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I am Louis W. Botsford, a professor in the Department of Wildlife, Fish and
Conservation Biology at the University of California, Davis. My curriculum vitae is
attached as Exhibit A. 1 am an expert in the area of fish population dynamics and
population estimation. | have provided advice on fish population dynamics and
fisheries to governments at the state, federal and international levels. For example, I
am currently on the Scientific and Statistical Committee of the Pacific Fishery
Management Council, one of the regional federal fishery management bodies. |
served on the Science Advisory Team for the implementation of the Marine Life
Protection Act, a California law mandating implementation of Marine Protected
Areas along the California coast. I also recently served in an Expert Workshop on
Marine Protected Areas and Fisheries Management for the Food and Agriculture
Organization of the United Nations (sec publication 129 on CV). I served on a
committee concerned with the decline of striped bass for the California Water Resources
Control Board in the early 1980s, and I had a contract with California Department of Fish
and Game for modeling striped bass shortly thereafter.

[ have been asked to evaluate an expert report entitled, “The effect of sport-
fishing regulations on the striped bass population in the Sacramento-San Joaquin
Delta” by Dr. David H. Bennett (referred to hereinafter as the Bennett report). In
particular I will address the claims that: (1) the analysis by D.H. Bennett is based on
“accepted fisheries population models” (Bennett report, p. 8), (2) “By eliminating
both the 18-inch minimum size and 2-fish bag limit regulations, the population of
striped bass would decrease by approximately 60-70%" (Bennett report, p. 8),), and

(3) “All of these sources lead to the conclusion that eliminating the sport-fishing



regulations (minimum size limits, creel limits) will probably reduce the Delta
striped bass population by approximately 60-70%” (Bennett report, p. 26).
I. My General Conclusions

A. The report by D.H. Bennett does not follow the accepted method for
estimating the decline in a population due to a change in regulations. Rather
the report is a number of separate calculations, none of which produce a
justifiable, reliable estimate.

B. Itis likely that eliminating regulations would reduce the striped bass
population, but it is impossible to predict accurately the amount by which it
will be reduced because of great uncertainty in: (1) the stock-recruitment
relationship for this local population of striped bass, especially at low
abundance and (2) the response of fishing effort (anglers) to the change in
fishery regulations and to changes in abundance and size structure of the
fishery.

C. The report by D.H. Bennett ultimately determines final population
equilibrium (a 60-70% decline) by claiming that “At about a 60-70% overall
population decrease the resulting CPUE would be similar to the current
CPUE, so the striped bass population would reach a lower equilibrium,
subject to other environmental factors (see D.5 of the Bennett report). No
supporting logic or rationale is given for choosing this as an equilibrium
condition, nor is any other logic or rationale given for choosing the value of a
60-70% decline. Itis not clear whether the word “population” here means

population abundance, population biomass, population recruitment, or some



other population indicator. Since CPUE is an index of abundance this

equilibrium condition implies the population will have the same abundance

after regulations are removed.
II. Accepted Method for Calculating Dependence of Abundance on Regulations

The accepted method for calculating the change in abundance of a fished
population is used in virtually all fisheries management where sufficient data are
available (Sissenwine and Shepherd 1987, Mace and Sissenwine 1993, Restreppo, et
al. 1997, Ralston 2002). It is based upon the mathematical condition for an
equilibrium state in a population model that keeps track of age structure and has a
density-dependent relationship between total egg production by the population
each year and the number of one-year-old recruits (Sissenwine and Shepherd 1987,
Botsford 1997). This relationship is commonly called the stock/recruitment
relationship.

The stock-recruitment relationship has an important effect on population
dynamics because it is density dependent. That is, when a population is small, egg
production is low and recruitment will be low. If the population increases a bit, egg
production will be higher and recruitment be higher in proportion to egg production
(on the left in Fig. 1, at low egg production). However, at higher population levels
(toward the right in Fig. 1), when egg production is high an increase in egg
production will not cause as large an increase in recruitment. Thus the stock-
recruitment relationship in Fig. 1 describes a declining survival from egg to age-
1recruitment (i.e., the ratio of recruitment to number of eggs) as the population egg

production increase (i.e., moving to the right in Fig. 1). This decrease in the fraction
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surviving from eggs to recruit is caused by density-dependence, which is essentially
a “crowding” effect due to limited space or food. This decline in recruit-to-egg
survival as the population becomes larger keeps the population from becoming
extremely large, and it eventually goes to an equilibrium level.

