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Abstract: Management decisions aimed at protecting aquatic resources following accidental chemical spills into rivers and coastal
estuaries require estimates of toxic thresholds derived from realistic spill conditions: acute pulse exposures of short duration (h),
information which often is unavailable. Most existing toxicity data (median lethal concentration or median effective concentration) come
from tests performed under constant exposure concentrations and exposure durations in the 24-h to 96-h range, conditions not typical of
most chemical spills. Short-exposure hazard concentration estimates were derived for selected chemicals using empirical toxicity data.
Chemical-specific 5th percentile hazard concentrations (HC5) of species sensitivity distributions (SSD) from individual exposure
durations (6–96 h) were derived via bootstrap resampling and were plotted against their original exposure durations to estimate HC5s and
95% confidence intervals (CIs) at shorter exposures (1, 2, and 4 h). This approach allowed the development of short-exposure HC5s for 12
chemicals. Model verification showed agreement between observed and estimated short-exposure HC5s (r2 adjusted ¼ 0.95,
p < 0.0001), and comparison of estimated short-exposure HC5s with empirical toxicity data indicated generally conservative hazard
estimates. This approach, applied to 2 real spill incidents, indicated hazard estimates above expected environmental concentrations
(acrylonitrile), and suggested that environmental concentrations likely exceeded short-exposure hazard estimates (furfural). Although
estimates generated through this approach were likely overprotective, these were derived from environmentally realistic exposure
durations, providing risk-assessors with a tool to manage field decisions. Environ Toxicol Chem 2013;32:1918–1927. # 2013 SETAC
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INTRODUCTION

Several hundred potentially toxic chemicals are transported
in navigable waters of the United States at volumes high enough
that they may pose significant risks to aquatic environments in
the event of accidental spills. In fact, the US Coast Guard’s
National Response Center reports approximately 7000 acciden-
tal releases of chemicals into US waters every year, most of
which involve oil and oil-related chemicals. Although most
spills do not exceed 1000 L, a few incidents have involved much
larger releases, typically related to accidents with ships, railcars,
tankers, and barges carrying large amounts of hazardous
materials. While most spills of chemicals go unnoticed in
peer-reviewed literature, accidental spills have caused negative
consequences to aquatic resources. Examples include the 1991
spill of metam sodium in the Sacramento River, California,
USA [1], and the 1993 spill of a complex mixture of aromatic
concentrates in the Nemadji River, Wisconsin, USA [2].
Management decisions regarding recovery options following a
chemical spill rely on scientific support and multiagency
coordination [3], as well as on emergency planning and response
tools [4]. Forecast and trajectory models [5,6] are often used to
characterize aqueous concentrations at the spill site and
downstream by incorporating specific information about the
receiving water body (depth, velocity, and volume), combined
with physicochemical parameters, transport characteristics of
chemicals (partitioning, evaporation, dissolution), and chemical
fate information (hydrolysis, biodegradation). Although these

models provide initial estimates of the potential concentrations
of concern, risk-assessors, scientists, and environmental
managers also need quantitative measures of concentrations
associated with toxicological effects. Acute toxicity data
(median lethal concentrations [LC50s] and median effect
concentrations [EC50s]) derived from standard laboratory
exposure conditions (static tests, or flow-through with limited
dilution) and durations (e.g., 24–96 h) provide valuable
information that can be used to characterize potential effects
on aquatic receptors; however, these conditions are not
representative of some spill conditions. Typical exposures
under spill conditions are of short duration (a few hours) with
rapid dilution into the water column, particularly when
chemicals are spilled in moving waters. This issue is neither
new [7] nor unique to chemical spills, and it extends to the use of
dispersants during oil spills [8] as well as to episodic spills of
pesticides [9–11] and episodic release of common
pollutants [12]. Furthermore, applying safety factors to acute
toxicity data from longer exposure durations falls short of
providing toxicity values for shorter exposures and can lead to
overestimation of risks [13]. Therefore, immediate assessments
of spills based on short exposures (a few hours) are critical, but
acute toxicity data derived from toxicity testing at short-
exposure durations (e.g., <8 h) are scarce for most chemicals.

The main objective of the present study is to propose the use
of a novel methodology for estimating hazard concentrations for
aquatic species under environmentally realistic spill-exposure
durations (a few hours). The outcomes of this approach would
aid risk-assessors and environmental managers in their
immediate characterization of the potential risk to aquatic
resources from spills, while providing information for manage-
ment decisions. It is important to note that this approach is not
intended to address long-term environmental impacts caused by
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spills but to provide first-tier acute toxicity information to
responders.

