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Abstract
Nutrient-rich, turbid river plumes that are common to large lakes and coastal marine ecosys-

tems have been hypothesized to benefit survival of fish during early life stages by increasing

food availability and (or) reducing vulnerability to visual predators. However, evidence that

river plumes truly benefit the recruitment process remains meager for both freshwater and

marine fishes. Here, we use genotype assignment between juvenile and larval yellow perch

(Perca flavescens) from western Lake Erie to estimate and compare recruitment to the age-

0 juvenile stage for larvae residing inside the highly turbid, south-shore Maumee River

plume versus those occupying the less turbid, more northerly Detroit River plume. Bayesian

genotype assignment of a mixed assemblage of juvenile (age-0) yellow perch to putative

larval source populations established that recruitment of larvae was higher from the turbid

Maumee River plume than for the less turbid Detroit River plume during 2006 and 2007, but

not in 2008. Our findings add to the growing evidence that turbid river plumes can indeed

enhance survival of fish larvae to recruited life stages, and also demonstrate how novel pop-

ulation genetic analyses of early life stages can contribute to determining critical early life

stage processes in the fish recruitment process.

Introduction
The recruitment process in fishes is complex and influenced by a large number of factors, both
biotic and abiotic [1,2]. For many freshwater and marine populations, processes operating dur-
ing early life stages have been shown to be important determinants of survival to older (and
fishable) life stages, with factors that influence food availability and predation risk to larvae
being seen as especially important (see reviews by [1,2]). Because nutrient-rich, turbid river
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plumes that are common to both large lake and coastal marine ecosystems hold great potential
to benefit larval fish by enhancing zooplankton availability (via nutrient effects; [3–5]) and re-
ducing risk from visual predators (via turbidity effects; [6–8]), much research has centered on
quantifying the role that river plumes play in the fish recruitment process (e.g., [4, 9–12]). In-
deed, river inflows and their associated plume fronts have been shown to promote primary and
secondary production, as well as foraging during early life stages [13–16]. Despite these gener-
ally positive effects of river plumes on fish early life stages, river plumes also can at times inhibit
foraging (e.g., [10]D), and evidence that any benefits provided by plumes actually carryover to
affect survival at later life stages remains limited (but see [12]).

Documenting whether river plumes provide a survival advantage (or disadvantage) to larvae
residing inside the plume versus outside of it requires a means to track relative survival rates be-
tween areas. Doing so is difficult, however, in the absence of markers that can identify differen-
tial use of the plume during the larval stage. Fortunately, the advent of natural tagging
approaches such as otolith microchemistry and molecular genetics has opened the door for ad-
dressing this information gap [17]. For example, Reichert et al. [12] used differences in stron-
tium concentrations (Sr) in the otoliths of larval yellow perch (Perca flavescens) captured in
plume (high Sr) versus non-plume (low Sr) areas to demonstrate better recruitment to the age-0
juvenile stage of larvae residing inside a turbid (Maumee River) plume versus larvae residing
outside of this plume in western Lake Erie. While we are unaware of any studies that have used
molecular genetics as a natural tag to quantify relative recruitment between individuals residing
inside versus outside river plumes during early life stages, its potential use as a tool to track rela-
tive recruitment rates would be expected to be high, if genetic divergence could be used to identi-
fy river plume habitat use. The genetic divergence could then be used with genotype assignment
to determine the relative survival of juvenile fish, similar to approaches used in marine systems
to document whether marine protected areas have been affecting the recruitment of both local
and geographically distant coral reef fish populations (e.g., [18, 19]). The application of molecu-
lar genetic tags for quantifying the subtle mechanisms affecting biological processes in aquatic
environments (e.g., habitat use impacts on recruitment; [20, 21]) is based on the underlying ef-
fects of dispersal and gene flow on population divergence [22, 23]. Both dispersal and gene flow
can be constrained or enhanced by environmental discontinuities such river-plumes [23, 24].

We use microsatellite markers and genotype assignment between life stages (juvenile to lar-
val) to test the hypothesis that survival of larval yellow perch (Perca flavescens; YP, hereafter)
to the age-0 juvenile stage in western Lake Erie is higher for individuals residing inside a nutri-
ent-rich, turbid river plume than those residing outside of it. Western Lake Erie is a perfect sys-
tem to test this hypothesis for a number of reasons. First, it is heavily influenced by two rivers
that create distinct plumes (water masses) that differ in their chemicophysical characteristics
[25, 26] during the spring, a period when the larvae of many economically and ecologically im-
portant fishes such as yellow perch are abundant in the ecosystem [2, 27]. Those two plumes
constitute the majority of the water mass of the western basin of Lake Erie as the Detroit and
Maumee Rivers are by far the dominant tributary rivers. The Maumee River, which discharges
into the southern part of the western basin of Lake Erie, has been shown to form a plume that
is more turbid, warmer and slightly more biologically productive than the plume formed by the
Detroit River, which discharges into the northern portion of the basin [12, 28]. Second, previ-
ous research has demonstrated a strong positive correlative relationship between Maumee
River plume size and recruitment of western basin YP to the age-0 juvenile stage, a life stage
that is very strong predictor of future recruitment to western Lake Erie’s fishery at age-2 [29].
While the mechanisms are not yet known, turbidity’s ability to reduce predation risk (i.e., miti-
gation of top-down effects) appears to be more important than zooplankton prey supplementa-
tion (bottom-up effects) via nutrients [8, 12, 28]. Third, although no previous studies have
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examined genetic structure in YP larvae in their rearing environment, low levels of genetic
structure have been documented in adult YP within the western basin of Lake Erie [30, 31] in-
dicating a high likelihood for larval genetic structure. Given that fish populations can evolve
life histories that center on predictable physical phenomena such as river flows and water cir-
culation patterns, and strong selection (predation) gradients appear to exist in Lake Erie that
are driven by Maumee River plume formation [8, 12, 28], the possibility that larval YP exhibit
genetic structure at the scale of the Detroit and Maumee River plumes exists. Finally, because
YP is an ecologically and economically important species in all of the Laurentian Great Lakes
that also has a similar life history and level of recruitment variability as many other exploited
freshwater and marine fishes [2], we expect our findings and approach to have application to a
wide array of ecosystems.

