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Abstract. Periodic wildfire maintains the integrity and species composition of many
ecosystems, including the mediterranean-climate shrublands of California. However, human
activities alter natural fire regimes, which can lead to cascading ecological effects. Increased
human ignitions at the wildland–urban interface (WUI) have recently gained attention, but
fire activity and risk are typically estimated using only biophysical variables. Our goal was to
determine how humans influence fire in California and to examine whether this influence was
linear, by relating contemporary (2000) and historic (1960–2000) fire data to both human and
biophysical variables. Data for the human variables included fine-resolution maps of the WUI
produced using housing density and land cover data. Interface WUI, where development abuts
wildland vegetation, was differentiated from intermix WUI, where development intermingles
with wildland vegetation. Additional explanatory variables included distance to WUI,
population density, road density, vegetation type, and ecoregion. All data were summarized at
the county level and analyzed using bivariate and multiple regression methods. We found
highly significant relationships between humans and fire on the contemporary landscape, and
our models explained fire frequency (R2 ¼ 0.72) better than area burned (R2 ¼ 0.50).
Population density, intermix WUI, and distance to WUI explained the most variability in fire
frequency, suggesting that the spatial pattern of development may be an important variable to
consider when estimating fire risk. We found nonlinear effects such that fire frequency and
area burned were highest at intermediate levels of human activity, but declined beyond certain
thresholds. Human activities also explained change in fire frequency and area burned (1960–
2000), but our models had greater explanatory power during the years 1960–1980, when there
was more dramatic change in fire frequency. Understanding wildfire as a function of the
spatial arrangement of ignitions and fuels on the landscape, in addition to nonlinear
relationships, will be important to fire managers and conservation planners because fire risk
may be related to specific levels of housing density that can be accounted for in land use
planning. With more fires occurring in close proximity to human infrastructure, there may also
be devastating ecological impacts if development continues to grow farther into wildland
vegetation.
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INTRODUCTION

Fire is a natural process in many biomes and has

played an important role shaping the ecology and

evolution of species (Pyne et al. 1996, Bond and Keeley

2005). Periodic wildfire maintains the integrity and

species composition of many ecosystems, particularly

those in which taxa have developed strategic adaptations

to fire (Pyne et al. 1996, Savage et al. 2000, Pausas et al.

2004). Despite the important ecosystem role played by

fire, human activities have altered natural fire regimes

relative to their historic range of variability. To develop

effective conservation and fire management strategies to

deal with altered fire regimes, it is necessary to

understand the causes underlying altered fire behavior

and their human relationships (DellaSalla et al. 2004).

Nowhere is this more critical in the United States than in

California, which is the most populous state in the

nation, with roughly 35 3 106 people. Most of the

population lives in lower elevations dominated by

hazardous chaparral shrublands susceptible to frequent

high-intensity crown fires.

In California, as elsewhere, the two primary mecha-

nisms altering fire regimes are fire suppression, resulting

in fire exclusion, and increased anthropogenic ignitions,

resulting in abnormally high fire frequencies (Keeley and
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Fotheringham 2003), though climate change, vegetation

manipulation, and other indirect factors may also play a

role (Lenihan et al. 2003, Sturtevant et al. 2004). For

most of the 20th century, fire suppression effectively

excluded fire from many western U.S. forest ecosystems,

such as ponderosa pine. In these ecosystems, fire

exclusion contributed to unnatural fuel accumulation

and increased tree density (Veblen et al. 2000, Allen

et al. 2002, Gray et al. 2005). Recently, when wildfires

have hit many of these forests, hazardous fuel loads have

contributed to high-intensity crown fires that are

considered outside the historical range of variability

(Stephens 1998). While these patterns are widely

applicable to many forested landscapes in the western

United States, California chaparral shrublands have

experienced such substantial human population growth

and urban expansion that the increase in ignitions,

coupled with the most severe fire weather in the country

(Schroeder et al. 1964), have acted to offset the effects of

suppression to the point that fire frequency exceeds the

historic range of variability (Keeley et al. 1999). Because

anthropogenic ignitions tend to be concentrated near

human infrastructure, more fires now occur at the urban

fringe than in the backcountry (Pyne 2001, Keeley et al.

2004). Profound impacts on land cover condition and

community dynamics are possible if a disturbance

regime exceeds its natural range of variability, and

altered fire regimes can lead to cascading ecological

effects (Landres et al. 1999, Dale et al. 2000). For

example, too-frequent fire can result in habitat loss and

fragmentation, shifting forest composition, reduction of

small-mammal populations, and accompanying loss of

predator species (Barro and Conard 1991, DellaSalla

et al. 2004).

Landscape-level interactions between human activities

and natural dynamics tend to be spatially concentrated

at the wildland–urban interface (WUI; see Plate 1),

which is the contact zone in which human development

intermingles with undeveloped vegetation (Radeloff

et al. 2005). The WUI has received national attention

because housing developments and human lives are

vulnerable to fire in these locations and because

anthropogenic ignitions are believed to be most common

there (Rundel and King 2001, USDA and USDI 2001).