METHODS

Chemicals of concern

Hazard concentration estimates for short-exposure durations
(a few hours) were derived for selected chemicals with varying
amounts of acute toxicity data. Selection of chemicals was based
on the following criteria: hazardous materials commonly
transported in the United States, high potential risk for spills
in large quantities, potentially toxic to aquatic organisms, and
involvement in spills.

Short-exposure hazard estimates

Queries for toxicity data for selected chemicals were
performed in databases compiled by US governmental agencies:
the Chemical Aquatic Fate and Effects (CAFÉ) database
(National Oceanic and Atmospheric Administration Emergency
Response Division [NOAA ERD], Seattle, WA, USA, unpub-
lished data; Supplemental Data, Figure S1) and the US
Environmental Protection Agency ECOTOX database [14].
Data used in these analyses included toxicity data (LC50) for
aquatic taxa (fish, crustaceans, mollusks, amphibians, insects,
invertebrates, and worms) from tests ranging from 1 h to 96 h in
duration. Given the limited data for most of the chemicals
selected, analyses also included data on effects concentrations
reported as EC50s, results from various laboratory exposure
regimens (e.g., static, flow-through), toxicity values reported as
measured or nominal, and tests performed under fresh or
seawater conditions. Because data were queried from databases
that compiled information from numerous sources, all data used
here were assumed to be independently collected; even within
the same original data source, chemical-specific toxicity data are,
by definition, independently collected from each exposure
duration test.

The 5th percentile hazard concentration (HC5; based on
LC50 and EC50 data) of species sensitivity distributions (SSDs)
and its associated confidence interval were used as a measure of
chemical hazard [15]. The HC5, derived from a variety of
species with different relative chemical sensitivities, corre-
sponds to the chemical concentration that is assumed to be
protective of 95% of the species tested, or 5% of the cumulative
SSD curve. In the present study the HC5 was used to
demonstrate the applicability of this approach; however, a
more protective value (e.g., 1st percentile hazard concentration
[HC1]) is recommended when the protectiveness of the mean
HC5 is in question. Although there are several shortcomings in
the use and interpretation of SSDs [16], these curves are valuable
in representing the variability in responses across several
species.

For each chemical, exposure duration–specific SSDs were
generated using the geometric mean of LC50 and EC50 toxicity
values by species, requiring a minimum of 5 species per curve.
When no systematic differences in sensitivity between taxa were
found, SSDs were generated for the combined data set, avoiding
potential taxa bias by excluding taxa not equally represented
across the different exposure durations. In cases where there
were statistically significant differences in sensitivity to a
chemical between taxa (via generalized linear interactive
modeling [17]), curves were generated using only data for the
most sensitive taxa. For chemicals with limited measured
toxicity values, estimates of acute toxicity were generated using
interspecies correlation estimation (ICE) models [18–20], which

use robust regression analyses to generate effect concentrations
for 1 or several species based on the known acute toxicity for a
surrogate species. The ICE models were used only for chemicals
that had data available for the same species at different exposure
durations, selecting the most sensitive species when such
information was available for more than 1 species. To limit
propagation of uncertainty, only ICE models meeting general
rules of thumb for best model selection [20] were included in
these analyses. These rules included ICE models with relatively
low mean square errors (<0.22) and high cross-validation
success rate (>90%), degrees of freedom (df > 8), and
coefficient of determination (r2 > 0.6) [20]. Furthermore, only
the closest taxonomic distance (within the same genus and
family) [20] were included, except when information for the
most closely related species was absent. In those cases, greater
taxonomic distances were considered (within the same order,
class, and phylum).

Several criteria were used to minimize propagation of
uncertainty through the analyses. Although 3 empirical family
distributions (log-logistic, log-normal, and Weibull) were used
to fit SSDs [21], the log-normal model generally produced
smaller (more conservative) estimates at the lower tail of the
curve and therefore was selected for these analyses. The
probability density function of the log-normal distribution is
given by
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with parameters m (mean) and s (standard deviation). All SSDs
were tested for goodness of fit (a ¼ 0.01) using the Anderson–
Darling and the Kolmogorov–Smirnov test statistics. The former
is more sensitive at the tail ends [22–24], while the latter is robust
at the middle of the distribution [23]. Curves failing either
goodness-of-fit tests were evaluated for gross outliers via
distribution-based outlier detection methods [25] under the
assumption of a log-normal family distribution. Based on this
outlier detection method, values identified as gross outliers are
unlikely to be drawn from the same log-normal distribution as the
remainder data points [25]. Gross outliers were considered for
removal (see Supplemental Data, Figure S2) only if their removal
improved the fit of the SSD. Curves used to estimate HC5s
included those that passed both goodness-of-fit tests and curves
passing the Kolmogorov–Smirnov test, but with insufficient data
points (n < 7) to compute the Anderson–Darling test.