Here we use polymorphic microsatellite markers, population genetic analyses, and genotype
assignment to explore the role of river plume-associated turbidity on YP recruitment to the age-
0 juvenile stage in the western basin of Lake Erie. We postulate that larval YP will exhibit genet-
ic structure at the scale of the Detroit and Maumee River plumes, and that the genetic structure
can be used in conjunction with genotype assignment of juvenile YP to their respective larval
cohorts to indirectly estimate first summer relative survival in the two rearing habitats. Towards
this end, we 1) tested for spatial genetic structure in larval YP in the western basin of Lake Erie,
2) quantified relative survival to the age-0 juvenile stage (age-0) of larvae residing inside versus
outside of the turbid Maumee River plume, and 3) tested for temporal variation in recruitment
and population genetic structure. Our analyses identifies survival differences among larval fish-
es fromWestern Lake Erie and suggests that river plumes may confer benefits for larval YP sur-
vival, adding to a growing understanding of the complex ecology of Lake Erie.

Materials and Methods

Fish collections
Larval YP were collected weekly at 8 to 12 sites within both northern (Detroit River plume)
and southern (Maumee River plume) areas of the western basin of Lake Erie (Fig 1). Moderate-
Resolution Imaging Spectoradiometer (MODIS) 250 m resolution, true colour, near real-time
imagery from the Terra and Aqua satellites (http://coastwatch.glerl.noaa.gov/) was used to de-
termine the rough boundaries of the Maumee and Detroit River plumes as the turbid waters
from the Maumee River are evident in the images (see details in [12]). YP larvae were captured
during close to identical periods in the two plumes, with the exception of 2007 when the date
of first capture was a week earlier in the Maumee (day 122 versus day 128) and in 2008 when
the date of last capture was a month later in the Maumee (day 175 versus day 144).

Fishes collected in Ontario waters of Lake Erie were taken as part of routine fishery moni-
toring activities conducted by the Lake Erie Management Unit of the Ontario Ministry of Natu-
ral Resources and Forestry under License No. 1045675. Fishes collected from Ohio waters were
taken under Ohio Division of Wildlife Wild Animal Permit 09–95. Fishes collected fromMich-
igan waters were taken under a Scientific Collector’s Permit-Fish issued by the State of Michi-
gan Department of Natural Resources. No specific permission other than permissions granted
through the above permits was required for these locations/fish collections. Collections did not
involve endangered or protected species. Larvae were collected using oblique (~1 m from bot-
tom to surface) tows with paired 1 m diameter, metered bongo nets (500 μm and 1000 μm
meshes) on a weekly basis from late April through June in 2006, 2007, and 2008. Larvae were
humanely sacrificed using ethanol or rapid chilling following the AMVA Guidelines (https://
www.avma.org); larvae were preserved in 100% ethanol until identified to species in the labora-
tory [32]. Fish collection methods were approved by University of Windsor’s Animal Care
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Fig 1. Maps of western Lake Erie with larval (large circles) and juvenile (small black squares) yellow
perch sampling sites during spring 2006 (Panel a), 2007 (Panel b) and 2008 (Panel c). Transmissometry
values greater than six indicate high turbidity and differentiate the Maumee River plume (dark circles) from
Detroit River plume waters (white circles). In 2006, two sites were not used in the analysis due to anomalous
turbidity values (eliminated sites are shown as white circles in the Maumee plume; no sample sites were
eliminated in 2007 or 2008).

doi:10.1371/journal.pone.0125234.g001
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Committee (ACC) and the Fisheries Management Unit of the State of Michigan Department of
Natural Resources prior to collections. Sampling procedures were specifically approved as part
of obtaining field permits for all locations.

At each collection site, turbidity was indirectly estimated using a 5 cm path transmissometer
(SeaBird SBE19): transmissometry values reflect loss of light transmission with increased water
turbidity [12]. Although our sampling site positions were based on satellite images, the real
time spatial location of the Maumee River plume was highly dynamic. We thus used weekly
transmissometry measurements (as a proxy for turbidity) to corroborate sampling sites assign-
ment to one of the two larval rearing (plume) habitats, hence providing objective criteria for
delineating two distinct larval habitats for the genetic analyses.