The majority of WUI fire research has focused on

strategies to protect lives and structures (e.g., Cohen

2000, Winter and Fried 2000, Winter et al. 2002,

Shindler and Toman 2003) or on the assessment of fire

risk using biophysical or climate variables that influence

fire behavior (Bradstock et al. 1998, Fried et al. 1999,

Haight et al. 2004). However, it is also important to

understand how the WUI itself (or other indicators of

human activity) affects fire and to quantify the spatial

relationships between human activities and fire (Duncan

and Schmalzer 2004).

The influence of proximity to the WUI and other

human infrastructure appears to vary markedly with

region. In the northern Great Lakes states, areas with

higher population density, higher road density, and

lower distance to nonforest were positively correlated

with fire (Cardille et al. 2001). Also, in southern

California, a strong positive correlation between popu-

lation density and fire frequency was reported (Keeley

et al. 1999). However, no relationship between housing

count and fire was found in northern Florida counties

(Prestemon et al. 2002); population density and unem-

ployment were positively related, and housing density

and unemployment were negatively related to fire in a

different analysis of Florida counties (Mercer and

Prestemon 2005). A negative relationship between

housing density and fire was also found in the Sierra

Nevada Mountains of California (CAFRAP 2001).

In addition to potential regional differences, it is also

difficult to draw general conclusions from these studies

because they used different indicators of human

activities, their data sets differed in spatial and temporal

scale, and they were conducted in small areas where

ranges of variability in both fire frequency and level of

development were limited. Human–fire relationships

may also vary based on factors that were not accounted

for, such as pattern of development. Another explana-

tion for the discrepancy is that relationships between

human activities and fire may be nonlinear in that

humans may affect fire occurrence positively or nega-

tively, depending on the level of influence. These

nonlinear effects were apparent in data from a recent

study in the San Francisco Bay region, where population

growth was positively related to fire frequency over time

up to a point, but then fire frequency leveled off as

population continued to increase (Keeley 2005).

Whether positive or negative, the significance of the

relationships between human activities and fire that were

detected in previous studies stresses the importance of

further exploring links between anthropogenic and

environmental factors and their relative influence on

wildfire patterns across space and time. Therefore, our

research objective was to quantify relationships between

human activities and fire in California counties using

temporally and spatially rich data sets and regression

models. Although fire regimes encompass multiple

characteristics, including seasonality, intensity, severity,

and predictability, we restricted our analysis to ques-

tions about fire frequency and area burned to determine:

(1) what the contemporary relationship between human

activities and fire is; (2) how human activities have

influenced change in fire over the last 40 years; and (3)

whether fire frequency and area burned vary nonlinearly

in response to human influence.

Humans are responsible for igniting the fires that burn

the majority of area in California (Keeley 1982);

therefore, we expected our anthropogenic explanatory

variables to significantly explain fire activity on the

current landscape and over time. In addition to

population density (which simply quantifies the number

of people in an area), we expected the spatial pattern of

human development (indicated by housing density and

July 2007 1389HUMAN INFLUENCE ON CALIFORNIA FIRE



land cover combinations and distance variables) to be an

important influence on fire because we assumed that

anthropogenic ignitions are most likely to occur where

human presence is greatest. We also expected that the

relationships between human activities and fire would be

both positive and negative because humans ignite fires,

but development patterns affect fuel continuity and the

accessibility of fire suppression resources. Finally, we

included several environmental variables in the analysis

because we expected the human relationships to be

mediated by these other biophysical variables that shape

the pattern and frequency of fire (Wells et al. 2004).

METHODS

Study area

California is the second largest state in the continental

United States and is the most populous and physically

diverse. Most of the state has a mediterranean climate,

which, along with a heterogeneous landscape, contrib-

utes to tremendous biodiversity (Wilson 1992). Because

the state contains a large proportion of the country’s

endangered species, it is considered a ‘‘hotspot’’ of

threatened biodiversity (Dobson et al. 1997). There is

extensive spatial variation in human population density:

large areas in the north are among the most sparsely

populated in the country, but metropolitan regions in the

south are growing at unprecedented rates (Landis and

Reilly 2004). Much of the landscape is highly fire-prone,

but fire regimes vary, and fire management is divided

among many institutions. Humans have altered Califor-

nia’s fire regimes, and its fire-related financial losses

are among the highest in the country (Halsey 2005).

Data

Dependent variables: fire statistics.—We assembled

our fire statistics from the California Department of

Forestry and Fire Protection (CDF; Sacramento,

California, USA) annual printed records, which includ-

ed information on all fires for which the CDF took

action between 1931 and 2004. For all state responsibil-

ity areas (SRA; Fig. 1), fire statistics are recorded by

county and include numbers by size class, total area

burned, vegetation type, and cause. Because the

statistics did not include spatially explicit information

on individual fires, we weighted the data by the area

within the SRA in each county by calculating propor-

tions to use as our dependent variables. These fire

statistics were substantially more comprehensive than

the readily available electronic Statewide Fire History

Database, which excludes most fires ,40 ha, which in

many counties represents .90% of the fires. Although

both anthropogenic and lightning ignitions would be

important to consider for fully understanding fire

patterns in other regions (e.g., Marsden 1982), humans

were responsible for ;95% of both the number of fires

and area burned in California in the last century. We

restricted our analysis to these anthropogenic fires

because our focus was on human relationships with fire.