Resampling theory was used to derive the HC5s and
associated 95% confidence intervals (95% CI) by bootstrapping
individual SSDs (within the same exposure duration) 2000 times
under the assumption of a log-normal family distribution
(Figure 1A). For each chemical, independent HC5 values
for short-exposure durations (e.g., 1, 2, and 4 h) were
calculated by plotting the bootstrapped mean response HC5
and its 95% CI (derived from the individual SSDs) on a log-log
scale versus the original exposure duration, followed by
bootstrap [26] of all the possible regressions occurring between
the given HC5 and 95% CI values across exposure durations
(Figure 1B). The form of this regression is described by a simple
power law function

HC5 ¼ b0 � exposure durationðhÞb1

where b0 and b1 are the intercept (at exposure duration ¼ 0) and
slope, respectively. In all cases, this model was constrained
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arbitrarily to a 0.5-h minimum exposure duration. The selection
of this model was not ad hoc, but it was based on a preliminary
analysis that included the evaluation of other exposure duration–
HC5 relationship models (3-parameter exponential decay or
Haber’s law, baseline toxicity, and 2 hyperbolic functions [27–
29]; see Supplemental Data, Table S1). This analysis showed
that the simple power law function generally had the smallest
Akaike’s Information Criterion value across several individual
tests, indicating that this model provides the best fit. Short-
exposure duration (1, 2, and 4 h) mean HC5s and 95% CIs were
calculated using the simple power law function via bias-
corrected accelerated bootstrap [26,30–32]. The use of bias-
corrected accelerated bootstrap is recommended when estimat-
ing bootstrapped confidence intervals, as it is a robust method
that adjusts for sample bias, and it does not require distribution
assumptions [26]. For chemicals with data for at least 4 exposure
durations that failed linear bootstrap (slope not statistically
significant from 0 at a ¼ 0.05), the mean HC5 (but not its 95%
CI) was used to estimate short-exposure duration HC5s. Only
regressions that successfully passed linear bootstrap (slope
statistically significant from 0 at a ¼ 0.05) were used in these
analyses.

All data processing was recorded and considered when
the reliability of hazard estimates were assessed (high,
moderate, or low; see Supplemental Data, Table S2). Chemicals
with highly reliable estimates included those with at least 3
different exposure duration SSDs each with at least 7 species,
and curves that passed both goodness-of-fit tests (a ¼ 0.01).
Moderately reliable estimates included those with at least 3
different exposure duration SSDs each with at least 5 species,
curves with insufficient data points to compute the Anderson–
Darling test, curves that violated the Anderson–Darling test
(a ¼ 0.01), and curves with gross outliers that required
outlier removal. Chemicals with low estimate reliability
included those that had the same criteria as the moderately

reliable estimates, and also included curves with data from
ICE models, and curves where only the mean HC5, but not
its 95% CI were used to estimate short-exposure duration
HC5s.

Model verification

To quantitatively assess the accuracy of hazard estimates,
available empirical data from short-exposure durations, not used
in hazard estimate calculations, were compared with the
estimated hazard values. Two approaches were used to verify
hazard estimates. When empirical acute toxicity data for short-
exposures (1–6 h) were available, HC5s and 95% CIs were
estimated for these short-exposure SSDs, and values were
compared with the HC5s estimated from longer exposure
toxicity data using the methodology described above. However,
this verification approach was limited to a few chemicals, and
therefore an alternate approach was developed. Short-exposure
(1, 2, and 4 h) HC5s estimated from longer-exposure toxicity
data (6–96 h) were compared with empirical short-exposure
toxicity data for individual species. This approach does not
necessarily address the accuracy of hazard estimates, but rather it
serves as a measure of their level of protectiveness.