Age-0 juveniles (i.e., surviving larval YP from the spring of the same year) were collected
throughout western Lake Erie in late August of each year via bottom trawl (10.7-m headrope;
13-mm cod-end liner; 3 km/hr tow-speed). These juveniles were collected from 36, 50, and 48
sites within the western basin during 2006, 2007, and 2008, respectively (Fig 1), as part of the
annual fisheries-independent assessment surveys conducted by the Ontario Ministry of Natu-
ral Resources and the Ohio Department of Natural Resources-Division of Wildlife [29]. All in-
dividuals were humanely euthanized and kept frozen until further laboratory analysis. Because
juvenile abundance is a strong predictor of future recruitment to the fishery in western Lake
Erie [29], juveniles used for this study in each year were subsampled from the catch at each site
in proportion to the total catch per unit effort at that site.

DNA extraction and genotyping
DNA was recovered from fin tissue samples following the plate-based extraction method of
[33]. Extracted DNA samples were eluted in 50–100 μL of Tris—EDTA buffer (10 mM Tris,
1.0 mM EDTA, pH 8.0).

Each fish was genotyped at a total of 12 microsatellite loci ([34]; Table 1). PCR amplification
was performed in 25 μL reactions with the following components: 1.5 μL of template DNA,
2.5 μL 10x PCR buffer, 2.5 μL of MgCl2 (25 mM), 0.3 μL of dNTPs (50 μM of each), 0.2 μL
(0.5 μM) of dye labeled primer, 0.2 μL (0.5 μM) of the reverse primer, and 0.10 U Taq polymer-
ase (Applied Biosystems, Foster City, CA). PCR conditions were: initial denaturation at 94°C
for 2 min, followed by 35 to 40 cycles of denaturing at 94°C for 15 s, annealing at various tem-
peratures (according to Li et al. [34]) for 30 s, extension at 72°C for 30 s, and a final extension
of 72°C for 10 min. Microsatellite allele sizes were determined using a LI-COR 4300 DNA ana-
lyzer (Lincoln, NE) and scored using GeneImage IR 4.05 (Scanalytics, Inc., Rockville, MD). Mi-
crosatellite data are freely available at: http://dx.doi.org/10.5061/dryad.vf0t2

Categorizing larval fish groups
Collected larvae were divided into two habitat groups based on two criteria. First, we initially
divided larvae based on their geographic (sampling) location (i.e. northern vs. southern part of
the western basin; Fig 1). Second, we used transmissometery (as a proxy for turbidity) estimates
to select sites belonging to high and low turbidity areas (Fig 1). The larvae associated with high-
ly turbid southern area will be referred to as the Maumee River plume larval group, whereas
the larvae associated with low-turbidity northern area of the basin will be referred to as the De-
troit River plume larval group.

Population genetic analysis
Deviation from Hardy—Weinberg equilibrium (HWE) was tested using 20,000 permutations
in TFPGA 1.3 [35]. Significance values for HWE were Bonferroni corrected for multiple
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simultaneous comparisons. In addition, linkage disequilibrium was determined for all pairs of
loci in all larval and age-0 juvenile groups using GENEPOP 4.0.7 [36]. Genetic differentiation
was quantified by calculating FST [37] between larval groups (Detroit vs. Maumee River
plumes) within a given year (2006, 2007, or 2008) in ARLEQUIN 3.0 [38]. Pairwise Fisher’s
exact tests (10,000 dememorizations and 20,000 permutations; [39]) were performed between
larval groups in each year, as well as for temporal variation among sample years for the two lar-
val groups using TFPGA. Analysis of Molecular Variance (AMOVA) was used to partition lar-
val YP genetic variance among years (temporal), between plumes nested within years (spatial),
and within plumes, using ARLEQUIN. GENELAND 3.2.4 [40] was used to characterize and vi-
sualize spatial genetic relationships among larvae for each sampling year. Ten independent
Markov Chain Monte Carlo (MCMC) runs at K = 2 (based on two plumes) were performed
using the correlated frequencies model, 106 iterations, and a 2 × 105 iteration burn-in.

Genetic assignment of juveniles. Relative contributions of larvae from the two plumes to
the mixed population of unknown-origin juveniles was estimated by genetic assignment of
the juveniles to their putative larval group (i.e., Maumee or Detroit River plume larval
groups), followed by a comparative analysis of relative proportions. For genetic assignment

Table 1. Number of alleles (NA), and observed (HO) and expected (HE) heterozygosity for the 12microsatellite loci (Li et al. 2007) used to genotype
larval yellow perch (YP) collected in the western basin of Lake Erie during 2006 (06), 2007 (07), and 2008 (08).

