

BKN QUALITY & SAFETY INITIATIVE

NDPC Bakken Crude Characterization Task Force Presentation of Preliminary Results

Williston Basin Petroleum Conference Bismarck, North Dakota - May 20, 2014

www.ndoil.org

Key Findings

- Bakken Quality is very consistent
 - Typical Class 3 Flammable Liquid
 - Both well-to-well and throughout the supply chain
 - Little variation throughout entire basin
 - Shows no "spiking" with NGL's before rail shipment
 - No practical changes in quality during transit
- Produced for over 60 years
 - Recently passed one billion barrel mark
 - Moved by rail, pipeline, truck
 - No corrosion noted by any stakeholder

Key Findings (continued)

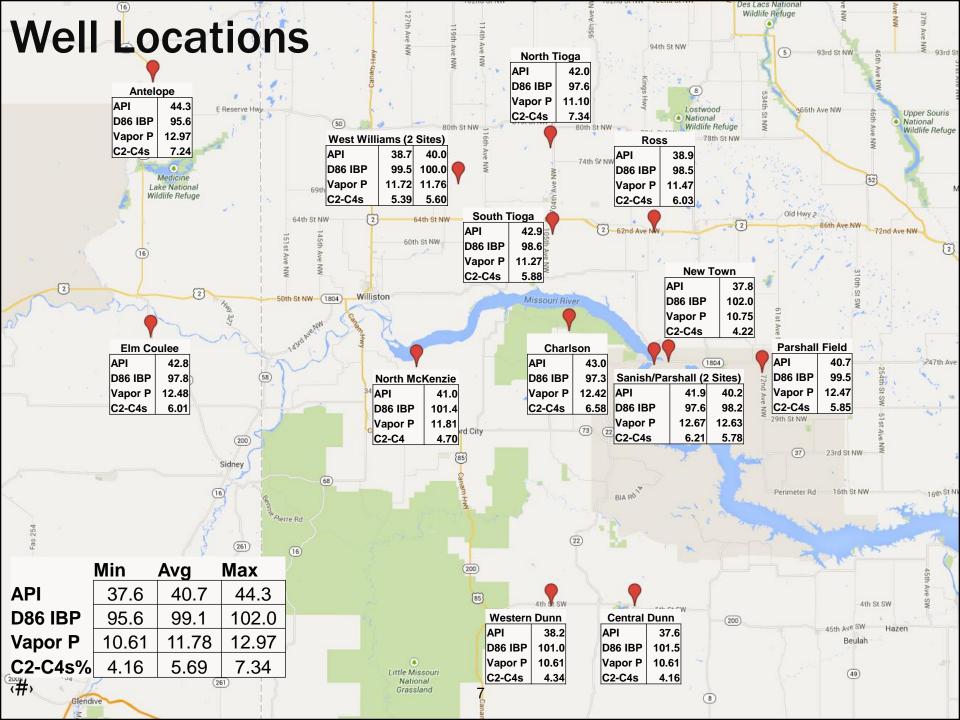
- Very desirable to refiners
 - High transportation fuel yield (gasoline, jet fuel and diesel)
 - Low Metals/ConCarbon contents
- PHMSA mandated IBP test (D86) appears not to be the optimal test method for PG determination
 - Significant variability between labs on same sample
 - Not designed for wide boiling range material like crude oil
 - Other groups, including API, are working on recommendations