The equilibrium level of a population can be determined graphically from a

plot of this relationship (Fig. 1) (Sissenwine and Shepherd 1987, Botsford 1997).

Hecrutme nt

Spawning (rumoer 31 8ggs)
Figure 1. The stock-recruitment relationship (the bold, curved line), and examples
of the graphical solution for equilibrium recruitment. The stock-recruitment
relationship (curved line) is the number of age-1 recruits that would result from the
number of eggs produced by the population in a specific year. The equilibrium can
be found by drawing a line through (0,0) with slope 1/LEP, where LEP is lifetime
egg production. The equilibrium is where this line crosses the stock-recruitment
curve. Note that as the fishery impact increases, fish do not live as long and LEP
declines causing the line to be steeper, and the equilibrium to move to the left.
When the slope of the line becomes steeper than the slope of the stock-recruitment
curve at the origin, the equilibrium is at zero, i.e., the population has collapsed. Thus
the condition for sustainability is the LEP be greater than 1/(slope at (0,0)). This



value is typically uncertain because we usually have data only at the high values of
spawning and recruitment (as shown by the x’s).

The equilibrium level of the population will be at the point where a straight line
through the (0, 0) point, with a slope of 1/LEP intersects the stock-recruitment
relationship. LEP stands for lifetime egg production, which is calculated as the sum
over all ages of the fraction surviving to each age times the number of eggs
produced at that age. Lifetime egg production (LEP) is essentially the same as eggs
per recruit (EPR), a term commonly used in fisheries. The numerical value of LEP
depends on fishing regulations since they affect the fraction that survives to each
age. As fishing increases, the lifetime egg production decreases, making the slope of
the line steeper and the equilibrium moves to the left as illustrated in Fig. 1. This is
an important relationship in fisheries management because to maintain a
sustainable fishery one wants to avoid having the equilibrium go to zero. That
requires keeping the LEP high enough that the intersection of the lines is not zero.
While this method is known to be correct, finding the solution is often
difficult, because we do not know exactly what the stock/recruitment relationship
looks like at low values. The reason for that uncertainty is that we often do not have
population data (i.e., eggs and recruitment) at those low values. In fishery
management we try to avoid having low abundance hence we often do not know
population behavior at low abundance. California striped bass have not been at low
levels since the 1880s, shortly after they were introduced (Leet, et al. 2001). Some
populations have gone to population abundance levels low enough that we can

estimate the stock-recruitment relationship at low abundance (e.g., Mace and



Sissenwine 1993, Myers, et al. 1999), however we do not know it for California’s
striped bass.

LEP can be interpreted as a measure of replacement, a familiar concept in the
discussion of the growth human populations. Most of us are familiar with the
concept of zero population growth (ZPG), i.e,, if each couple has two children in their
lives the population will remain constant (which is ZPG), if they have less than two
children, the population will decline, and if they have more the population will tend
to increase. The idea of replacement is that a population can be sustained only if the
average individual in the population reproduces enough in their lifetime to at least
replace themselves. This concept is the same in fish populations as it is in human
populations, i.e., LEP has to be greater than a certain number for a sustainable
population. The difference is that we know the minimum requirement for
population persistence is two children in human populations, but we do not know
how many eggs are needed in the lifetime of a fish for it to replace itself. Fish
produce hundreds of thousands of eggs in their lifetime, and a large fraction of them
(more than 99%) do not live to adulthood.

I11. Bennett Report Did Not Use Accepted Method

The Bennett report did not take the accepted approach to calculating the
effects of fishing on populations, and as a consequence the Bennett report
overstates the precision with which he can estimate the abundance that would
result from removing the regulations (“would reduce the striped bass population by
approximately 60-70 %.”). (The Bennett report does not explicitly state the

precision of this estimate, which is unusual for a scientific estimate, but it gives the



impression that the decline is likely to be between 60 and 70 percent.) There are
two major sources of uncertainty in this problem: (1) uncertainty in the knowledge
of the stock/recruitment relationship for California striped bass at low values, and
(2) uncertainty in the LEP, hence the slope of the straight line in Fig. 1. Lifetime egg
production (LEP) depends on the survival to each age, and survival to each age
depends on the rate of removal of fish from the population at each age. The amount
of fishing that would occur at each age after the fishing regulations were removed is
very difficult to predict because the amount of fishing effort under unconstrained
conditions is not known. The behavior of anglers often depends on the abundance
of fish, and the future abundance is not known.