RESULTS

Short-exposure hazard estimates

Short-exposure duration hazard concentration estimates
(HC5s based on LC50 and EC50 data) for various chemicals
were classified as having high, moderate, or low reliability (see
Supplemental Data, Table S2). Highly reliable short-exposure
HC5s derived from longer exposure SSDs were obtained for 5
chemicals, while estimates with moderate and low reliability
were obtained for 4 and 5 chemicals, respectively (Table 1; see
Supplemental Data for details). For example, at least 4 exposure
durations SSDs were available for potassium permanganate
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Figure 1. Schematic representation of the method used to derive 5th percentile hazard concentrations (HC5s) for short-exposure durations. (A) Empirical data
(open circles) for several exposure durations (24, 48, 96 h) with their bootstrapped species sensitivity distributions (SSDs; gray lines), mean and 95% confidence
interval (95% CI) concentrations (solid and dashed lines, respectively), and estimated HC5 (closed circles). (B) Estimated HC5 from each exposure duration (24,
48, 96 h; closed circles), the bootstrapped HC5s including mean and 95% CI concentrations (solid and dashed lines, respectively), and the estimated HC5s for
short-exposure durations (1, 2, 4 h; triangles and dotted lines). Concentrations and HC5 scales are unitless for demonstration purposes.
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(high reliability) and chlorine (moderate reliability) (Figure 2),
although the latter required more data processing (outlier
identification via distribution-based outlier detection methods
and gross outlier removal) for derivation of the HC5. By
contrast, SSDs for trichloromethane (low reliability) used
empirical data plus data generated through ICE models with
Oncorhynchus mykiss as the surrogate species (taxonomic
distance ¼ 1 [20]), and statistically significant linear bootstrap
was achieved by using only mean HC5 values, but not their
bootstrapped 95% CIs.

Differences in the sensitivity across taxa were not found for
2-propenal and chlorine (p > 0.05) and were undetermined for a
handful of chemicals with limited toxicity data or with little data
for 1 or more taxa (e.g., potassium permanganate, furfural,
trichloromethane, styrene). Consequently, and to err on the side
of caution, most of the acute toxicity data used to estimate HC5s
included data for the most sensitive taxa, which were generally

fish and crustaceans, although other taxa were included for
selected chemicals with limited empirical data. Chemicals with
differences in sensitivity across taxa included: 1) formalin:
crustaceans slightly more sensitive than fish (p ¼ 0.04); 2)
parathion: crustaceans and insects more sensitive than fish
(p ¼ 0.005); 3) malathion: crustaceans, insects, and inverte-
brates more sensitive than other taxa (p ¼ 0.01); 4) acrylonitrile:
crustaceans appear more sensitive than other taxa, but there were
not sufficient data to assess this group independently; 5) zinc:
crustaceans more sensitive than fish (p ¼ 0.02); and 6) 2-
propanone: fish and crustaceans slightly more sensitive than
other taxa (p ¼ 0.04). For zinc, short-exposure HC5 estimates
for crustacean and fish were within 1 order of magnitude of each
other, reflecting sensitivity differences between taxa; estimates
for crustaceans weremore reliable than those for fish, as the latter
required outlier removal (Figure 3). Similarly, for malathion,
estimates for the most sensitive taxa (crustacean, invertebrate,

Table 1. Short-exposure duration (1, 2, and 4 h) bootstrapped 5th percentile hazard concentrations (HC5s) and 95% confidence intervals (95% CIs) for selected
chemicals using empirical species sensitivity distributions (SSDs) available for longer exposure durations (6–96 h), and combining information from one or more

taxaa

Chemical (CAS no.)

Empirical
exposure

duration SSDs (h)
Species
taxa

Exposure
duration (h)

Bootstrapped short-exposure estimates (mg/L)

Reliability
Mean
HC5

95% CI
HC5

Formalin (50000) 6, 24, 48, 96 C, F, M 1 684b 260–1652b High
2 392b 178–805b

4 225b 122–389b

Parathion (56382) 24, 48, 72, 96 C, I 1 9 3–25 High
2 7 3–16
4 5 2–10

Malathion (121755) 24, 48, 72, 96 C, I, S 1 54 14–200 High
2 33 11–99
4 20 8–48

Zinc (7440666) 24, 48, 96 C 1 40b 1.5–1183b High
2 16b 1–262b

4 6b 0.7–58b

Potassium permanganate (7722647) 6, 24, 48, 96 C, F 1 14b 7–29b High
2 9b 5–16b

4 6b 3.5–9b

Furfural (98011) 24, 48, 96 C, F 1 319b 111–906b Moderate
2 189b 79–447b

4 112b 56–221b

Acrylonitrile (107131) 24, 48, 96 A, C, F, S, M, W 1 138b 36–533b Moderate
2 87b 28–266b