Although the fire statistics were not spatially explicit, we

developed GIS grids at 100-m resolution to derive data

for all of the explanatory variables. The data for these

explanatory variables were only extracted and averaged

from within the SRA boundaries corresponding to the

fire data.

Out of the 58 counties in California, we had fire

statistics for 54 of them for the year 2000. Therefore, to

assess the contemporary relationship between fire and

human activities (hereafter referred to as the ‘‘contem-

porary analysis’’), we analyzed the data from these

counties using the annual number of fires and area

burned as our dependent variables (Table 1).

Based on a preliminary exploration of the fire history

data (averaged across all counties), we observed two

distinct trends during the last 50 years. First, the number

of fires substantially increased until 1980 and then

decreased until 2000; and second, the average area

burned changed inversely to the number of fires, but the

differences over time were less dramatic and not

statistically significant (Fig. 2). Considering these trends,

we broke the historic analysis into two equal time

periods (1960–1980 and 1980–2000) to compare the

relative influence of the explanatory variables on both

the increase (i.e., from 1960 to 1980) and decrease (from

1980 to 2000) in fire activity. The year 1980 is used to

compute differences for both time periods because the

census data that formed the basis for many of our

explanatory variables were only available by decade. We

averaged the number of fires and the area burned for 10-

FIG. 1. Map of California Department of Forestry and Fire
Protection (CDF) state responsibility areas (SRAs) within
county boundaries of California, USA.
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year time periods that bracketed the dates of the census

data (e.g., 1955–1964 [1960], 1975–1984 [1980], 1995–

2004 [2000]) and then calculated the difference in

averages from the 1960–1980 and 1980–2000 periods

for our dependent variables (Table 1). By averaging the

fire data, we smoothed some of the annual variability

that may have occurred due to stochastic factors such as

weather.

Explanatory variables: housing data.—Data for most

of the anthropogenic variables were available through a

nationwide mapping project that produced maps of the

WUI in the conterminous United States using housing

density data from the 1990 and 2000 U.S. Census (U.S.

Census Bureau 2002) and land cover data from the

USGS National Land Cover Dataset (Radeloff et al.

2005). The maps were produced at the finest demo-

graphic spatial scale possible, the 2000 decennial census

blocks. The vegetation data were produced at 30-m

resolution. These maps delineated two types of WUI in

accordance with the Federal Register definition (USDA

and USDI 2001). ‘‘Intermix WUI’’ is defined as the

intermingling of development with wildland vegetation;

the vegetation is continuous and occupies .50% of the

area. ‘‘Interface WUI’’ is defined as the situation in

which development abuts wildland vegetation; there is

,50% vegetation in the WUI, but it is within 2.4 km of

an area that has .75% vegetation. In both types of WUI

communities, housing must meet or exceed a density of

more than one structure per 16 ha (6.17 housing

units/km2). Interface WUI tends to occur in buffers

surrounding higher-density housing, whereas intermix

WUI is more dispersed across the landscape (Fig.

3A, B).

The WUI data were only produced for 1990 and 2000

due to the lack of historic land cover data, but housing

density data were available from 1960 to 2000. Historic

housing density distribution was estimated using back-

casting methods to allocate historic county-level housing

unit counts into partial block groups (as described in

Hammer et al. 2004). We used both intermix and

interface WUI as explanatory variables (proportions

within the county SRAs) in the current analysis to

evaluate how these different patterns of vegetation and

housing density affected fire activity. We also used low-

density housing (housing density �6.17 housing

units/km2 and ,49.42 housing units/km2) to determine

whether it could act as a substitute for WUI as an

explanatory variable in the historic analysis (Table 1).

TABLE 1. Variables analyzed in the regression models.

Variable Source Processing

2000 data

Dependent variables
Number of fires CDF proportion in SRA, square-root transformed
Area burned CDF proportion in SRA, square-root transformed

Explanatory variables
Human
Intermix WUI SILVIS proportion in SRA
Interface WUI SILVIS proportion in SRA
Low-density housing SILVIS proportion in SRA
Distance to intermix WUI SILVIS mean Euclidean distance in SRA
Distance to interface WUI SILVIS mean Euclidean distance in SRA
Population density SILVIS proportion in SRA
Road density TIGER mean km/km2 in SRA
Distance to road TIGER mean Euclidean distance in SRA

Biophysical
Ecoregion CDF discrete class
Vegetation type CDF area burned in vegetation type/area burned in SRA

Historic data, 1960–1980 and 1980–2000

Dependent variables
Change in number of fires CDF difference between decadal averages, proportion in SRA,

square-root transformed
Change in area burned CDF difference between decadal averages, proportion in SRA,

square-root transformed
Explanatory variables
Human
Change in housing density SILVIS difference between decades
Change in distance to low-density housing SILVIS difference between mean Euclidean distance in SRA
Initial housing density SILVIS mean housing density in either 1960 or 1980
Initial distance to low-density housing SILVIS mean Euclidean distance in SRA in either 1960 or 1980

Biophysical
Ecoregion CDF discrete class
Vegetation type CDF mean area burned in vegetation type/area burned in SRA

over time period

Notes: Key to abbreviations: WUI, wildland–urban interface; SRA, state responsibility area. Sources are as follows: CDF,
California Department of Forestry and Fire Protection, Sacramento, California, USA, unpublished data; SILVIS, Radeloff et al.
(2005); TIGER, U.S. Census Bureau (2000).