Locus

Groups YP85 YP78 YP41 YP109 YP55 YP110 YP96 YP60 YP65 YP49 YP81 YP99

D06 N 121 127 126 109 111 116 119 125 132 127 118 111

NA 15 13 7 22 9 9 9 6 10 9 6 12

HO 080 087 068 082 053 015 066 056 061 078 064 087

HE 084 085 060 092 047 015 049 046 056 064 051 085

M06 N 64 62 71 47 66 62 69 64 64 68 61 60

NA 15 11 8 20 5 4 6 9 10 6 14 10

HO 058 077 073 079 061 010 059 069 064 072 054 075

HE 079 083 061 093 055 015 051 058 062 059 075 084

D07 N 199 206 198 204 206 191 208 199 193 202 200 201

NA 19 12 7 24 6 7 9 8 8 9 6 13

HO 070 090 065 079 058 012 075 070 084 098 064 086

HE 073 084 060 093 051 013 057 054 062 067 061 086

M07 N 53 68 70 54 69 66 69 57 66 59 64 58

NA 17 12 5 20 5 7 5 6 7 6 4 11

HO 091 099 061 096 068 009 071 082 079 088 061 091

HE 086 084 057 094 055 012 050 058 057 065 053 083

D08 N 111 114 115 100 123 124 113 117 114 119 106 98

NA 18 13 7 26 7 8 6 7 11 8 5 11

HO 060 099 065 077 074 012 042 034 068 073 051 083

HE 078 082 062 094 058 012 037 037 059 061 065 082

M08 N 71 73 70 66 73 72 65 67 68 69 73 71

NA 18 12 7 24 7 5 7 6 8 5 5 11

HO 082 096 069 086 075 014 045 037 088 062 059 087

HE 078 082 059 092 062 018 042 034 060 057 066 085

Groups are denoted by river plume (Detroit or Maumee) followed by the collection year.

Note: Data in bold denotes deviations from HWE (following Bonferroni correction).

doi:10.1371/journal.pone.0125234.t001
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purposes only, both groups of larval fish were genetically screened for first-generation mi-
grants using rank-based self-assignment genotype analysis [41] in GENECLASS 2.0 [42]. The
purpose of this analysis was to identify larvae that may have moved between sampling areas,
likely due to passive dispersal via water movement, as larval YP are weak swimmers [43]. The
probability of genotype assignment to either group (high-turbidity, south-shore Maumee
River plume vs. low-turbidity, north-shore Detroit River plume) was estimated for each larva.
An individual that showed a < 60% likelihood of self-assignment to its collection group was
deemed a migrant and eliminated from subsequent analyses to maximize the probability of
successful juvenile assignment to the larval groups. Because our choice of a 60% likelihood
threshold was arbitrary, we performed a sensitivity analysis to explore the effect of changing
this threshold value on the analysis outcomes. It is important to note that the migrant exclu-
sion was not performed for the population genetic characterization of the two plumes de-
scribed above, only for the genotype assignment.

Genetic assignment of juveniles to the two river plume groups was independently performed
for the three collection years using GENECLASS. Our analyses consisted of a two-step proce-
dure (see Beneteau et al. [44]). First, to identify (and eliminate) those individuals that may have
come from other (not sampled) larval sources, we performed a Bayesian exclusion assignment
[45] with Monte Carlo re-sampling using Paetkau et al.’s [46] simulation algorithm (10,000
simulated individuals at an assignment threshold p = 0.05). Based on that Bayesian analysis, we
excluded individual juveniles with assignment probabilities< 10% of belonging to either of the
two larval source populations (i.e., Detroit or Maumee River larval groups). Second, to assign
the remaining individuals to one larval group, we used a rank-based genotype assignment (fre-
quency method; [41]). Successful ranked-based assignments were those with probability� 70%
of belonging to one group (hence, the second group assignment probability would be< 30%).
Failed assignments (i.e. unknown origin) were those with likelihoods between 30% and 70%.
Since the 70% likelihood threshold value was arbitrary, we performed a sensitivity analysis to
assess the effect of our choice of threshold value on the outcome of our analysis. Specifically, we
varied the threshold from 60 to 90% and estimated the relative number of juveniles assigned to
the Detroit versus Maumee plume larval groups.

For juvenile YP successfully assigned to Maumee and Detroit River plume larval groups, ge-
netic differentiation (FST) and pairwise Fisher’s exact tests for population differentiation were
conducted in ARLEQUIN and TFPGA, respectively, for 2006, 2007 and 2008 independently.
Hierarchical AMOVA was used to partition genetic variance in successfully assigned juveniles
among years (temporal), between plumes nested within years (spatial), and within plumes,
using ARLEQUIN.

Finally, we investigated whether juveniles that successfully assigned to the Detroit or Mau-
mee River plume larval groups were spatially separated in the western basin of Lake Erie. To do
so, we calculated the location of capture (latitude and longitude) for all juveniles and used Stu-
dents’ t-tests to see if the mean latitude and longitude differed between the Maumee and De-
troit River groups.

Comparison of plume recruitment. We used information on weekly larval YP abun-
dance differences between the Maumee and Detroit River plumes, as well as results from our
successful genotype assignments of juveniles, to quantify differences in recruitment of larvae
to the age-0 juvenile stage between the two larval rearing areas. Weekly average abundance of
larvae was calculated for each river plume group (total number of larvae / m3 averaged over
all sites sampled in that week) with analysis of variance (ANOVA) used to quantify temporal
stability of weekly larval abundance within each river plume. The highest weekly larval abun-
dance estimate has been shown to provide a good estimate of larval production (Reichert
et al. 2010); hence, we used peak weekly larval abundance values from both plumes to
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estimate the YP larval abundance ratio between Detroit and Maumee River plumes. In this
study the peak larval YP abundance varied from 40–198 larvae/m3.

