation
(LSE Figure 2-l) and oral (LSE Figure 2-2) routes.

(2). Exposure Duration Three exposure periods: acute (14 days or less); intermediate (15 to
364 days); and chronic (365 days or more) are presented within each route of exposure. In this
example, an inhalation study of intermediate duration exposure is reported.
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(3). Health Effect The major categories of health effects included in LSE tables and figures are
death, systemic, immunological, neurological, developmental, reproductive, and cancer.
NOAELs and LOAELs can be reported in the tables and figures for all effects but cancer.
Systemic effects are further defined in the “System” column of the LSE table.

(4).  Key to Figure Each key number in the LSE table links study information to one or more data
points using the same key number in the corresponding LSE figure. In this example, the study
represented by key number 18 has been used to define a NOAEL and a Less Serious LOAEL
(also see the two “18r” data points in Figure 2-l).

(5). Species The test species, whether animal or human, are identified in this column. Species

(6). Exposure Frequency/Duration The duration of the study and the weekly and daily exposure
regimen are provided in this column. This permits comparison of NOAELs and LOAELs from
different studies. In this case (key number 18), rats were exposed to [substance x] via
inhalation for 13 weeks, 5 days per week, for 6 hours per day.

(7). System This column further defines the systemic effects. These systems include: respiratory,
cardiovascular, gastrointestinal, hematological, musculoskeletal, hepatic, renal, and
dermal/ocular. “Other” refers to any systemic effect (e.g., a decrease in body weight) not
covered in these systems. In the example of key number 18, one systemic effect (respiratory)
was investigated in this study.

(8). NOAEL A No-Observed-Adverse-Effect Level (NOAEL) is the highest exposure level at which
no harmful effects were seen in the organ system studied. Key number 18 reports a NOAEL of
3 ppm for the respiratory system which was used to derive an intermediate exposure, inhalation
MRL of 0.005 ppm (see footnote “b”).

(9). LOAEL A Lowest-Observed-Adverse-Effect Level (LOAEL) is the lowest exposure level used
in the study that caused a harmful health effect. LOAELs have been classified into “Less
Serious” and “Serious” effects. These distinctions help readers identify the levels of exposure at
which adverse health effects first appear and the gradation of effects with increasing dose. A
brief description of the specific end point used to quantify the adverse effect accompanies the
LOAEL. The “Less Serious” respiratory effect reported in key number 18 (hyperplasia)
occurred at a LOAEL of 10 ppm.

(10). Reference The complete reference citation is given in Chapter 8 of the profile.

(11). CEL  A Cancer Effect Level (CEL) is the lowest exposure level associated with the onset of
carcinogenesis in experimental or epidemiological studies. CELs are always considered serious
effects. The LSE tables and figures do not contain NOAELs for cancer, but the text may report
doses which did not cause a measurable increase in cancer.

(12). Footnotes Explanations of abbreviations or reference notes for data in the LSE tables are found
in the footnotes. Footnote “b” indicates the NOAEL of 3 ppm in key number 18 was used to
derive an MRL of 0.005 ppm.

LEGEND
See LSE Figure 2-1

LSE figures graphically illustrate the data presented in the corresponding LSE tables. Figures help the
reader quickly compare health effects according to exposure levels for particular exposure duration,
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(13). Exposure Duration The same exposure periods appear as in the LSE table. In this example,
health effects observed within the intermediate and chronic exposure periods are illustrated.

(14). Health Effect These are the categories of health effects for which reliable quantitative data
exist. The same health effects appear in the LSE table.

(15). Levels of Exposure Exposure levels for each health effect in the LSE tables are graphically
displayed in the LSE figures. Exposure levels are reported on the log scale “y” axis.
Inhalation exposure is reported in mg/m3 or ppm and oral exposure is reported in mg/kg/day.

(16). NOAEL In this example, 18r NOAEL is the critical end point for which an intermediate
inhalation exposure MRL is based. As you can see from the LSE figure key, the
open-circle symbol indicates a NOAEL for the test species (rat). The key number 18
corresponds to the entry in the LSE table. The dashed descending arrow indicates the
extrapolation from the exposure level of 3 ppm (see entry 18 in the Table) to the MRL of
0.005 ppm (see footnote “b” in the LSE table).

(17). CEL Key number 38r is one of three studies for which Cancer Effect Levels (CELs) were
derived. The diamond symbol refers to a CEL for the test species (rat). The number 38
corresponds to the entry in the LSE table.