4 55b 23–133b

Zinc (7440666) 24, 48, 96 F 1 132b 5–3243b Moderate
2 54b 3–754b

4 22b 2–177b

Chlorine (7782505) 12, 24, 48, 96 C, F, S 1 366 100–1300 Moderate
2 227 80–665
4 141 62–323

2-propanone (67641) 24, 48, 96 C, F 1 7374b 7100–7700b Low
2 7000b 6795–7261b

4 6660b 6501–6854b

Trichloromethane (67663) 12, 24, 48, 96 F 1 33b 29–38b Low
2 30b 27–33b

4 28b 25–30b

Styrene (100425) 24, 48, 72, 96 C, F 1 128b 30–555b Low
2 80b 24–271b

4 50b 19–132b

2-propenal (107028) 24, 48, 72, 96 C, F, S 1 132 75–260 Low
2 101 63–176
4 78 53–120

Malathion (121755) 24, 48, 72, 96 F 1 136 96–181 Low
2 118 89–149
4 102 82–122

a All the toxicity data used to derive these estimates were obtained through data queries of CAFÉ and ECOTOX databases [14]. See Supplemental Data for details.
b Units in �103.
A ¼ amphibians; C ¼ crustaceans; F ¼ fish; I ¼ invertebrates; S ¼ insects; M ¼ mollusks; W ¼ worms.
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and insect) were 1 order of magnitude less than those derived
from fish data; estimates for the most sensitive taxa were more
reliable than those of fish, as the latter required outlier removal
and only the mean HC5 was used to estimate short-exposure

duration HC5s. These observations indicate that potential
differences in species sensitivities across taxa need to be
considered when one is assessing hazards under spill conditions.
That is particularly the case for pesticides, which, given their
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Figure 2. Bootstrapped 5th percentile hazard concentrations (HC5s) and 95% confidence intervals (95% CIs; triangles) used to estimate shorter exposure mean
HC5s (solid line) and 95% CIs (dotted lines) via bootstrapping (gray lines) of a simple power law function. Estimates are shown for 3 chemicals with different
degrees of reliability: (A) potassium permanganate, (B) chlorine, and (C) trichloromethane. Right-hand panels show a close-up of the shorter exposure estimates
with all available chemical-specific empirical data (open circles).
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mode of action, are likely to exhibit higher toxicity to
invertebrates compared with fish.

Model verification

A total of 6 SSDs and their associated mean HC5s and 95%
CIs were estimated via bootstrap for 4 chemicals that had
sufficient acute toxicity data for short-exposure durations (1–
6 h). These estimates were compared with estimates derived
using longer exposures (24, 48, and 96 h) using the approach
described earlier. The HC5s from these individual SSDs, not
used in hazard estimate calculations, were in agreement
(adjusted coefficient of determination, r2 adjusted ¼ 0.95,
p < 0.0001) with those predicted from longer exposure
durations (Figure 4). Of the 6 empirical HC5s, 3 fell within
the estimated HC5 confidence intervals derived from longer
exposures, while 2 fell above and 1 below the predicted
confidence intervals. In all of these cases, estimates were within
2-fold of the empirical data values. Similarly, comparison of
observed empirical acute toxicity data from short-exposure
durations were in agreement with short-exposure HC5s derived
from longer exposures (r2 adjusted ¼ 0.63, p < 0.0001;
Figure 4). Of the 80 empirical data points available, 23 fell
within the HC5 confidence intervals, while 46 were above
(overprotective), and 11 below (underprotective) the HC5
confidence intervals derived from longer exposures. Compari-
son of estimates with observed empirical data is not a true
validation of model fitness, but it provides an indication of how

close hazard estimates are relative to the empirical toxicity data
available for a small number of chemicals. The analyses above
indicate that HC5s derived from longer exposure durations are
more likely to overestimate than to underestimate hazards, and
that the model does not grossly underestimate hazards.
However, when concerns regarding the protectiveness of the
HC5 exist, a more protective HCx (e.g., the lower 95% CI of the
HC5, or the HC1) is highly recommended to ensure adequate
protection of aquatic species.