July 2007 1391HUMAN INFLUENCE ON CALIFORNIA FIRE



Looking at an overlay of fire perimeters from the

electronic Statewide Fire History Database (from the

last 25 years; available online)7 on the WUI data, it was

apparent that many fires occurred close to the WUI, but

not necessarily within the WUI (Fig. 3C, D). Therefore,

we calculated the mean distance to intermix and

interface WUI to evaluate as explanatory variables

(Table 1). These means were calculated by iteratively

determining the Euclidean distances from every grid cell

in the county SRA boundaries and then averaging the

distances across all cells to determine means for the

counties. We also included population density data from

the 2000 Census.

For the historic analysis, we calculated changes in

mean housing density and mean distance to low-density

housing between the 1960–1980 and 1980–2000 periods

to relate to change in the dependent variables. We

excluded the proportion of low-density housing from

our analysis because it was highly correlated with mean

housing density (r¼ 0.84). Unlike the historical fire data

that switched in their direction of change over time,

housing density continued to increase while the mean

distance to low-density housing continued to decline

(Fig. 4). We included the initial values of these data (e.g.,

1960 and 1980) to account for the fact that the same

magnitude of change may have different effects on the

dependent variables depending on the starting value of

the explanatory variables (Table 1).

Explanatory variables: road data.—The quality of

road data can vary according to data source (Hawbaker

and Radeloff 2004), so we compared the U.S. Geolog-

ical Survey digital line graph (DLG; U.S. Geological

Survey 2002) and the US TIGER 2000 GIS (U.S.

Census Bureau 2000) layers of roads to determine

whether there were substantial differences that could

affect the interpretation of the results. After calculating

and summarizing road density by county, we found a

strong positive correlation (r¼ 0.97). Therefore, we used

the TIGER data because they were produced in 2000,

the same year as the contemporary analysis. The more

current TIGER data generally capture new development

that might not be included in the DLG data. We

evaluated mean road density and mean distance to roads

in the current analysis (Table 1), but road data were

unavailable for the historic analysis.

Explanatory variables: environmental.—In the absence

of human influence, fire behavior is primarily a function

of biophysical variables (Pyne et al. 1996, Rollins et al.

2002). These can vary widely across a county, but

ecoregions capture broad differences by stratifying

landscapes into unique combinations of physical and

biological variables (ECOMAP 1993). Our ecoregion

data were the geographic subdivisions of California

defined for The Jepson Manual (Hickman 1993),

designated through broadly defined vegetation types

and geologic, topographic, and climatic variation

(Fig. 5).

Because vegetation type influences the ignitability of

fuel and the rate of fire spread (Bond and van Wilgen

1996, Pyne et al. 1996), we also evaluated the proportion

of area burned within three broad vegetation types:

shrubland, grassland, and woodland (Fig. 5). Differenc-

es in fire regimes between broadly defined vegetation

types can be striking, particularly between shrubland

and woodland in southern California (Wells et al. 2004).

The CDF fire statistics included information on the

proportion of area burned in these vegetation types. For

the historic analysis, we averaged the proportion of fires

burned within different vegetation types over the entire

decade (Table 1).

Analytical methods

Diagnostics and data exploration.—Before developing

regression models, we examined scatter plots for each

variable. Nonlinear trends were apparent (e.g., Fig. 6),

suggesting that we needed to include quadratic terms for

the explanatory variables in the regressions. Unequal

variances in the residual plots prompted us to apply a

square-root transformation to the dependent variables.

We also plotted semivariograms of the models’ residuals

(using centroids from the SRA boundaries) and found

no evidence of spatial autocorrelation. To check for

FIG. 2. Trends in number of fires and area burned for all
land in the state responsibility areas (SRAs) in California from
1960 to 2000.

7 hhttp://frap.cdf.ca.gov/data/frapgisdata/select.aspi
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multicollinearity, we calculated the correlation coeffi-

cients between all of the explanatory variables and only

included noncorrelated variables (r � 0.7) in the multiple

regression models.

The areas of CDF jurisdiction for each county varied

slightly over time. Therefore, we compared separate

regressions from the full historic data set (n ¼ 37) to a

subset of the data excluding counties that experienced a

greater than 20% change in area over time (n¼ 23). For

both the 1960–1980 regressions and the 1980–2000

regressions, every one of the explanatory variables that

was significant in the subset was also significant in the

full data set, with very similar R2 values; therefore, we

felt confident proceeding with the full data set for the

historic analysis because we had greater power with the

larger sample size.