To take the conventional approach to determining the decline in striped bass
with the removal of regulations, Bennett would have had to first have to draw the
stock recruitment relationship which would have been impossible since we have no
data from that curve for low values of egg production and recruitment. He would
also have had to draw a line through the (0, 0) point with slope 1/LEP. That would
have required him to calculate LEP, which depends on fishing mortality. Since we
do not know what the response of anglers to removal of regulations is going to be,
that too would have been impossible. Without knowing what either line looked like,
he obviously could not have found their intersection.

IV. Bennett's Approach

The approach taken in the Bennett report was to perform a number of

calculations involving a number of separate aspects of the decline in striped bass in

the absence of regulations. I review each of these here:



IV.A. Simulation Modeling. Prof. Bennett described his approach to simulation
modeling of California striped bass in Section D.1 of the Bennett report. Itinvolves
using a constant survival from eggs to age-1 recruits (“I used his average number of
eggs to produce an age-1 fish”, Bennett report, p. 14). As described above, and in
Fig. 1, in a population with density-dependent recruitment the survival from eggs to
age-1 recruitment increases as the population becomes smaller, and vice versa.
That was left out of the model of California striped bass in the Bennett report. When
the density-dependence is left out of population models they will eventually either
decrease exponentially to zero or increase exponentially without bound . Real
populations do not behave in that way, hence models without density dependence,
such as the one in the Bennett report, are not used to project long-term abundance.
If populations did grow exponentially the world would be covered with bunnies.

The results of the simulations are shown in Exhibits H and I of the Bennett
report. From the figure in Exhibit I, the population is obviously declining to zero. In
the actual striped bass population the survival from eggs to age-1 would increase as
depicted in Fig. 1, in a way that would be determined by the shape of the stock-
recruitment relationship in Fig. 1. This could cause the population to reach a new
low equilibrium, which is not possible in the model in the Bennett report. Since we
do not know the exact shape of that relationship, it is impossible to accurately
predict where the population will end up in the absence of regulations. His
simulation with no density dependence is not a reliable indicator future abundance
without regulations.

IV.B. Removing Creel/Bag Limit.
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Section D.2 of the Bennett report describes an estimate of how many fish
would have been caught by anglers in the striped bass fishery between 1976 and
2008 if there had been no creel limit. The resulting estimates are shown in the right
hand column in Exhibit B. It is very unusual to present results of an estimation
without an accompanying standard error of the estimate or confidence limits to
indicate what the range of error might be. This limits the conclusions that can be
drawn from this result. Also, the report states that this is a “peer reviewed
statistical procedure”, but there is no evidence that this application to striped bass
was peer reviewed. A peer review would have insisted there be some evaluation of
error.

The estimate is based on a method that fits a statistical model to data
describing the fraction of fishermen each year that catches 0, 1, 2, 3 .... fish per day.
The number of fish caught per day obviously cannot exceed the creel limit. It then
uses that model to predict what those fractions would have been if there had been a
higher creel limit or no creel limit. For example, in the paper they refer to by
Claramunt, et al. (2009), the authors fit kind of statistical model to data from several
years describing the fraction of fishermen that catch 0, 1, 2 and 3 fish per day, where
3 is the maximum bag limit in the fishery they were interested in. They then use
that model to predict the number of fish that would have been caught in those same
years if the bag limit had been 5 fish, and the same abundance of fish had been
present each year.

The application to the California striped bass fishery is quite different. The

bag limit is two fish, so fishermen can catch either 0, 1 or 2 fish per day.
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Furthermore, the analysis in the Bennett report did not use data on the fraction of
anglers catching 0, 1 or 2 fish per day, rather they used the mean and standard
deviation of the number of fish caught per day. From these two numbers they
attempted to estimate the fraction catching 0, 1, 2, 3, 4, 5, 6, .... fish per day. They
then added them all up to obtain the results given in the right hand column of
Exhibit B. It is difficult to say how well so much can be predicted from so little
information, especially in the absence of any analysis or statements regarding the
precision of the estimates.