Model application

Two real chemical spills were used to assess the applicability
of hazard estimates. On 16 July 2010, a barge collision in the
lower Mississippi River (USA) resulted in the release of 600
barrels of acrylonitrile (CAS number 107-13-1) [33], with the
potential release of an additional 50 000 barrels. Based on
conditions of river flow, NOAA’s environmental forecast
models estimated a potential concentration of �1000 mg/L
within 30 min of a complete release up to 9 km downstream
from the collision site. Model estimates for toxicity of
acrylonitrile derived from longer exposure durations with data
from several taxa (mostly fish) yielded an HC5 of 138 000 mg/L
for an exposure lasting 1 h. A few empirical data points were
available for short exposures (�12 h) to acrylonitrile (Figure 5)
of which all but 1 were within the estimated 95% CI HC5,
confirming that this approach can provide a numerically
protective value for short exposures when empirical data are
limiting. Although crustaceans appear to be more sensitive to
acrylonitrile than fish, short-exposure hazard estimates were
conservative enough and well above expected environmental
concentrations to be protective of the most sensitive group.

On 25 January 2000, an overturned tank truck released
26 500 L of furfural (CAS number 98-01-1) into a drainage
canal (6–12 m wide) that led to San Martin Lake, Texas,
USA [34]. At the time, water depth in the canal was 1 m, and
water flow was between 0.3 and 0.6 m3/min. The concentration
of furfural was 10 000 000 mg/L in water samples collected
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within a day near the spill site. A few days later, concentrations
of furfural in the same area were as high as 10 000 mg/L, with
concentrations in water samples from SanMartin Lake 10 d after
the spill between 7000 and 9000 mg/L. Subsequent water
samples showed concentrations�3000 mg/L. The HC5s derived
from 24-, 48-, and 96-h exposure SSDs (Figure 6) were
32 000 mg/L, 15 000 mg/L, and 11 000 mg/L, respectively,
which are below the ranges observed during the spill. Although
water samples were not collected for chemical analyses within
the first hours after the spill, high furfural concentrations above
the estimated SSD HC5s in the days after the spill suggested that
environmental concentrations likely exceeded short-exposure
hazard estimates derived using this approach. Data limitation
prohibited the assessment of the sensitivity of fish versus
crustaceans, but field observations during the spill suggested a
greater sensitivity of fish.

DISCUSSION

The present study presents an approach to help responders
and managers make immediate, informed decisions regarding

the potential short-term hazards to aquatic resources from
chemical spills. Because of the specific goal of the present study,
this approach may not be suited to address long-term and chronic
effects and environmental damage, which require more detailed
toxicity data and information on environmental persistence and
partitioning. These more thorough investigations are typically
performed as part of subsequent natural resource environmental
damage assessments. Consequently, risk hazards derived from
this approach are intended to provide a first-tier assessment of
acute effects following a spill.

The development of this approach was largely motivated by
the lack of data for short exposures (a few hours), which are the
data needed to assess the potential acute toxicity resulting from
exposures to spilled chemicals. The greatest challenge in
developing this approach was lack of data for most chemicals
of interest. Of the 120 chemicals initially considered, only a few
had sufficient acute toxicity data for short-exposure hazard
estimates; and for some, data limitations resulted in estimates
with relatively low reliability. In some cases, data restrictions
were overcome by the use of ICE models [18–20], which
generated acute toxicity data for several predicted species based
on the known toxicity to a surrogate species (e.g., Claassenia
sabulosa, Hyalella azteca, Micropterus salmoides, Oncorhyn-
chus mykiss, Oncorhynchus clarkii, and Pimephales promelas),
thus allowing the generation of SSDs. Acute toxicity data for
several other chemicals (not shown here) were also evaluated.
For most of these chemicals, short-exposure hazard estimates
were not derived because of limited acute toxicity data (LC50
and EC50). For others, a close proximity among SSD HC5s and
95% CIs (based on LC50 and EC50 data) across SSD-specific
exposure duration, or a nonlinear relationship between HC5s and
exposure duration, led to nonstatistically significant (p > 0.05)
linear bootstrap regressions. For some chemicals, the lack of a
negative correlation between SSD HC5s and SSD-specific
exposure durations, the main assumption needed to generate
short-exposure hazard estimates, was explained by the type and
number of species in each SSD. In some cases, chemicals with
large data sets for 96-h exposures had greater HC5s than HC5s
from less commonly tested exposure durations (e.g., 24 and
72 h), possibly due to a larger number of species and to the
presence of more tolerant species in 96-h SSDs. It is apparent
from this research that acute toxicity data derived from
environmentally realistic exposure conditions, different from
standard toxicity testing procedures, are needed to assess
potential effects on aquatic receptors from chemical spills.
The need for this information also extends to oil spills [8],
although studies are starting to incorporate short-exposure
durations (a few hours) in their toxicity testing [35,36]. One
shortcoming of the hazard estimates derived with this
methodology is that these were derived with information from
the parent compound, and thus chemicals that degrade or
hydrolyze rapidly into more or less potent metabolites can lead to
over- or underestimation of hazard estimates; these are not
accounted for in these calculations. Consequently, the use of
hazard estimates derived using this methodology needs to
consider chemical-specific properties to adequately assess
potential risks to aquatic receptors.