FIG. 3. The wildland–urban interface (WUI) in 2000 with and without fire perimeter overlays (from 1979 to 2004) in (A, C)
California and (B, D) southern California. Housing density is defined as follows: very low, .0–6.17 housing units/km2; low, 6.17–
49.42 housing units/km2; medium, 49.42–741.31 housing units/km2; and high, .741.31 housing units/km2 (USDA and USDI
2001). ‘‘Fires 25y’’ refers to 25 years of fire perimeters, from 1980 to 2005.
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Statistical analysis

We used the same regression modeling approach for

both the current and historic analyses. First, we

developed bivariate regression models for all of the

explanatory variables and their quadratic terms so that

we could evaluate their independent influence on fire

frequency and area burned. To account for the

interactions between variables (and their quadratic

terms), we also built multiple regression models using

the R statistical package (R Development Core Team

2005). For all models, we first conducted a full stepwise

selection analysis (both directions) using Akaike Infor-

mation Criteria to identify the best combination of

predictor variables (Burnham and Anderson 2002).

Some of the models retained a quadratic term without

including the lower-order variable. In these models, we

added the lower-order term, rebuilt the model, and then

proceeded with a backwards elimination process until all

predictor variables in the model were significant with P

values � 0.05.

RESULTS

Current analysis

Bivariate regressions.—Many of the anthropogenic

variables were highly significant in explaining the

number of fires in 2000. The quadratic term for each

of these variables was also significant, and the direction

of influence was both positive and negative (Fig. 7).

Compared to the other variables, population density

explained the greatest amount of variability. The

proportion of intermix WUI and low-density housing

in the counties also explained significant variation in the

number of fires; but the proportion of interface WUI

was insignificant. The number of fires was significantly

related to the mean distance to both types of WUI, but

neither of the road variables was significant. All three

vegetation types, particularly shrubland, significantly

influenced the number of fires, but ecoregion was

insignificant.

For the anthropogenic variables, the number of fires

was highest at intermediate levels of population density

(from ;35 to 45 people/km2; Fig. 6), proportion of

intermix WUI (;20–30% in the county), and proportion

of low-density housing (;25–35% in the county). It was

also highest at the shortest distances to intermix and

interface WUI, but started to level off at ;9–10 km for

intermix (Fig. 6) and 14–15 km for interface WUI.

Unlike the number of fires, none of the anthropogenic

variables were significantly associated with the area

burned in 2000. In fact, shrubland was the only variable

that explained significant variation in area burned.

Multiple regression.—When all of the variables were

modeled in the multiple regressions, the resulting model

for number of fires in 2000 included population density,

the proportion of intermix WUI and its quadratic term,

grassland and its quadratic term, and shrubland

(Table 2). The model was highly significant with an

adjusted R2 value of 0.72.

The multiple regression model for area burned in 2000

included distance to road, shrubland, and woodland,

and all three variables had significant positive relation-

ships (no quadratic terms were retained). This model

was also highly significant with an adjusted R2 of 0.50.

Historical analysis 1960–1980

Bivariate regressions.—Change in the number of fires

(net increase) from 1960 to 1980 was significantly

explained by each of the human-related variables except

for change in the mean distance to low-density housing

(Fig. 8). The quadratic term was also significant in the

separate models, except for the initial distance to low-

density housing (in 1960), which had a negative influence

on the change in number of fires. Change in number of

fires was also significantly related to ecoregion and

shrubland vegetation.

The only three variables with significant influence on

the change in area burned (net decrease) were the three

vegetation types.

Multiple regression.—The explanatory variables that

were retained in the multiple regression model for

change in the number of fires from 1960 to 1980

included mean housing density in 1960 and its quadratic

term, grassland vegetation, and ecoregion (Table 2). The

adjusted R2 value was highly significant at 0.72.

FIG. 4. Trends in housing density and distance to low-
density housing (6.17–49.42 housing units/km2) for all land in
the state responsibility areas (SRAs) in California from 1960 to
2000.
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Mean housing density in 1960 was positively associ-

ated with change in area burned from 1960 to 1980, and

the distance to low-density housing had first a positive,

then a negative influence because the quadratic term was

included. Other variables retained in the multiple

regression model included shrubland and its quadratic

term, grassland, woodland, and ecoregion.

Historical analysis 1980–2000

Bivariate regressions.—Initial housing density (in

1980) was the only significant explanatory variable

explaining change in number of fires (net decrease) from

1980 to 2000 (Fig. 9). Woodland vegetation was the only

significant variable out of the separate models explain-

ing change in area burned from 1980 to 2000 (net

increase). The quadratic terms were significant for both

of these models.

Multiple regression.—The multiple regression model

explaining change in number of fires from 1980 to 2000

included change in housing density, initial housing

density (in 1980), and woodland vegetation; the qua-

dratic term was also significant for these three variables

(Table 2). Although the model was significant, theR2 was

substantially lower than the 1960–1980 model, at 0.26.