If recruitment of larvae (survival of larvae to August, when juveniles were sampled) was
equal for the Detroit and Maumee River plume habitats, we would expect the Maumee: Detroit
ratio of larval abundance to remain constant over time. In turn, we would expect the ratio of as-
signed juveniles fromMaumee versus the Detroit plume areas to be the same as the ratio of lar-
val abundance. We used the larval YP abundance ratio (estimated based on metered bongo net
tows; see above) to assess differences in relative recruitment between Detroit and Maumee lar-
vae from the larval to the juvenile stage for each year separately. Expected values for the num-
ber of juveniles from each plume in each year were calculated by multiplying the Detroit:
Maumee larval abundance ratio by the total number of juveniles successfully assigned for that
year. Observed values came from the juvenile genetic assignment results (see above). We com-
pared expected versus observed estimates using Chi-square (χ2) tests for each year. If the ob-
served number of juveniles was significantly higher than the expected value for a plume (and
would thus be lower than expected for the other plume), then relative recruitment would be
higher for that river plume.

Results
The collection sites for larval fish corresponded well with the water turbidity data in discriminat-
ing high transmissometry (> 6.0 m-1) Maumee River plume sites from the low transmissometry
(< 6.0 m-1) Detroit River plume sites. Using a 6.0 m-1 transmissometry threshold criterion, only
two of 12 sampling sites from the Maumee River plume were removed from our initial spatial
classification in 2006, and none were removed from either plume in 2007 or 2008 (Fig 1).

A total of 853 larvae and 403 juveniles were genotyped at 12 microsatellite loci across sam-
pling years (2006–2008), with 5 to 23 alleles per locus. Observed (HO) and expected heterozy-
gosities (HE) ranged from 0.091 to 0.991 across loci (Table 1). Seventeen of 72 tests revealed
significant departures from HWE following Bonferroni correction; however, none was consis-
tent across larval groups or loci (Table 1). In addition, no evidence for linkage disequilibrium
was found between any pair of loci after Bonferroni correction.

Population genetic structure
Genetic differentiation (FST values) between larvae collected in the Detroit versus Maumee
River plumes were 0.0086 (P< 0.001), 0.0054 (P< 0.01) and 0.0082 (P< 0.001) in 2006, 2007
and 2008, respectively (Table 2). Fisher exact tests revealed significant (P< 0.001) differences
in allele frequency distributions for all comparisons, both with years (i.e., between Maumee
and Detroit larval groups) and among years (i.e., among 2006, 2007 and 2008). AMOVA parti-
tioning showed no significant variance component among years (variance explained = 0.43%,
P = 0.22), whereas the between-plume variance component (nested within years) was signifi-
cant (variance explained = 0.31%, P< 0.001). Within-river plume group variation explained
the majority of the variance (variance explained = 99.26%, P< 0.001).

Spatial genetic structure corresponding to the two river plumes was identified using GENE-
LAND for 2007 and 2008, but not 2006. Only MCMC runs for samples from 2007 reached con-
vergence as identified by a plateau in the number of iterations versus—ln probability. For 2007,
10 of the 10 independent runs produced identical assignments of individual larvae to two
groups corresponding to the Detroit and Maumee River plumes (Fig 2). Datasets for the 2006
and 2008 did not converge with 106 iterations, which is indicative of weak genetic structure
within the datasets. For 2008, 6 of 10 runs produced assignments of larvae to two groups
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consistent with the river plumes (Fig 2). For 2006, all 10 runs produced assignments indicative
of population admixture among the plumes (results not shown).

Genetic assignment of YOY. The microsatellite genotype assignment analysis for plume
membership identified a relatively small number of larvae as likely first-generation migrants:
15% (25 of 160) and 17% (15 of 90) from Detroit and Maumee River plume, respectively, in
2006; 26% (74 of 283) and 13% (11 of 81), respectively, in 2007; and 18% (29 of 153) and 15%
(13 of 86), respectively, in 2008. While all larvae were used for the population genetic analyses
(above), the putative first-generation migrants were not used in the juvenile
assignment analyses.

The percentage of juveniles that were excluded from both possible source populations based
on the Bayesian analysis was 0% (0 out of 119), 8% (13 out of 167), and 25% (30 out of 117) in
2006, 2007, and 2008 respectively (Table 3). Although some juveniles were not successfully as-
signed to either larval rearing area in our rank-based assignment analysis (see “failed assign-
ments” in Table 3), those that did were assigned as Detroit River plume individuals at almost
twice the frequency of those assigned to the Maumee River plume in 2006, 2007, and 2008. Fur-
ther, our sensitivity analysis showed that, although the proportion of juveniles assigned to the
Detroit River plume varied with the assignment threshold used, the number of juveniles as-
signed to the Detroit River plume was always higher than the number assigned to the Maumee
River plume (i.e., ratio> 1.0; Fig 3a).