(18). Estimated Upper-Bound Human Cancer Risk Levels This is the range associated with the
upper-bound for lifetime cancer risk of 1 in 10,000 to 1 in 10,000,000. These risk levels are
derived from EPA’s Human Health Assessment Group’s upper-bound estimates of the slope
of the cancer dose response curve at low dose levels (ql*).

(19). Key to LSE Figure The Key explains the abbreviations and symbols used in the figure.

Chapter 2 (Section 2.4)

Relevance to Public Health

The Relevance to Public Health section provides a health effects summary based on evaluations of
existing toxicological, epidemiological, and toxicokinetic information. This summary is designed to
present interpretive, weight-of-evidence discussions for human health end points by addressing the
following questions.

1 . What effects are known to occur in humans?

2 . What effects observed in animals are likely to be of concern to humans?

3 . What exposure conditions are likely to be of concern to humans, especially around hazardous waste
sites?

The section discusses health effects by end point. Human data are presented first, then animal data.
Both are organized by route of exposure (inhalation, oral, and dermal) and by duration (acute,
intermediate, and chronic). In vitro data and data from parenteral routes (intramuscular, intravenous,
subcutaneous, etc.) are also considered in this section. If data are located in the scientific literature, a
table of genotoxicity information is included.
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The carcinogenic potential of the profiled substance is qualitatively evaluated, when appropriate, using
existing toxicokinetic, genotoxic, and carcinogenic data. ATSDR does not currently assess cancer
potency or perform cancer risk assessments. MRLs for noncancer end points if derived, and the end
points from which they were derived are indicated and discussed in the appropriate section(s).

Limitations to existing scientific literature that prevent a satisfactory evaluation of the relevance to
public health are identified in the Identification of Data Needs section.

Interpretation of Minimal Risk Levels

Where sufficient toxicologic information was available, MRLs were derived. MRLs are specific for
route (inhalation or oral) and duration (acute, intermediate, or chronic) of exposure. Ideally, MRLs can
be derived from all six exposure scenarios (e.g., Inhalation - acute, -intermediate, -chronic; Oral -
acute, -intermediate, - chronic). These MRLs are not meant to support regulatory action, but to
acquaint health professionals with exposure levels at which adverse health effects are not expected to
occur in humans. They should help physicians and public health officials determine the safety of a
community living near a substance emission, given the concentration of a contaminant in air or the
estimated daily dose received via food or water. MRLs are based largely on toxicological studies in
animals and on reports of human occupational exposure.

MRL users should be familiar with the toxicological information on which the number is based.
Section 2.4, “Relevance to Public Health,” contains basic information known about the substance.
Other sections such as 2.6, “Interactions with Other Chemicals” and 2.7, “Populations that are
Unusually Susceptible” provide important supplemental information.

MRL users should also understand the MRL derivation methodology. MRLs are derived using a
modified version of the risk assessment methodology used by the Environmental Protection Agency
(EPA) (Barnes and Dourson 1988; EPA 1989a) to derive reference doses (RfDs) for lifetime exposure.

To derive an MRL, ATSDR generally selects the end point which, in its best judgement, represents the
most sensitive human health effect for a given exposure route and duration. ATSDR cannot make this
judgement or derive an MRL unless information (quantitative or qualitative) is available for all potential
effects (e.g., systemic, neurological, and developmental). In order to compare NOAELs and
LOAELs for specific end points, all inhalation exposure levels are adjusted for 24 hr exposures and all
intermittent exposures for inhalation and oral routes of intermediate and chronic duration are adjusted
for continuous exposure (i.e., 7 days/week).   If the information and reliable quantitative data on the
chosen end point are available, ATSDR derives an MRL using the most sensitive species (when information
from multiple species is available) with the highest NOAEL that does not exceed any adverse
effect levels. The NOAEL is the most suitable end point for deriving an MRL. When a NOAEL is
not available, a Less Serious LOAEL can be used to derive an MRL, and an uncertainty factor of (1,
3, or 10) is employed. MRLs are not derived from Serious LOAELs. Additional uncertainty factors
of (1, 3, or 10 ) are used for human variability to protect sensitive subpopulations (people who are
most susceptible to the health effects caused by the substance) and (1, 3, or 10) are used for interspecies
variability (extrapolation from animals to humans). In deriving an MRL, these individual
uncertainty factors are multiplied together. Generally an uncertainty factor of 10 is used; however, the
MRL Workgroup reserves the right to use uncertainty factors of (1, 3, or 10) based on scientific
judgement. The product is then divided into the adjusted inhalation concentration or oral dosage
selected from the study. Uncertainty factors used in developing a substance-specific MRL are
provided in the footnotes of the LSE Tables.
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