The multiple regression model explaining change in

area burned included initial housing density (in 1980)

and its quadratic term, initial distance to low-density

FIG. 5. Maps showing ecoregion boundaries and the proportion of area burned in shrubland, grassland, and woodland in 2000.

FIG. 6. The relationships between (A) the proportion of the
number of fires and population density and (B) the proportion
of the number of fires and mean distance to intermix wildland–
urban interface (WUI).
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housing, woodland vegetation and its quadratic, and

ecoregion. This model had better explanatory power

than the number of fires model, with an R2 of 0.41.

DISCUSSION

The expression of fire on a landscape is influenced by

a combination of factors that vary across spatial and

temporal scales and involve both physical and biolog-

ical characteristics. Fire behavior has long been viewed

as a largely physical phenomenon illustrated by the

classic fire environment triangle that places fire as a

function of weather, fuels, and topography (Country-

man 1972), but clearly the human influence on modern

fire regimes must also be understood to meet fire

management needs (DellaSalla et al. 2004). We first

asked what the current relationship is between human

activities and fire in California and found that humans

and their spatial distribution explained a tremendous

proportion of the variability in the number of fires, but

that area burned was more a function of vegetation

type. Anthropogenic ignitions are the primary cause of

fire in California and were the focus of our analysis, so

we were not surprised by the strong human influence.

Nevertheless, the high explanatory power of the models

underscores the importance of using locally relevant

anthropogenic factors as well as biophysical factors in

fire risk assessments and mapping. The models also

identify which indicators of human activity are most

strongly associated with fire in California. For number

of fires, the proportion of intermix WUI explained more

variation than any other variable except for population

density, suggesting that the spatial pattern of housing

development and fuel are important risk factors for fire

starts.

Human-caused ignitions frequently occur along trans-

portation corridors (Keeley and Fotheringham 2003,

Stephens 2005), so it was surprising that neither road

density nor average distance to road were significant in

explaining fire frequency. Although roads are important

in local-scale ignition modeling, detecting their influence

on fire ignitions may be difficult at an aggregated, county

level since they are narrow, linear features. On the other

hand, distance to roads was the only anthropogenic

variable associated with area burned, having a positive

influence when grassland and shrubland were also

accounted for in the multiple regression model, which

may reflect the difficulty of fire suppression access

contributing to fire size.

Humans influence fire frequency more than area

burned because anthropogenic ignitions are responsible

FIG. 7. R2 values and significance levels for the explanatory variables in the bivariate regression models for number of fires and
area burned in 2000.

* P , 0.05; ** P , 0.01; *** P , 0.001.
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for fire initiation, but fire spread and behavior is

ultimately more a function of fuel availability and type

(Bond and van Wilgen 1996, Pyne et al. 1996). Yet

humans do have some control over fire size through

suppression and, indirectly, through fuel connectivity

(Sturtevant et al. 2004), although fires are extremely

difficult to suppress in California shrublands under

high-wind conditions that typify the most destructive

fires (Keeley and Fotheringham 2003). Therefore,

human effects on area burned may cancel one another

out to some extent because fire suppression can

minimize the increase in area burned that would result

from increased ignitions, at least at the WUI. Fire

suppression resources are more likely to be concentrated

on structural protection in developed areas (Calkin et al.

2005), which would explain the positive relationship

between area burned and distance to road. Roads can

serve as firebreaks and can also provide access routes for

firefighters.

The inclusion of vegetation type in the multiple

regression models illustrates that, despite the strong

influence of humans, fire occurrence remains a function

TABLE 2. Variables retained in the multiple regression models for the current and historic
analyses.

Analysis and
explanatory variable

Coefficient
and intercept P

Current

2000
No. fires
Population density 0.0006 ,0.01
Proportion intermix 0.0702 ,0.01
(Proportion intermix)2 �0.2629 ,0.01
Grassland 0.0496 ,0.01
(Grassland)2 �0.0441 ,0.01
Shrubland 0.0093 0.02
Overall model (adjusted R2: 0.72) 0.0001 ,0.01

Area burned
Distance to road 0.00004 ,0.01
Shrubland 0.0833 ,0.01
Woodland 0.0559 ,0.01
Overall model (adjusted R2: 0.50) �0.0052 ,0.01

Historic

1960–1980
No. fires
Initial housing 2.7649 ,0.01
(Initial housing)2 �0.1523 ,0.01
Grassland 4.6311 0.05
Ecoregion . . .� ,0.01
Overall model (adjusted R2: 0.72) 0.6443 ,0.01

Area burned
Initial housing 0.0188 ,0.01
Initial distance 0.00002 ,0.01
(Initial distance)2 �2 3 10�10 ,0.01
Shrubland �0.3641 0.12
(Shrubland)2 0.8778 0.01
Grassland 0.0371 ,0.01
Woodland 0.0449 0.01
Ecoregion . . .� 0.03
Overall model (adjusted R2: 0.51) �0.373 ,0.01

1980–2000
No. fires
Change housing 3.0666 0.01
(Change housing)2 �0.2661 0.01
Initial housing �1.8269 0.01
(Initial housing)2 0.0505 0.03
Woodland 38.1957 0.03
(Woodland)2 �107.0112 0.02
Overall model (adjusted R2: 0.26) �1.894 0.01

Area burned
Initial housing �0.0114 0.01
(Initial housing)2 0.0003 0.05
Initial distance �0.000003 ,0.01
Woodland 0.0292 0.18
(Woodland)2 �1.2831 0.02
Ecoregion . . .� 0.05
Overall model (adjusted R2: 0.41) 0.0409 ,0.01

� Coefficients are not listed for categorical variables.
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FIG. 8. R2 values and significance levels for the explanatory variables in the bivariate regression models for number of fires and
area burned from 1960 to 1980.

