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Abstract – We sampled three limnetic fish species: juvenile sockeye salmon (Oncorhynchus nerka), three-spine
stickleback (Gasterosteus aculeatus) and longfin smelt (Spirinchus thaleichthys) in Lake Washington to quantify
species-specific patterns of diel vertical migration (DVM). Catch-per-unit-effort data analysed from 15 years of
midwater trawling documented seasonal and diel differences in vertical distributions for each species. These results
were consistent with the hypothesis that the patterns of DVM in Lake Washington were affected by life history, size
and morphology. Sockeye salmon showed clear DVM in spring but essentially no DVM in fall, remaining in deep
water, whereas three-spine sticklebacks were prevalent at the surface at night in both seasons. In fall, distribution
patterns may be explained by differences in thermal performance (e.g., sticklebacks favouring warm water), but the
patterns were also consistent with inter-specific differences in predation risk. Younger sockeye salmon and longfin
smelt were present in greater proportions higher in the water column during dusk and night periods than older
conspecifics. Compared with sockeye salmon, the greater use by three-spine sticklebacks of surface waters throughout
the diel cycle during weak thermal stratification in spring was consistent with the hypothesis that sticklebacks’
armour reduces predation risk, but use of this warmer, metabolically beneficial stratum may also have promoted
growth. This study illustrates variation in the vertical distribution of three sympatric planktivores and offers broader
implications for the DVM phenomenon and applied lake ecology.
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Introduction

Fish need to feed, but foraging is seldom the only
factor, and often not the primary factor, affecting their
movements and distribution. Conflicts with reproduc-
tion, predator avoidance and optimisation of physio-
logical conditions often limit foraging in time and
space (Eggers 1978; Coutant 1985, 1987; Clark &
Levy 1988; Appenzeller & Leggett 1995; Beauchamp
et al. 1997). The costs and benefits of foraging in a

given area vary among species as a function of life
history and among individuals as a function of size or
other attributes that make them vulnerable to predation
(Levy 1990). The vertical distribution of pelagic fishes
can serve as a model for the study of such trade-offs
(Clark & Levy 1988; Scheuerell & Schindler 2003;
Hardiman et al. 2004; Jensen et al. 2006; Gjelland
et al. 2009). Zooplankton densities are often higher in
the epilimnion, but planktivorous fishes are more
vulnerable to visual predators there than in deeper,
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darker waters where zooplankton are less abundant
and detectable. In addition to vertical gradients in food
availability and predation risk, vertical temperature
gradients differentially affect the metabolic rates of
predators and prey, further complicating the trade-offs
associated with depth (Magnuson et al. 1979; Brandt
et al. 1980; Wurtsbaugh & Neverman 1988). As
foraging opportunities and predation risk vary with
light levels over the 24-h period, planktivores often
show diel vertical migrations (DVM).

Although temperature influences should be second-
ary to feeding and predation risk during daylight and
crepuscular periods, thermal constraints could still be
expressed as avoidance of temperatures that were
stressful or detrimental to growth when the thermal
experience of an individual is averaged over an entire
diel cycle. At night, low light levels should inhibit
feeding by both planktivorous and piscivorous fishes,
so planktivores should occupy depths most beneficial
for growth, unencumbered by the need to feed or avoid
predators, although clear lakes under either high moon
light (Luecke & Wurtsbaugh 1993) or excessive urban
light pollution (Mazur & Beauchamp 2006; Kitano
et al. 2008) may be exceptions to this pattern. Thermal
optima vary among species (Coutant 1977; Magnuson
et al. 1979), and the different DVM patterns of
sympatric coregonids were best explained by differ-
ences in thermal ecology (Mehner et al. 2010).
Temperatures above and below the optimum limit
growth, but the limitation is generally more severe at
incrementally warmer than cooler temperatures
(Magnuson et al. 1979). The optimal temperature for
growth also shifts to cooler temperatures for larger fish
and at lower daily energy intake rates (Beauchamp
2009). These features of physiology suggest that DVM
patterns should vary seasonally as a lake stratifies and
mixes and as prey availability changes, but this
seasonal shift was not observed in two coregonid
species (Mehner et al. 2007).