Genetic differentiation (FST) between juveniles successfully assigned to Detroit and Maumee
River plumes was 0.011 in 2006, 0.021 in 2007 and 0.029 in 2008, with significant differences in
allele frequency distributions in all years (Fisher’s exact test, P< 0.001). To explore the role of
our assignment threshold choice on genetic divergence in successfully assigned juveniles, we
performed a sensitivity analysis to quantify changes in FST estimates with varying assignment
thresholds. Although lower thresholds did reduce FST values, the juvenile FST estimates (Fig
3b) were substantially higher than larval FST estimates in 2007 and 2008 across all assignment
probability thresholds.

Table 2. Microsatellite FST values (Detroit versus Maumee River plume groups) for both yellow perch larvae and age-0 juveniles collected in west-
ern Lake Erie during 2006, 2007, and 2008.

Locus Larval FST Juvenile FST

2006 2007 2008 2006 2007 2008

YP85 -0.0057 0.0298 0.0323 0.0015 0.0721 0.0403

YP78 -0.0060 -0.0036 0.0043 0.0049 0.0054 0.0020

YP41 -0.0048 -0.0025 0.0076 0.0050 -0.0084 0.0380

YP109 0.0006 -0.0034 -0.0034 0.0298 0.0176 0.0432

YP55 0.0437 -0.0007 0.0162 0.0072 0.0646 0.0259

YP110 -0.0005 -0.0035 0.0016 0.0736 0.0010 0.0331

YP96 -0.0030 -0.0042 0.0007 0.0033 -0.0029 0.0165

YP60 0.0349 -0.0047 0.0058 -0.0041 -0.0042 0.0012

YP65 0.0264 -0.0042 0.0016 0.0058 -0.0035 0.0175

YP49 -0.0016 0.0050 -0.0045 -0.0076 -0.0030 0.0057

YP81 0.0914 0.0010 0.0034 0.0790 0.0894 0.0468

YP99 -0.0014 -0.0008 0.0018 -0.0052 0.0120 0.0018

All loci 0.0086 0.0054 0.0082 0.0143 0.0244 0.0240

Values are given for all 12 loci individually, as well as across all loci. The larval FST estimates are based on all sampled larvae; the juvenile FST estimates

are based on fish assigned to Maumee or Detroit River plumes at a 70% probability threshold.

doi:10.1371/journal.pone.0125234.t002
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All temporal comparisons for juvenile YP allele frequency distribution differences were sig-
nificant (Fisher’s exact tests, P< 0.001). AMOVA results for juveniles that were successfully
assigned to either the Detroit or Maumee River plume showed no variation among years
(df = 2, variation = -0.35%, P = 0.68). However, significant variation existed between assigned
groups nested within years (df = 3, variation = 1.98%, P< 0.001), with the majority of the vari-
ation being explained by within-group effects (df = 458, variation = 98.37%, P< 0.001).

Fig 2. Spatial patterning of western Lake Erie larval yellow perch genetic structure for 2007 and 2008 using GENELAND genetic analysis software.
Runs were fixed for two groups (K = 2) for each year. Panels show consensus results of 10 runs for each of two sample years (2007: 10/10; 2008: 6/10).
GENELAND failed to converge and no consensus outcome was identified for 2006. Points on the contour maps indicate collection locations of larvae.

doi:10.1371/journal.pone.0125234.g002

Table 3. Genotype assignment of age-0 juvenile yellow perch collected in the western basin of Lake Erie to Detroit versusMaumee River plume lar-
val groups during 2006–2008.

Age-0 Juvenile assignment

Detroit Maumee Failed Excluded Total

2006 55 32 32 0 119

2007 69 33 52 13 167

2008 27 16 44 30 117

Failed assignment indicates that the juvenile genotypes provided an ambiguous likelihood ratio making assignment to either plume uncertain. “Excluded”

genotypes are those that had a < 10% probability of belonging to either larval group, likely indicative of an un-sampled source group.

doi:10.1371/journal.pone.0125234.t003
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Fig 3. Sensitivity of western Lake Erie yellow perch genotype assignment analyses to changes in assignment likelihood ratio threshold. Panel a)
portrays the effect of threshold variation on ratio of age-0 juveniles successfully assigned to the Detroit River versus Maumee River for 2006–2008. Panel b)
shows the effect of threshold probability variation on FST estimates of age-0 juveniles assigned to Maumee River versus Detroit River plume nursery areas for
2006–2008. The shading indicates the threshold used for the analyses.

doi:10.1371/journal.pone.0125234.g003
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Based on Student’s t- tests, no differences existed between mean latitude and mean longi-
tude of collection sites coordinates for juveniles assigned to the Detroit versus Maumee River
plumes in any year (P> 0.05) suggesting that no spatial bias existed in either group (i.e., juve-
niles from both rearing habitat areas were well-mixed).

Recruitment differences between plumes
The ratios of peak larval abundance for the Detroit:Maumee River plumes were 73:27 in 2006;
89:11 in 2007, and 70:30 in 2008. No difference in larval YP abundance was found among sam-
ple weeks in the Detroit or Maumee River plumes (ANOVA, df = 2, both P> 0.28). Larval YP
abundance ratios were used to calculate the expected ratio of juveniles from the Detroit River
and Maumee River plumes (accounting for the total number of juveniles that were assigned),
whereas observed values were those obtained using genotype assignment (Table 3). Chi-square
analysis revealed significant differences between observed and expected values for 2006 and
2007, but not for 2008 (Fig 4). Specifically, recruitment of larvae to the age-0 juvenile stage was
higher than expected in the Maumee River plume and correspondingly lower than expected in
the Detroit River plume in 2006 and 2007, whereas we could detect no difference in 2008 (Fig 4).