* P , 0.05; ** P , 0.01; *** P , 0.001.

FIG. 9. R2 values and significance levels for the explanatory variables in the bivariate regression models for number of fires and
area burned from 1980 to 2000.

* P , 0.05; ** P , 0.01; *** P , 0.001.
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of multiple interacting social and environmental vari-

ables. For number of fires and area burned, shrubland

had the strongest explanatory power of the vegetation

types. Chaparral and coastal sage scrub are both

extremely fire-prone vegetation types and high human

population density tends to be distributed in these types;

other studies have shown that they have experienced a

higher rate of burning than other vegetation types in the

southern part of the state in the last century (Keeley

et al. 1999, Keeley 2000, Wells et al. 2004). Increased

ignitions in highly flammable vegetation types can lead

to very hazardous conditions (Halsey 2005).

The second question we asked was ‘‘How do human

activities relate to change in fire?’’ In the last 40 years,

the most substantial change was the increase in number

of fires from 1960 to 1980. The decrease in number of

fires was less dramatic between 1980 and 2000; and the

change in area burned was relatively small in both time

periods. Housing development patterns were most

influential when change was greatest, from 1960 to

1980, and for trends in fire frequency (vs. area burned).

Although anthropogenic influence was partially re-

sponsible for the change in area burned, the apparent

inverse relationship between change in fire frequency

and change in area burned may be spurious. In other

words, the explanation for a decrease in number of fires

may be independent of the concurrent increase in area

burned. Trends in area burned are naturally cyclic due

to broad-scale factors such as climate. Recent research

has shown that change in climate was a major factor

driving fire activity in the western United States in the

last several decades (Westerling et al. 2006); however,

that research was restricted to large montane fire events

on federally owned land above 1370 m. Therefore, while

climate change may have played some role in our

observed change in area burned, we cannot extend those

results to our analysis because we included fires of all

sizes under multiple land ownership classes, and

historical fire patterns in the lower elevations do not

correspond to patterns in montane forests (Halsey

2005).

Fire both constrains and is constrained by the fuel

patterns it creates, resulting in cycles of fire activity and

temporal autocorrelation in area burned, in part because

young fuels are often less likely to burn (Malamud et al.

2005). Temporal autocorrelation effects vary with

ecosystem, fuel type, and the area of analysis; but in

all vegetation types, temporal dependence diminishes

over time due to post-fire recovery. Therefore, we

assumed that the effects would be low in our study

because we were looking at change over 20-year time

periods. Furthermore, the chaparral vegetation that

dominates much of California recovers very quickly

following fire, meaning that the effect of temporal

autocorrelation in this vegetation type would last for

only brief periods of time. Also, under extreme weather

conditions, young age classes are capable of carrying

fires in the southern portions of California (Moritz 1997,

Moritz et al. 2004).

In general, the anthropogenic influence on fire

frequency and extent was complicated through the

combination of positive and negative effects, which

helps to answer our third question: ‘‘Do fire frequency

and area burned vary nonlinearly in response to human

influence?’’ Nonlinear effects were evident in the scatter

plots and confirmed by the significance of quadratic

terms in most of the models. The regression models

indicate that humans were responsible for first increas-

ing and then decreasing fire frequency and area burned.

These dual influences may explain why prior studies

presented conflicting results, because a positive or

negative response was dependent on the level of human

presence. Aside from the fact that we intentionally tested

hypotheses regarding nonlinear relationships, our data

also contained a wide range of human presence due to

the large extent and diversity of the state of California.

The scatter plots illustrate how these human–fire

relationships occurred. For both the number of fires and

area burned, and in the current and historic analyses, the

PLATE 1. (Left) Wildland–urban interface (WUI) and (right) burned-over fuel break, both at the eastern end of Scripps Ranch
(San Diego County, California, USA) after the autumn 2003 Cedar Fire (largest fire in California since the beginning of the 20th
century). Photo credits: J. E. Keeley.
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maximum fire values occurred at intermediate levels of

human presence (as in Fig. 6A); and when human

activity was either lower or higher, fire activity was

lower. Initial increase in fire occurrence with increasing

population is reasonable since human presence results in

more ignitions. However, it appears that when human

population density and development reach a certain

threshold density, ignitions decline, and this is likely the

result of diminished and highly fragmented open space

with fuels insufficient to sustain fire. In addition, above a

certain population threshold, fire suppression resources

are likely to be more concentrated in the WUI. Inverse

relationships were evident in the scatter plots of distance

(Fig. 6B). In these, fire frequency and area burned were

greatest at short distances to WUI; and at longer

distances, the trend lines leveled off. These distance

relationships indicate that more fires would be expected

in close proximity to settled areas where ignitions are

likely to occur.