Many fishes show DVM, but the patterns may differ
among or within species in a given lake (e.g., Piet &
Guruge 1997; Stockwell et al. 2010). Species less
vulnerable to predation might be expected to spend
more time feeding in profitable epilimnetic waters.
The DVM patterns of two coregonids in Lake Superior
revealed this pattern, as larger-bodied cisco had a
shallower DVM than smaller kiyi (Stockwell et al.
2010). Moreover, fish of the same species may differ
in the extent or timing of movement as a function of
body size (Levy 1991). For example, a model
indicated that older kokanee (nonanadromous sockeye
salmon, Oncorhynchus nerka) tend to feed at and
migrate to deeper depths than younger smaller fish in
reservoirs where abundant large piscivorous lake trout
Salvelinus namaycush imposed significant predation
risk to all sizes of kokanee (Stockwell & Johnson

1999; Johnson & Martinez 2000). The opposite pattern
was observed in lakes containing less abundant and
smaller piscivores, presenting less predation risk for
larger kokanee (Levy 1991).

Diel vertical migration of juvenile sockeye salmon
has been closely studied in lakes around the Pacific
Rim. These fish enter lakes in spring at a size of
ca. 28 mm after emerging from gravel nests in streams
or lake beaches (Quinn 2005), and they feed chiefly on
zooplankton in the limnetic zone. They prey on large
zooplankton if available (Eggers 1982) and display
DVM to balance their foraging needs with predator
avoidance (Eggers 1978; Clark & Levy 1988; Scheue-
rell & Schindler 2003). Predator avoidance, prey
distribution and temperature all affect the timing of
movement and depth distribution (Brett 1971; Clark &
Levy 1988; Levy 1990, 1991; Beauchamp et al.
1997). Because salmonids and their predators are
primarily visual foragers, feeding should be confined
to daylight and crepuscular periods, and their vertical
distribution should be influenced by trade-offs
between predation risk and the profitability of feeding
at any given depth.

Lake Washington, in Washington State, USA,
serves as a model body of water for comparative
work on DVM. The lake’s thermal regime and
zooplankton community are well studied (Arhonditsis
et al. 2004; Winder & Schindler 2004; Hampton et al.
2006a,b; Winder et al. 2009), as is the basic biology of
the major planktivores (Chigbu 2000; Beauchamp
et al. 2004). The lake has a narrow littoral zone and so
the limnetic zone is the primary habitat, dominated by
three planktivorous fishes native to the region (juve-
nile sockeye salmon, three-spine stickleback Gaster-
osteus aculeatus and longfin smelt Spirinchus
thaleichthys), and two native midwater piscivores
(cutthroat trout, O. clarki, and northern pikeminnow,
Ptychocheilus oregonensis). Densities of Daphnia spp.
are significantly higher in the upper 10 m of the water
column than at deeper depths during both thermally
stratified and destratified seasons (Edmondson & Litt
1982); therefore, the DVM patterns of the different
planktivores determine their access to zooplankton.