Finally, we conducted a sensitivity analysis to explore the effect of our choice of a 70% likeli-
hood ratio threshold for juvenile genotype assignment. While we found that the choice of
threshold ratio does affect the Detroit:Maumee ratio of juveniles, its effect is minor except at
extreme values of the threshold (see Fig 3a). This finding indicates that the estimate of the juve-
nile abundance ratio by genotype assignment is robust to the choice of the threshold value.

Discussion
Our genotype assignment analyses showed that larval YP from the Maumee River plume expe-
rienced significantly higher recruitment though their first summer than the Detroit River
plume larvae in 2006 and 2007, but not in 2008. The recruitment advantage for the Maumee
River plume larvae may be explained by at least two different processes: 1) nutrient-rich water
from the Maumee River provides a food-rich (and/or high quality food) environment causing
a “bottom-up” growth effect on larval fish indirectly favouring survival [6, 47]; or 2) high tur-
bidity (i.e., low water clarity) due to suspended sediments and phytoplankton blooms in the
Maumee River plume provide protection against visual predators during early life stages [48,
49]. A combination of both is also possible.

River discharge into bays, estuaries, and other coastal areas of both marine and freshwater
ecosystems typically creates nutrient-rich areas that hold the potential to enhance larval growth
and positively influence fish survival and recruitment [4, 14, 50]. For example, Roseman et al.
[51], working in the southern part of western Lake Erie, showed that walleye (Sander vitreus)
larvae were found in higher densities in waters with higher zooplankton availability, higher
temperatures, and lower water clarity. Similarly, the south-shore Maumee River plume was
found to have higher total phosphorous levels, chlorophyll a levels, and temperatures relative
to other areas within the western basin of Lake Erie, including the Detroit River plume, during
our study years [12, 28]. Despite these differences, zooplankton density, biomass, and produc-
tion, as well as larval YP feeding, diet selection, and growth rates have been shown to be strik-
ingly similar between the Maumee and Detroit River plumes during our study years [12, 28].
Hence, food availability that enhances larval growth does not appear to be the dominant factor
driving higher recruitment of larvae to the age-0 juvenile stage in the Maumee River plume rel-
ative to the Detroit River plume.

Instead, the recruitment advantage provided by the Maumee River plume is likely due to
its higher turbidity levels (relative to the Detroit River plume) that reduce predation pressure
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Fig 4. Number of western Lake Erie juvenile yellow perch (YP) assigned to the Detroit (“D”) and
Maumee (“M”) River plumes during 2006–2008.Observed (black) and expected (shaded) values in panel
a) were calculated based on the larval abundance ratio between Detroit and Maumee River plume groups
and genetic assignment results. Residual numbers (observedminus expected) are reported in panel b).
Significant differences (P <0.05) between observed and expected values based on Chi-square good of
fitness analysis are denoted by asterisks. NS = not significant.

doi:10.1371/journal.pone.0125234.g004
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on larvae [8, 28]. The low turbidity associated with the Detroit River plume in combination
with higher larval YP abundance makes opportunistic predation by piscivorous fish more
likely in the Detroit versus Maumee River plume [48]. Further, lower water clarity and larval
YP abundance in the Maumee River plume could translate into higher energetic costs for
predators in searching for larval fish prey which also would be expected to reduce opportu-
nistic predation [47, 52, 53]. For example, Swenson [54] reported that high turbidity associat-
ed with river discharge in the western arm of Lake Superior favoured lake herring (Coregonus
artedi) recruitment success by protecting individuals from lake trout (Salvelinus namaycush)
that preferred less turbid water. In the same way, higher turbidity in the Maumee River
plume could be a major factor protecting larval fish from visual predators in the western
basin of Lake Erie [7, 8, 28].

Another possible explanation for the apparently higher recruitment of the Maumee River
plume larvae to the age-0 juvenile stage may be strong currents from the Detroit River [55]
that could flush larvae and/or early juveniles from the western basin into the central basin, an
area that we did not sample. Such a phenomenon would generate a downward bias in our esti-
mates of recruitment in the Detroit River plume larvae. The effect would be magnified by Mau-
mee River plume larvae being less susceptible to such transport, as currents generated by the
Maumee River are much weaker than the Detroit River [55, 56]. However, the juvenile YP that
belonged to the Detroit River plume larval group were found to be dispersed throughout the
western basin, suggesting that Detroit River plume larvae were not being systematically dis-
placed east towards the central basin. On average 17% of our larval YP were excluded from the
self-assignment analysis in the Detroit and Maumee River plume larval groups. While the pos-
sibility exists that these larvae originated from some other (un-sampled) source population(s),
these unassigned larvae also may have been transported by water currents away from their
natal plume area into the adjacent nursery plume area before capture in our nets. Even though
otolith microchemical evidence suggests that most larvae remained in the Detroit River plume
or Maumee River plume for several weeks after hatching [12], some larvae (perhaps the weak-
est swimmers) may have been transported away from their natal areas before collection by us.