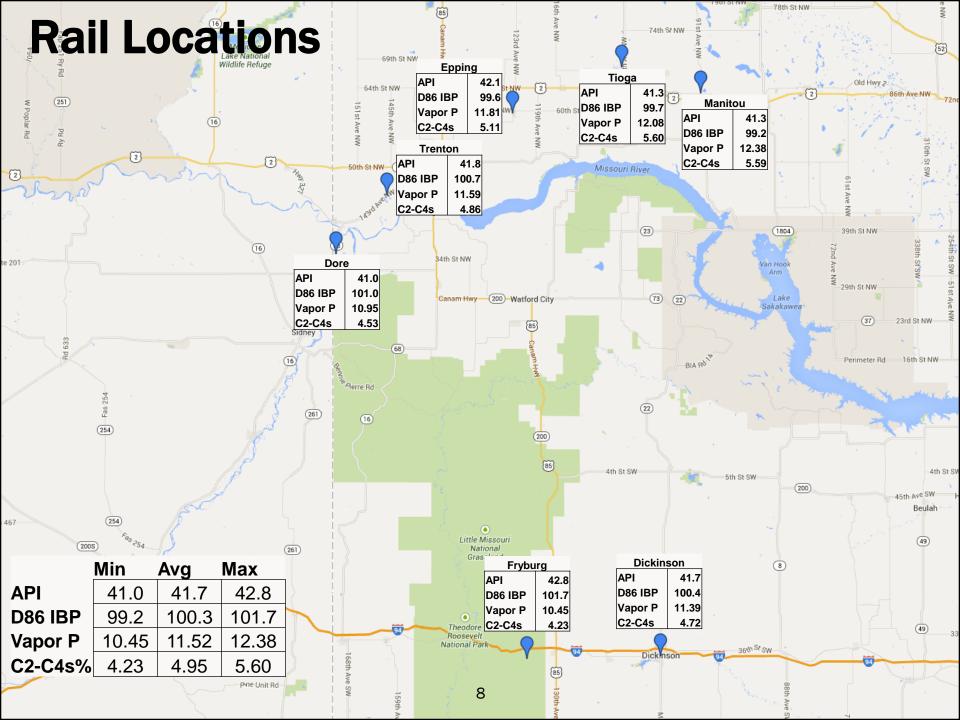
Why study was initiated?

- Address the following:
 - Volatility?
 - Flammable Liquid or Flammable Gas?
 - Presence of subsidiary hazard?
 - Corrosive?
 - All Analyses conclude Bakken is properly Classified as a Flammable Liquid
 - Three studies all in agreement: NDPC, AFPM and Transport Canada

Project Contractors

- Turner, Mason & Company Overall Project Coordinator
 - Internationally recognized refining consultants
 - 43 years in business
 - TM&C staff supplemented by outside expertise
- SGS Sampling and Testing Contractor
 - World leading testing and inspection company
 - Over 135 years in business
 - Utilized both local and USGC laboratories
- Overall cost \$400,000





Project Overview

- NDPC commissioned comprehensive sampling and testing program to establish quality baseline
- BKN crude sampled from both well and rail sites
 - 15 well sites and 7 rail-loading terminals
 - Well sites represent producers with over 50% of total ND production
 - Rail sites represent about 50% of total ND rail capacity
 - Significant geographic dispersion for both well and rail sites
- Sampling initiated on 3/25 and completed on 4/24
 - 7 samples at each site
 - Initial samples at well sites included both top and bottom
- Sampling Complete; Testing over 95% complete
 - 152 total samples 103 from well sites; 49 from rail sites
- Supplemental data provided by member companies

Testing Protocol

- Testing focused on parameters relevant to DOT hazardous material compliance
- The test slate included:
 - API Gravity
 - Flash Point by ASTM D3278
 - Initial Boiling Point (IBP) by ASTM D86
 - Vapor Pressure by ASTM D6377 at 37.8 $^{\circ}\text{C}$ (100 $^{\circ}\text{F}) *$
 - Light Ends Analyses by IP344
 - High Temperature Simulated Distillation (HTSD) by ASTM D7169
- * Results about 1 psi higher than if D323 RVP test method is used

- Defined by Hazardous Materials Regulations (HMR) as having the characteristics:
 - Material is a liquid at 68°F (room temp.)
 - Material has Vapor Pressure <43.5 psig at 122°F
 - Flashpoint <75°F and:</p>
 - Initial boiling point >95°F Packing Group II
 - Initial boiling point < or =95°F Packing Group I
 - -Bakken = Flammable Liquid, PG I or II