The overall objectives of this study were to
(i) quantify variation in planktivore catch-per-unit-
effort (CPUE) related to season, diel period and depth
and (ii) evaluate whether the diel vertical distributions
of planktivores are similar among species and size
classes of fish in Lake Washington. We predicted that
the armoured species (three-spine stickleback) would
exhibit shallower distributions throughout the diel
cycle than the un-armoured species (longfin smelt and
sockeye salmon) because they may be more willing to
accept predation risk. Additionally, we expected to
observe shallower distributions throughout the diel
cycle for the shorter-lived longfin smelt than the
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longer-lived and potentially more risk-averse, sockeye
salmon. With respect to bioenergetic responses, we
predicted that all three species should exhibit similar
vertical distribution patterns during the cooler, weakly
stratified period in April, but that juvenile sockeye
salmon would occupy deeper, cooler strata than three-
spine sticklebacks during the warmer fall stratification
period. The range of near-optimal temperatures for
juvenile sockeye salmon (‡90% maximum growth rate
when food is unlimited at 8.0–19.5 �C; Beauchamp
2009) occurs over a cooler and broader range than the
warmer, narrower range for three-spine sticklebacks
(‡90% maximum growth rate when food is unlimited
at 19.0–22.5 �C; Lefébure et al. 2011). Thermal
optima are unknown longfin smelt, but the species is
distributed farther to the south than sockeye salmon
(i.e., to the Sacramento River), suggesting that they are
more tolerant of warmer water. With respect to size
within species, we evaluated the alternative hypothe-
ses that (a) larger fish would forage more cautiously
(i.e., move up in the water column later and be deeper
overall) because they are already large and so have
less to gain energetically, or (b) they would forage less
cautiously because their larger size makes them less
vulnerable to gape-limited visual predators.

Methods

Study site

Lake Washington is 32.2 km long, averages 2.5 km
wide and has a maximum depth of 66 m. Thermal
stratification in the lake begins in March and April, is
fully established by late June–early July and persists
through October, after which decreasing temperatures
and wind destratify the lake through winter. From
1998 to 2010, surface temperatures (0–2 m) in April
(spring) averaged 11.0 �C and bottom temperatures
(52–54 m) averaged 7.3 �C (Fig. 1). October (fall)
temperatures averaged 15.4 �C at the surface and
8.4 �C at the bottom. Dissolved oxygen levels during
our study remained >5 mgÆl)1 throughout the water
column, except in some years during August–Novem-
ber when localised benthic levels of 3–5 mgÆl)1 were
recorded at 50–60 m depths (King County Department
of Natural Resources, WA, unpublished data).

The primary crustacean zooplankton species in the
lake include the cladoceran Daphnia pulicaria and the
copepods Cyclops bicuspidatus, Leptodiaptomus ash-
landi and Epischura nevadensis. D. pulicaria typically
achieve moderate to high densities (5–35 organisms
per l) from mid-May through November but are often
below detection levels during winter and early spring
(Hampton et al. 2006a,b). Copepod densities during
winter and early spring are highly variable among
years with either C. bicuspidatus or L. ashlandi pre-

dominating in the zooplankton assemblage (4–
30 organisms per l for the predominant species;
Beauchamp et al. 2004; Winder et al. 2009). In
general, the dominant zooplankton (i.e., D. pulicaria)
do not vertically migrate and are most dense in the
upper 10 m of the water column and very scarce
below 20 m, regardless of season (Edmondson & Litt
1982).

Fish sampling

From 1997 to 2011, sampling was conducted in the
central basin of Lake Washington, east of Sand Point
in water ca. 50 m deep from 14 to 26 April and 11 to
29 October. These months incorporate several ecolog-
ical patterns. In April, juvenile sockeye salmon are
present in two age classes, age-0 [fry, ca. 30–50 mm
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Fig. 1. Spring (April, solid diamonds) and fall (October, open
squares) water temperature profiles from the sampling site in Lake
Washington in a typical year (2005). Rectangles indicate the modal
depth bins where fish were sampled.
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fork length (FL)] and age-1 (fish ca. 110–130 mm FL
that will migrate to sea later that spring; Fig. 2).
Longfin smelt are present as age-1 fish (ca. 60–90 mm
FL), because the age-2 fish have already spawned in
rivers and died by this time of year while young-of-
the-year have not yet recruited to the lake. In October,
age-0 sockeye salmon (ca. 100–120 mm FL) are the
only age class present, but both age-0 (ca. 40–60 mm
FL) and age-1 (90–110 mm FL; Fig. 2) longfin smelt
are present. Catches of limnetic three-spine stickle-
backs are low in April because they breed in the
littoral zone in late spring, but they are vulnerable to
trawling in fall. In addition to these fish community
dynamics, April and October present contrasts in
thermal regime (cooler and weakly stratified in April;
warmer and strongly stratified in October (Fig. 1))
without dramatic differences in overall prey availabil-
ity. Zooplankton sampling from 25 m to the surface in
the afternoon and at night on each date when fish were
sampled revealed mean densities of 17.2 organisms