We found significant, albeit weak, spatial genetic structure among larval YP in the western
basin of Lake Erie during our study years, with genetic differentiation corresponding to geo-
graphically separated larval rearing habitats (i.e., the Maumee vs. Detroit River plumes). While
within-lake genetic structure has been previously reported for Lake Erie YP [30, 31, 57], these
studies used juveniles and adults in their analyses, not larvae. Thus, our study is the first Great
Lakes study to document that genetic structure exists during the larval stage for YP, a phenom-
enon that has been widely documented in other sympatric populations in marine ecosystems
(e.g., [58–60]). Interestingly, Lecomte and Dodson [58] also revealed levels of genetic differen-
tiation similar to our own (larval FST = 0.001–0.044)) between two groups of larval rainbow
smelt (Osmerus mordax) in the St. Lawrence estuary (Canada). And, like us, Lecomte and Dod-
son [58] suggested that these genetic differences arose because the two sympatric groups of lar-
vae were exploiting habitats that varied in terms of turbidity.

Our demonstration of genetic structure at small spatial scales supports previous research
with Lake Erie YP [30, 31, 57], Lake Michigan YP [61], and congeneric Eurasian perch (Perca
fluviatilis) from lakes in central Sweden [62–63]. For example, Sepulveda-Villet et al. [30] used
mitochondrial DNA (mtDNA) haplotype analysis and found low but significant genetic diver-
gence between adult YP spawning groups within the western basin of Lake Erie, specifically in
the Sandusky Bay area versus the northern shore of the western basin. Other studies using mi-
crosatellite loci [31, 56] reported levels of genetic differentiation among spawning groups in
the western basin of Lake Erie similar to the genetic divergence reported here for the juveniles
assigned to the Maumee and Detroit River plume larval populations.
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Additionally, we found that the level of genetic divergence between the Maumee and Detroit
River plumes was greater for juveniles (juvenile FST range = 0.0143 to 0.0244) than it was for
larvae in all years, with this increase in FST from larvae to YOY being insensitive to our choice
of assignment threshold. The underlying mechanism for this increase in FST values between life
stages is unknown; however, selection or severe bottleneck (e.g., sampling difference among life
stages, as surviving adults are a fraction of the potential larvae) are two obvious possibilities. In-
terestingly, the juveniles exhibited reduced HWE departures (relative to the larvae) and one
microsatellite locus (YP81) exhibited anomalously high divergence. This latter finding is con-
sistent with possible linkage disequilibrium resulting from a selection differential between the
two larval habitats. These results indicate that adult or spawning population genetic analysis
may not reflect larval and juvenile genetic population structure or dynamics, especially in large
and complex ecosystems such as the western basin of Lake Erie.

The presence of genetic structure between populations of larval YP found near the Maumee
River plume versus the Detroit River plume also may be attributed to adult YP spawning site fi-
delity or homing [24, 31, 64] coupled with relatively weak larval swimming capabilities [42] that
limits active dispersal during the first weeks post-hatching. Thus, we may be indirectly observing
genetic structure among spawning adult YP. The observed year-to-year variation in the genetic
structure of larvae may further reflect variation in environmental conditions at the spawning
grounds and rearing sites [65], changes in cryptic barriers such as water currents [66], or differ-
ential survival or reproductive success among spawning populations [65–68]. Even though the
level of larval genetic structure reported in this study is low, it indicates that genetic structure
can be detected very early in life and that different life stages of fish should be included in genetic
studies to better understand the relationship between habitat use and dispersal.

Otolith microchemistry is another technique that has been used to assign fish to their larval
rearing habitats [69–71]. Reichert et al. [12] identified water-mass specific elemental signatures
in the Maumee and Detroit River plume habitats, and these elemental signatures were used to
assign juvenile YP back to their larval rearing area (i.e. Detroit or Maumee River plumes), thus
enabling these authors to estimate recruitment success differences between larvae from both
rearing areas for 2006 and 2007. Our genetic assignment approach agreed with the results pre-
sented in Reichert et al. [12] in that the Maumee River plume rearing site had a higher recruit-
ment in 2006 and 2007, compared to the Detroit River plume larvae. While a quantitative
comparison of our findings with Reichert et al.’s (2010) is beyond the scope of this study, both
methods appear to be potentially valuable for discriminating stocks and identifying natal ori-
gins of recruited individuals.

In conclusion, we found evidence to indicate that survival of larval yellow perch through their
first summer was higher for individuals residing inside a nutrient-rich, turbid river plume (i.e.,
the Maumee River plume) than those residing outside of it (i.e., the Detroit River plume). Our
ability to document this result was provided by weak but significant genetic structure between
larval YP residing in the Detroit versus Maumee River plumes coupled with temporal genotype
assignment (from juvenile to larval source populations). Unfortunately, the mechanisms respon-
sible for the larval genetic structure and the change in genetic structure from the larval to juve-
nile stages remain enigmatic, and thus require further study. Our results indicate that including
early life stage population genetic analyses would provide a better picture of the complex interac-
tions between nursery habitat, early life survival and genetic structure.
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