The inclusion of quadratic terms in the multiple

regression models supports the concept that fire

frequency and area burned were dependent on the level

of human activity. Initial housing density was important

in all four historic multiple regression models, and initial

distance to low-density housing was important in both

of the historic area-burned models. The change in

number of fires for both periods was also related to

change in housing density, in bivariate regression models

for the earlier period and in the multiple regression

model for the later period (1980–2000). These results

further emphasize that fire activity was a function of a

certain level of human presence. In addition to the

strong influence of human presence, ecoregion and

vegetation types were also highly significant in the

multiple regression models, suggesting that the particu-

lar level of human activity that was most influential in

explaining fire activity was dependent upon biophysical

context.

The primary value of the multiple regression models

was to identify the most influential variables and their

direction of influence when accounting for other factors.

While they explained how fire activity varied according

to context-dependent interactions, their purpose was not

to provide a formula for determining fire risk at a

landscape scale. Environmental and social conditions

differ from region to region, and processes such as fire

and succession are controlled by a hierarchy of factors,

with different variables important at different scales

(Turner et al. 1997). Nevertheless, these models provide

strong evidence about the strength and nature of

human–fire relationships. That these relationships are

significant across a state as diverse as California suggests

that human influence is increasingly overriding the

biophysical template; yet, managers must account for

the interactions with ecoregion and vegetation type

when making management decisions. Determining the

conditions (e.g., thresholds) for nonlinear anthropogenic

relationships will be important to understand how fire

risk is distributed across the landscape.

At the coarse scale of our analysis, we can estimate

these thresholds based on the nonlinear relationships in

our scatter plots (as in Fig. 6) and suggest that fire

frequency is likely to be highest when population density

is between 35 and 45 people/km2, proportion of intermix

WUI is ;20–30%, proportion of low-density housing is

;25–35%, the mean distance to intermix WUI is ,9 km,

and the mean distance to interface WUI is ,14 km. Our

next step is to more precisely define these relationships at

scales finer than the county level (where management

decisions often occur) and to understand the conditions

under which human activities positively or negatively

influence fire.

These results imply that fire managers must consider

human influence, together with biophysical characteris-

tics such as those represented in the LANDFIRE

database, when making decisions regarding the alloca-

tion of suppression and hazard mitigation resources. If

human presence is not explicitly included in decision

making, inefficiencies may result, because fire occurrence

is related to human presence on the landscape. In

particular, we identify an intermediate level of housing

density and distance from the WUI at which the effects

of human presence seem to be especially damaging, i.e.,

a point at which enough people are present to ignite

fires, but development has not yet removed or frag-

mented the wildland vegetation enough to disrupt fire

spread. This intermediate level of development is one

that large areas of the lower 48 states, particularly in the

West and Southwest, will achieve in the coming decade.

Hence, the WUI’s location, extent, and dynamics will

continue to be essential information for wildland fire

management.

CONCLUSION

In addition to the risk to human lives and structures,

changing fire regimes may have substantial ecological

impacts, and the results in this analysis support the

hypothesis that humans are altering both the spatial and

temporal pattern of the fire regime. Although the overall

area burned has not changed substantially, the distri-

bution of fires across the landscape is shifting so that the

majority of fires are burning closer to developed areas,

and more remote forests are no longer burning at their

historic range of variability (Pyne 2001). In either case,

the ecological impacts may be devastating. Due to lack

of dendrochronological information, historic reference

conditions are difficult to determine in stand-replacing

chaparral shrublands. Although chaparral is adapted to

periodic wildfire, there is substantial evidence that fires

are burning at unprecedented frequencies, and this

repeated burning (at intervals closer than 15–20 years

apart) exceeds many species’ resilience and has already

resulted in numerous extirpations (Zedler et al. 1983,

Haidinger and Keeley 1993, Halsey 2005).

ALEXANDRA D. SYPHARD ET AL.1400 Ecological Applications
Vol. 17, No. 5



If present trends continue in California, the popula-

tion may increase to 90 3 106 residents in the next 100

years. Recent trends in housing development patterns

also indicate that growth in area and number of houses

in intermix WUI has far outpaced the growth in

interface WUI (Radeloff et al. 2005; Hammer et al., in

press). Our results showing that fire frequency and area

burned tend to be highest at intermediate levels of

development (more typical of intermix than interface)

suggest that fire risk is a function of the spatial

arrangement of housing development and fuels. There-

fore, in addition to more people in the region that could

ignite fires, future conditions that include continued

growth of intermix WUI may also contribute to greater

fire risk. Land use planning that encourages compact

development has been advocated to lessen the general

impacts of growth on natural resources (Landis and

Reilly 2004), and we suggest that reducing sprawling

development patterns will also be important to the

control of wildfires in California.
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