L)1 in spring and 13.3 in fall. The dominant taxa were
D. pulicaria, C. bicuspidatus, Bosmina sp., Epischura
sp. and L. ashlandi (T.P. Quinn, unpublished data).
D. pulicaria were proportionally less abundant in
April, although this varied among years. Independent
sampling farther south in the lake revealed similar
patterns. The mean depth-stratified densities (±2 SE)
of edible crustacean zooplankton during 2000–2007
were the following: 32.6 ± 20.0 l)1 in 0–10 m and
19.6 ± 8.9 l)1 in 10–20 m during April (1% Daphnia)
versus 16.4 ± 3.6 l)1 in 0–10 m and 11.3 ± 2.1 l)1 in
10–20 m during October (31–38% Daphnia;
D.E. Schindler, University of Washington, unpub-
lished data).

Fish were captured using a Kvichak midwater trawl
from 1997 to 2011, deployed for 15 min at three
depths from mid-afternoon to night (Table 1). The net,
held open by two horizontal metal bars, had a
2.5 m · 2.5 m cross-section and mesh decreasing
from 76- to 2-mm knotless mesh in the cod end. Diel
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Fig. 2. Length frequency histograms for the
three planktivore species sampled in Lake
Washington in spring (April) and fall
(October), pooling all samples from 1997 to
2011.
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periods were categorised as day (before sunset), dusk
(sunset to 1.5 h after sunset) and night (>1.5 h after
sunset). Trawl depths were categorised as shallow (6–
15 m), intermediate (20–38 m) and deep (38–54 m;
depths shown in Fig. 1). Thermal exposure for fish
averaged 9.5–12.0 �C in spring versus 15.5 �C in fall
at shallow depths, 9.5 �C in spring versus 10–12 �C in
fall at intermediate depths, and 8.5 �C in spring versus
9.0 �C in fall at deep depths. All captured fishes were
counted in the field and measured to the nearest
millimetre (FL) except in 2 years, when very large
catches of age-0 longfin smelt were subsampled for
length.

Catch analysis

To examine the general patterns in planktivore distri-
bution, we calculated the mean number of fish caught
per minute trawled across years for discrete
depth · diel · season sampling cells. Catch data were
normalised in this manner to account for slight
variation in tow time and differences in effort across
sampling cells (Table 1). We used generalised linear
models (GLMs) to determine the relative importance
of depth, diel period and season in explaining variation
in planktivore CPUE for individual species. Model
parameter coefficients were used to support species-
specific patterns in diel vertical distribution. We then
examined the CPUE data graphically, to describe
differences in diel vertical distribution patterns among
species and ages.

Many tows caught no fish; therefore, we used a
delta approach to model CPUE because it is appro-
priate for zero-inflated data (Helser et al. 2004;
Maunder & Punt 2004). CPUE was modelled as a
function of environmental variables in a two-stage
process. First, the probability of capturing a species
(i.e., frequency of occurrence in tows) was estimated
using a GLM with a binomial error distribution. Then,
the CPUE for nonzero tows was modelled using a
negative binomial GLM with a log-link function.
Thus, the overall CPUE may be determined as the
product of the probability of a nonzero catch and the

expected CPUE, given that the catch was nonzero.
Models were fit separately to data for the three species.
Age-0 and age-1 fish were combined in the analyses
due to small sample sizes for individual age classes;
however, we present graphical summaries of age-
specific diel vertical distributions (Fig. 3).