Another source of error in the analysis of creel data is that the analysis in the
Bennett report used the data from the striped bass creel census, but assumed that
creel census data collection was conducted with standard creel census methodology
(According to email from plaintiff dated ?). The problem is that standard creel
census methodology seeks a random, representative sample of all anglers. The
purpose of the striped bass creel census in the Sacramento/San Joaquin Bay/Delta is
to determine the fraction of striped bass with tags, for a mark/recapture study.
Because of that they seek a representative sample of the striped bass caught. The
functional difference between these sampling approaches that is important here is
that the striped bass creel census will likely under sample the number of fishermen
who have caught not fish. In fact the instruction manual for the technicians doing
the creel sample (CDF&G 2009) makes the primary purpose clear and actually states
“Anglers with fish should have priority over anglers without fish.” The immediate
effect of undercounting the number of fishermen who caught no striped bass would

be to bias the distribution of numbers caught to higher values. That would seem to
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bias the estimate of the number of additional fish that would be caught without an
upper limit in a positive direction. Thus the right hand column of Exhibit B of the
Bennett report has an unknown positive bias.

At the end of Section D.2 of the Bennett report, these questionable estimates
of catches without the creel limit only over the years 1976 to 2008 are used to
calculate a mean exploitation rate of 29%. Because the estimate of catches after the
removal of the creel limit has a positive bias, the projected exploitation rate of 29%
will also be biased high. This presentation of the 29% estimate is then followed by
the statement that this would cause the “reproductive potential” to decrease to less
than 20% for the population. No basis is given for this calculation there, but the
report may be referring to Exhibit G of the “Spawning Potential Ratio.” It is difficult
to evaluate what the report is trying to say here. Suffice it to say that if the
exploitation rate is not as high as the Bennett report estimates, Exhibit G indicate it
could lead to values of SPR that are greater than 20%, the critical value invoked in
the Bennett report. Also, whatever “critical value” was developed for the striped
bass on the east coast would not necessarily apply to the completely different
habitat on the west coast.

To summarize the analysis of creel data to estimate the exploitation rate after
the removal of the daily catch limit, first the estimate of how many fish will be
caught after the size limit and the creel limit are removed is not a routine
application of a common method, but rather is an unusual application of a
statistically acceptable approach, but no analysis of potential error is given, which is

not acceptable for a scientific estimate. Second, the estimate of number of fish
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caught after removal of the catch limit has a positive bias because of the specific
study design of the striped bass creel census. When the facts that this analysis
accounted for only a removal of the creel limit, not the removal of the size limit, and
that no population response to these was included, the estimate does not appear to
be useful in predicting the future exploitation rate, hence it does not provide the
required estimate of LEP.
IV.C. Yield-Per-Recruit Calculations. In Section D.3 the Bennett Report employs
Yield-Per-Recruit analysis. This type of analysis computes the effects of size limits
and changes in fishing on the relative numbers at each size and age in a population.
It does not account for their effects on the number of recruits in the population,
rather all calculations are “per-recruit” regardless of what the annual recruitment of
1 year-olds is. In other words these calculations describe what is happening in a
typical cohort, not how many are recruited to begin each cohort. Thus, by
themselves, these calculations cannot project the future population equilibrium.
IV.C.1 In section D.3.a and Exhibit C the Bennett report makes the point that if you
start with a recruitment of 1,000 fish at age 1, and do not begin fishing until the fish
in a cohort are larger than 460 mm (18 in), then the exploitation rate will have no
effect on the number that reaches that size. If, on the other hand, you remove the
size limit and begin fishing all fish, you will have fewer fish in the cohort reaching
460 mm the harder you fish. These results make sense and seem correct.