Uncertainties in short-exposure hazard estimates were likely
influenced by the data sources and the model used in their
calculation. Chemical-specific HC5s for short-exposure dura-
tions were based on a variety of exposure conditions and tests,
including measured versus nominal concentrations, static versus
flow-through tests, freshwater versus seawater exposure con-
ditions, and differences in life stages within a single species [14],
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Figure 5. Bootstrapped (gray lines) 5th percentile hazard concentration
(HC5) and 95% confidence interval (95% CI) estimates (solid and dotted
lines, respectively) for short exposures to acrylonitrile. These estimates were
derived from HC5s of species sensitivity distributions (SSDs) from longer
exposures (24, 48, and 96 h) using acute toxicity data from all taxa. The
triangles represent the 24-h SSD HC5 and 95% CI, and the open circles
display empirical data for short exposures (1–12 h).
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measured following the spill near Brownsville Port, TX, USA.
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all of which add uncertainty to hazard estimates. Although
uncertainties could be reduced by performing analyses based on
water type (freshwater vs seawater), life stages (adults vs early
life stages) [37,38], and taxa (fish vs crustaceans), data were
limited and such detailed analyses were not possible for most
chemicals of interest. A close examination of the acute toxicity
data used in the development of this approach indicated that most
data were for freshwater test species, and when both freshwater
and seawater data were available, no apparent differences in
sensitivities were observed, except for malathion. This chemical
appears to be less toxic to seawater crustaceans, and inclusion of
these more tolerant species could have resulted in underestima-
tion of hazard estimates. However, because freshwater data
comprised nearly 5 times the data for seawater species, inclusion
of the more tolerant species did not have any effects on the HC5.
For example, the 1-h malathion HC5 for the most sensitive
species (crustaceans, invertebrates, and insects) derived using all
freshwater and seawater data (mean HC5 54 mg/L, 95% CI 14–
200 mg/L) were not different from estimates based on the most
sensitive freshwater species (mean HC5 53 mg/L, 95% CI 13–
230 mg/L). Although previous studies showed greater sensitivity
of seawater species than freshwater species to malathion [37,39],
comparisons between studies were not possible because
information on data selection (taxa and exposure durations)
were not included. Nevertheless, underestimation or overestima-
tion of hazards can result from ignoring the influence of water
type on acute toxicity, and therefore analyses should be
performed taking into consideration water type, as well as any
other identified sources of uncertainty. Furthermore, and as
previously acknowledged, the chronic toxicity and cumulative
environmental consequences of highly toxic chemical spills, such
as one involving malathion, should be carefully addressed with
alternate approaches, as the one presented here is not intended to
substitute for systematic environmental assessments.

Another source of uncertainty in short-exposure hazard
estimatesmay have been introduced by the use of a simple power
law model. Although the selection of this model from a number
of plausible candidate models was based on the lowest Akaike’s
Information Criterion value (an approach based on minimum
discrepancy estimation), in some cases other models (baseline
toxicity model and 3-parameter exponential decay model) may
have provided a better model estimation for short-exposure
HC5s. However, because of limited data specific for the purpose
of the approach presented here, it was not possible to test under
which circumstances one model may be preferred over another.
A more systematic investigation of relationships between
duration of exposures and HC5s may be re-evaluated as more
data become available.

The applicability of this approach was also evaluated relative
to chemical-specific modes of action. While the mode of
action of most chemicals used here was baseline narcosis [40],
this approach also worked well with reactive electrophiles/
proelectrophiles and acetylcholinesterase inhibitors, suggesting
that this approach could be used for a number of chemicals with
various modes of toxicity. However, this approach likely works
best for chemicals that have a mode of action that is rapidly
reversible and has no latency (e.g., industrial chemicals that act
by baseline narcosis), and not as well for chemicals that have a
receptor-mediated mode of action. Consequently, data for
chemicals with different modes of toxicity are needed to
legitimize the suitability of this approach.