Eight GLMs were evaluated for each species,
including the null model (intercept only) and all
possible combinations of three discrete predictor
variables: depth (shallow, intermediate and deep); diel
period (day, dusk and night); and season (fall and
spring). Models provided reasonably good fits to the
data; estimated dispersion parameters ranged from
0.60 to 1.43, indicating little evidence of over- or
under-dispersion (Helser et al. 2004). Additionally,
diagnostic plots of deviance residuals versus fitted
values from the full models showed constant variance,
and half-normal plots of the residuals showed no
outliers (Faraway 2006).

For each stage of the analytical process described
earlier, we compared the eight candidate models using
Akaike’s information criteria, bias-corrected for small
sample size (AICc), which balances model complexity
(number of estimated parameters) with the goodness
of fit, as determined by likelihood (Burnham &
Anderson 2002). The DAICc was calculated for each
model as its AICc minus the lowest AICc across all

Table 1. Midwater trawl effort from 1997 to 2011, expressed as minutes
towed (numbers of tows in parentheses) categorised by season, depth and
period of the day.

Season Depth category

Total trawl minutes (N tows)

Day Dusk Night

Spring Shallow 679 (46) 317 (21) 151 (10)
Intermediate 668 (45) 245 (16) 73 (5)
Deep 811 (54) 226 (15) 105 (7)

Fall Shallow 200 (14) 75 (5) 276 (19)
Intermediate 247 (17) 46 (3) 293 (20)
Deep 285 (20) 86 (6) 237 (16) 0.00 0.25 0.50 0.75

Shallow

Intermediate

Deep

Age-0
Age-1

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75

Spring
sockeye
 salmon

Day Dusk Night

0.00 0.25 0.50 0.75

Shallow

Intermediate

Deep

Age-0
Age-1

Proportional CPUE
0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75

Fall
longfin
smelt

Day Dusk Night

Fig. 3. Diel vertical distributions of age-0 and age-1 sockeye
salmon in the spring (top) and longfin smelt in the fall (bottom).
Catch-per-unit-effort (CPUE, NÆmin)1) was standardised by the
total CPUE for each age class · diel period.
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models; by convention, models with DAICc within
two of the minimum AICc are classified as performing
equivalently to the best approximating model (Burnham
& Anderson 2002). We calculated the Akaike weight
(wi) for each model, interpreted as the weight of
evidence (probability) that model i is the best approx-
imating model from among the set of candidate
models (Johnson & Omland 2004). As wi approaches
one, the weight of evidence in favour of model i
increases (Burnham & Anderson 2002). The relative
importance of each predictor variable j (wj) was
estimated by summing wi across all models in the set
that included variable j; the closer wj is to 1, the more
important the variable in predicting the response
across all models (Burnham & Anderson 2002).

Results

Longfin smelt were the most abundant species caught
by midwater trawling during spring and fall sampling
periods (71.7% of all fish caught), followed by three-
spine stickleback (18.6%) and sockeye salmon (9.7%).
Season, depth and diel period were important predic-
tors of frequency of occurrence and density (nonzero
CPUE) for all three species, based on their inclusion in
the set of best approximating models (Table 2). For all
species, observed spatial–temporal patterns in CPUE
(Figs 4 and 5) were supported by coefficient values
from best-fit models; coefficient estimates from the
full models indicate the magnitude and direction of the
effect of each parameter on planktivore CPUE
(Table 3). For example, slope coefficients estimated
from the full model for sockeye (Table 3) increased
from day to night periods; this mirrors the graphical
trend in sockeye CPUE (Fig. 4). Qualitative differ-
ences in patterns of age-specific CPUE were apparent
in spring for sockeye salmon and in fall for longfin
smelt. Generally, younger fish were caught in larger
proportions higher in the water column during dusk
and night periods than older conspecifics (Fig. 3).