However the subsequent statements in this section of the Bennett report,
regarding total population abundance, are difficult to follow because the

calculations are not given, only the results are stated, and these do not seem to be
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correct. For example, to convert numbers in a cohort that begins with a recruitment
of 1,000 fish the Bennett report apparently multiplies by the total abundance, not
the recruitment, to obtain the numbers 50,000 and 119,000. That would not be
correct. The report then invokes the exploitation rate of 29% obtained from the
flawed creel census to conclude that the sustainable number of harvestable fish
would “theoretically decrease 98% to 20,000 with no limits.” No formula or other
basis for this calculation is given. Without such information, it is impossible to
evaluate this analysis in the Bennett report. However, in any event, to calculate the
change in population abundance one would need to follow the accepted method
presented in Section Il, above.

IV.C.2. Section D.3.b and Exhibit D of the Bennett report describe the effect of
removing the size limit on the yield that would result from a cohort that began with
recruitment of 1,000 fish. As the rate of fishing increases, yield continues to
increase if there is a size limit, but if there is not a size limit, the yield begins to
decrease, basically because yield is given in terms of total weight, and there are far
fewer big fish. These are the expected results from this kind of analysis. However, it
is difficult to tell where the California striped bass would be on the x-axis. As noted
above the value of the exploitation rate after removing the fishery regulations is
highly uncertain, and the estimate based on the creel census is unreliable (Section
IV.B).

IV.C.3. In Section D.3.c and Exhibits E and F, the Bennett report describes the

decline in average length (Exhibit E) and weight (Exhibit F) of a cohort as fishing
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increases, both with and without the current size limit. The average sizes of the fish
in a cohort are smaller without the size limit, as expected.
[V.C.4 In Section D.3.d and Exhibit G, the Bennett report describes the effects of
increasing exploitation on Spawning Potential Ratio. This calculation is relevant to
the question of the eventual equilibrium recruitment because the Spawning
Potential Ratio (SPR) is the Lifetime Egg Production (LEP) divided by the LEP with
no fishing. Thus it is the fraction of natural replacement that remains in the
population fished at a specified exploitation rate. As seen in Exhibit G, SPR declines
more rapidly with no size limit because fishing begins at a younger age and smaller
size. The value of exploitation rate is highly uncertain because we do not know the
response of fishermen to the removal of regulations. The report uses the level of
exploitation of 30% here, which is based on their analysis of removing the creel
limit which is only a poorly supported estimate of what the catches from 1976 to
2008 would have been, not what they would be in the future, with the removal of
the creel limit and the size limit.
IV.D. Modeled Effects of Eliminating Size and Creel Limits. In Section D.4 of the
Bennett report the exploitation rate of age 2 and 3 striped bass is declared to be
17% and the exploitation rate for ages 3 and older is declared to be about 30%. The
source of the former number is not given, and the latter is the figure used earlier as
a result from the questionable analysis of creel data, as described in Section IV.B
above.

These questionable mortality rates are placed in the simulation model I

described above in Section IV.A. As noted there, this model represents the survival



16

from eggs to age 1 recruitment incorrectly. The model does not include the change
in that survival with density, nor does it include changes in the amount of fishing as
the abundance changes.

IV.E. Fishery Equilibrium. In Section D.5 of the Bennett report, the conclusion is
drawn that: “At about a 60-70% overall population decrease, the resulting CPUE
would be similar to the current CPUE, so the striped bass population would reach a
lower equilibrium, subject to other environmental factors.” No support or rationale
is given for declaring that the equilibrium should occur when the new CPUE equals
the old CPUE. Also, no formula or table or other source is given as the basis for the
values “60-70%.” Furthermore, the term “population” is ambiguous; it is not clear
whether this refers to a decline in population abundance, population biomass,
population recruitment or some other measure of the population. I note that if catch
were expressed in terms of numbers, since CPUE is usually proportional to
abundance, the statement that the CPUE would be the same before and after the
removal of regulations implies that the abundances would be the same before and
after the removal of regulations.

V. Bennett's Conclusions. Section 4G of theBennett report states that his judgement
is based on numerous sources of information, and he lists them. He then states that

r

“All of these sources lead to the conclusion that ...". From my analyses it is clear
that none of the modeling analyses lead to the conclusion that the striped bass
population will decline by 60-70%. Furthermore, such a decline cannot be precisely

predicted because of the inherent uncertainty in the stock-recruitment relationship
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at low abundance and the future behavior of fishermen if the regulations were

removed.
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