Despite limited data for a more complete model validation,
the data available showed that this approach can predict HC5s
for short-exposure durations within 1- to 2-fold of empirical

value derived from SSDs and that hazards are not grossly
underestimated by the model. However, if any hazard
underestimation is deemed unacceptable, the same approach
can be implemented to derive hazard values that protect a larger
fraction of the species (e.g., HC1). In the present study, the 3-h
HC5 for formaldehyde derived from longer exposure durations
(6, 24, 48, and 96 h) was 281 000 mg/L (95% CI 145 000–
522 000 mg/L), which was not different from the HC5 derived
from the 3-h SSD (mean 139 000 mg/L, 95% CI 26 000–
912 000 mg/L). Given uncertainties in the relative sensitivity of
field species to a particular chemical, it is often preferable to err
on the side of caution and favor hazard overestimation, such as in
the cases of potassium permanganate and chlorine, when
assessing potential effects under spill conditions. Furthermore,
comparison of hazard estimates derived using this approach with
either estimated environmental concentrations (acrylonitrile
example) or measured concentrations in samples from impacted
water bodies (furfural example) provides an alternative scientific
approach for assessing potential concentrations of concern under
typical spill conditions. However, the estimation of HC5s is
dependent on available data, and further validation of this
approach requires collection of water samples for chemical
analysis within the first hours of a spill.

The practical application of this approach to chemical spills
can be further expanded by using the 2 examples presented in the
present study. In the case of the acrylonitrile spill, and under the
assumption that the HC5 is a conservative estimate of hazard,
responders and managers may have elected the slow release of
this chemical into the river at a rate not to exceed the estimated
HC5 value. Alternatively, if sensitive crustacean species or life
stages were suspected to be in the area, one could consider the
use of the same approach but with a more conservative hazard
estimate (e.g., HC1), followed by the assessment of salvage
operations that would minimize the release of this chemical into
the river. By contrast, the furfural spill suggested that
environmental concentrations likely exceeded short-exposure
hazard estimates and consequently, responders and managers
may have chosen to implement all viable options to limit the
migration of this chemical downstream. In this particular spill,
the need for additional analyses is evident to better characterize
the immediate potential hazards to aquatic resources, by, for
example, estimating the fraction of potentially affected
species [22,41,42] as a function of exposure duration and
expected environmental concentrations. Hypothetically, an
environmental concentration of 35 000 mg furfural/L 24 h
post spill (above the estimated 24-h HC5 of 32 000 mg/L)
would have affected 33% of the species on the SSD. Clearly, an
expansion of the approach presented in this paper with the
integration of expected environmental concentrations would
allow estimates of exposure–effects joint probabilities. This
expanded approach would add scientific value to the information
used by risk-assessors, allowing more scientifically driven
management of decisions regarding the immediate risks of spills.

Although there are inherent limitations with the use of
SSDs [15,16,43,44], significant efforts have been made to refine
their use in environmental assessments [45–47]. The unknown
sensitivity of untested species, the ecological relevance of
aquatic species within the impacted area, and the impact of their
unknown sensitivity on the uncertainty associated with the lower
end of SSDs also should be considered when using SSDs to
assess hazards from spills. Because species included in SSDs are
surrogates for other species, risk-assessors and environmental
managers should consider the relative sensitivity and ecological
roles of resources at risk within the area impacted by the spill, as
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well as their taxonomic distance from species more commonly
used in toxicity testing. The HC5s provided here (mean and 95%
CIs) may provide a range of protectiveness that can be used by
risk-assessors and managers in their assessment of risks from a
chemical spill. While estimates derived using this approach
should be considered tentative, these provide risk-assessors and
environmental managers with a scientifically based tool for
assessing immediate potential acute toxicity effects and
managing field decisions. Future efforts will focus on adding
short-exposure hazard estimates to the CAFÉ database (NOAA
ERD, Seattle, WA, USA, unpublished data) and developing
models that take into account the mode of action and other
suspected sources of uncertainty. Finally, this approach is an
attempt to tackle a question that, until now, has not been
answered in a rigorous fashion.

SUPPLEMENTAL DATA
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Figures S1–S5. (1.9 MB PDF).
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