Lab Result Summary

Sample Date Range	3/25 to 4/24/2014		
Total (152 Samples)	Avg	Min	Max
Ambient Temp (°F)*	34	10	65
API Gravity	41.0	36.7	46.3
Vapor Pressure (PSI)	11.7	8.9	14.4
D86 IBP (°F)	99.5 (PG II)	91.9 (PG I)	106.8 (PG II)
Light Ends (C2-C4s)	5.48	3.52	9.30
Rail (49 Samples)	Avg	Min	Max
Ambient Temp (°F)*	29	10	47
API Gravity	41.7	39.2	44.0
Vapor Pressure (PSI)	11.5	9.6	12.9
D86 IBP (°F)	100.3 (PG II)	96.7 (PG II)	104.1 (PG II)
Light Ends (C2-C4s)	4.95	3.91	6.44
Well (103 Samples)	Avg	Min	Max
Ambient Temp (°F)*	36	11	65
API Gravity	40.6	36.7	46.3
Vapor Pressure (PSI)	11.8	8.9	14.4
D86 IBP (°F)	99.1 (PG II)	91.9 (PG I)	106.8 (PG II)
Light Ends (C2-C4s)	5.76	3.52	9.30

← API/Vapor Pressure Typical For Light Crude

Rail Cars Used Rated For 100 PSI Transport

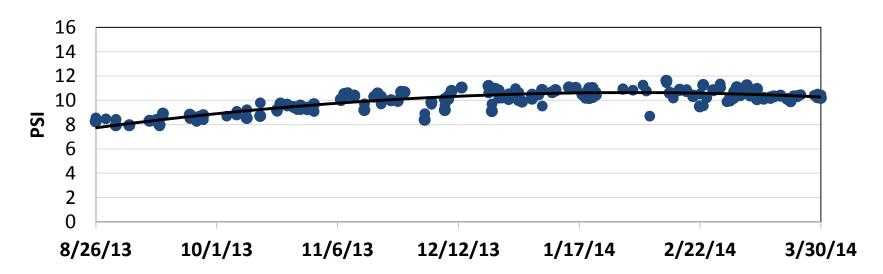
Packing Group
Crude Currently
Categorized/
Transported as
Expected

*Some later samples missing Ambient Temp readings, may skew results colder

- Average API Gravity of 41°
 - Consistent as a light crude oil
- Average Vapor pressure 11.5-11.8 psig
 - 61% below regulatory threshold
- Flashpoint <73°F
 - Consistent for flammable liquid, Packing Group I or II
- Initial Boiling Point midpoint 95°F
 - Consistent for flammable liquid, Packing Group I or II
- Low H2S & Total Acid Number (TAN)
 - No corrosivity

- Defined by Hazardous Materials Regulations (HMR) as having the characteristics:
 - Material is a liquid at 68°F (room temperature)
 - Material has Vapor Pressure <43.5 psig at 122°F
 - Flashpoint <75°F and:</p>
 - Initial boiling point >95°F Packing Group II
 - Initial boiling point < or =95°F Packing Group I
 - -Bakken = Flammable Liquid, PG I or II

- Defined by Hazardous Materials Regulations (HMR) as having the characteristics:
 - Material is a liquid at 68°F (room temp.)
 - Material has Vapor Pressure <43.5 psig at 122°F
 - Flashpoint <75°F and:</p>
 - Initial boiling point >95°F Packing Group II
 - Initial boiling point < or =95°F Packing Group I
 - -Bakken = Flammable Liquid, PG I or II


- Defined by Hazardous Materials Regulations (HMR) as having the characteristics:
 - Material is a liquid at 68°F (room temp.)
 - Material has Vapor Pressure <43.5 psig at 122°F
 - Flashpoint <75°F and:</p>
 - Initial boiling point >95°F Packing Group II
 - Initial boiling point < or =95°F Packing Group I
 - -Bakken = Flammable Liquid, PG I or II

Vapor Pressure

- BKN Average Vapor pressure 11.5-11.8 psig (Mar-Apr)
 - 61% below regulatory threshold
- Seasonality (Rail terminal data outside control data set)

Vapor Pressure Seasonality

- While there is some variability to the data, it shows seasonal variation over a narrow range: 8 psi to 11 psi
- This is exactly as would be expected, with a predictable pattern of higher vapor pressure in the winter and lower vapor pressures in the hotter summer months
- Over this entire 7-month period, there are <u>no</u> unusually high values
- This study demonstrates a predictable, consistent crude oil stream

- Three labs* tested four identical Bakken crude samples for the following:
 - API Gravity by ASTM D5002
 - Vapor Pressure of Crude at 37.8 °C (100 °F), 4:1 V/L Ratio, by ASTM D6377
 - Initial Boiling Point (IBP) by ASTM D86 distillation

*Two in North Dakota and one in Louisiana

Round Robin Testing - Summary

- Excellent agreement on API Gravity and Vapor Pressure
 - Supports sample integrity maintained throughout transport and good lab performance
- Poor agreement on D86 IBP
 - Results for the same sample in each case fall on either side of the 95°F level used for PG I/PG II determination
 - Underscores shortcomings of tests required by PHMSA
 - API committee studying this, as well as alternatives

Results – D86 IBP

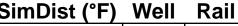
- All samples fall within Class 3 Either PG 1 or 2
 - Shipped on same rail cars, same EMS response
- PHMSA prescribed methodology may not be optimal test for crude oil
 - Not designed for wide boiling range materials like crude oil
 - As a result, poor agreement on Packing Group determination

Sample Location	Date @ Time	Intertek Mandan	SGS St. Rose	SGS Williston	Max Delta
1	5/1/14 @ 16:30	89.9	95.4	101.8	11.9
2	5/1/14 @ 16:30	83.1	89.1	102.6	19.5
3	4/30/14 @ 16:00	87.8	90.7	105.5	17.7
4	5/1/14 @ 16:30	89.2	94.5	102.2	13.0

D86 IBP (°F)

Is Bakken corrosive?

- HMR defines corrosive material
 - Corrode steel or aluminum at rate of 0.25 inch per year
 - Bakken average sulfur is <0.10, low TAN
 - Bakken is not corrosive



- Quality is consistent between well and rail
- Indicates there is no spiking of crudes before shipment D' (0E)**\A***I* **. II**

	Well	Rail	
API Gravity	40.6	41.7	
D86 IBP (°F)	99.1	100.3	
Vap P D6330 (PSI)	11.8	11.5	
Light Ends %			
Ethane	0.24	0.23	
Propane	1.63	1.40	
Isobutane	0.66	0.58	
n-Butane	3.18	2.75	
n-Pentane	2.92	2.72	
C2-C4s	5.76	4.95	
C2-C5	10.22	9.10	

SimDist (°F)	Well	Rail
IBP	<97	<97
5%	107	114
10%	155	166
20%	233	239
30%	312	317
40%	396	397
50%	483	483
60%	574	574
70%	673	672
80%	787	789
90%	936	943
95%	1055	1061
FBP	1271	1278

Loading vs. Destination Testing

• 5 Railcars loaded in North Dakota - Discharged at St. James, Louisiana

Test	Units	Avg. ND Rail Terminal Car Samples	Avg. St. James Rail Terminal Car Samples	Avg. NDPC Data for Same Rail Terminal
VPCR 4 (37.8° C)	psi	10.47	10.61	10.45
IBP	٥F	94.7	90.4	101.7
Flash Point	٥F	<50	<50	<73
H2S in Vapor Phase	ppm v/v	<1	<1	
C2-C4s	Vol %	4.00	4.08	4.23
C2-C5s	Vol %	8.01	7.89	8.13

Key Findings

- Quality is very consistent
 - Both well-to-well and throughout the supply chain
 - Little variation throughout entire basin
 - Shows no "spiking" with NGL's before rail shipment
 - No practical changes in quality during transit
- Very desirable to refiners
 - High gasoline, jet fuel and diesel yields
 - Very low TAN and metals/ConCarbon contents
- Produced for over 60 years
 - Recently passed one billion barrel mark
 - Moved by rail, pipeline, truck

Key Findings (continued)

- PHMSA mandated IBP test (D86) appears not to be the optimal test method for PG determination
 - Significant variability between labs on same sample
 - Not designed for wide boiling range material like crude oil
 - Other groups, including API, are working on recommendations

Remaining Work

- Analyze operating conditions/quality data
 - Ambient Temperatures
 - Separator and treater temps and pressures
 - Production rates/last movements out of tank
 - Tank heights
 - Vapor capture status
- Develop field operating standards at well site operations
- Final Report to be issued in late June
- Establish BKN Benchmark

Establish BKN Benchmark

- Define BKN specifications
- Value:
 - Create reference point for buyers and sellers
 - Producers will follow specific field standards to meet BKN specs
 - Ensure proper BKN oil characterization, now and future

Discussion and Questions?