Juvenile sockeye salmon demonstrated a seasonal
shift in diel vertical distribution patterns. During
spring, CPUE was highest in deep water during the
day, intermediate depths at dusk and shallow depths at
night (Fig. 4), whereas in the fall the highest CPUE
was in deep water across all diel periods (Fig. 5). In
both seasons, the frequency of occurrence and density
increased dramatically from afternoon to dusk and
night. Variation in sockeye salmon occurrence was
related strongly to season, depth and diel period
(wj = 1.0); however, diel period and depth were more
important than season in dictating the density of
sockeye (Table 4). Sockeye salmon were encountered
less frequently in fall surveys than in the spring but
were captured in similar densities (nonzero CPUE)
across seasons (Table 3).

Variation in longfin smelt occurrence and density
were related strongly to season and diel period
(wj = 0.91–1.00) and, to a lesser extent, depth
(wj = 0.53–1.0; Table 4). Longfin smelt demonstrated
distinct DVM patterns during both spring and fall,
with CPUE increasing in intermediate and shallow
depths from day to night periods (Figs 4 and 5). Smelt
were encountered more frequently and captured in
higher densities in fall than in spring (Table 3).

Depth and diel period were more important than
season in dictating the occurrence and density of three-
spine stickleback (Table 4). The highest densities of
three-spine stickleback occurred in shallow depths
during all diel periods in the spring (Fig. 4) and at
night in the fall, but they were captured in very low
densities at all depths during daylight and dusk in the
fall (Fig. 5).

Table 2. Diagnostic statistics for generalised linear models describing the
relationships between catch-per-unit-effort (CPUE) and environmental fac-
tors. CPUE was modelled using a two-stage process, first estimating the
probability of capturing a species (a) and then modelling the CPUE given that
the species was caught (b). AICc is Akaike’s information criteria bias-
corrected for small sample size, DAICc is the AICc for each model minus the
lowest AICc from all possible models, and wi is the model Akaike weight.

(a) Frequency of
occurrence

(b) CPUE, nonzero
tows

AICc DAICc wi AICc DAICc wi

Sockeye salmon
Model parameters

Depth + Diel + Season
(full model)

332.0 0.0 1.00 821.9 2.2 0.22

Depth + Diel 367.1 35.0 0.00 819.7 0.0 0.67
Depth + Season 423.8 91.7 0.00 838.2 18.6 0.00
Depth 431.5 99.5 0.00 849.2 29.5 0.00
Diel + Season 380.6 48.6 0.00 825.4 5.7 0.04
Diel 406.4 74.4 0.00 824.1 4.4 0.07
Season 449.0 116.9 0.00 844.9 25.2 0.00
Intercept (null model) 455.2 123.2 0.00 853.1 33.4 0.00

Longfin smelt
Model parameters

Depth + Diel + Season
(Full model)

303.0 0.0 0.98 1821.1 0.0 0.47

Depth + Diel 310.9 8.0 0.02 1834.3 13.3 0.00
Depth + Season 404.6 101.6 0.00 1825.1 4.1 0.06
Depth 431.2 128.2 0.00 1854.9 33.9 0.00
Diel + Season 349.3 46.3 0.00 1821.2 0.1 0.44
Diel 357.2 54.2 0.00 1832.3 11.3 0.00
Season 428.4 125.4 0.00 1826.3 5.3 0.03
Intercept (Null model) 453.8 150.8 0.00 1855.4 34.3 0.00

Three-spine stickleback
Model parameters

Depth + Diel + Season
(Full model)

416.3 0.9 0.29 1028.0 2.0 0.26

Depth + Diel 415.4 0.0 0.46 1026.0 0.0 0.70
Depth + Season 464.6 49.3 0.00 1032.2 6.2 0.03
Depth 464.1 48.7 0.00 1034.6 8.6 0.01
Diel + Season 418.6 3.2 0.09 1062.6 36.6 0.00
Diel 417.5 2.1 0.16 1063.3 37.3 0.00
Season 463.6 48.3 0.00 1074.5 48.5 0.00
Intercept (null model) 463.1 47.7 0.00 1076.6 50.6 0.00
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In summary, CPUE data provided evidence of
DVM from deep water during the day to shallow water
at night for all planktivores, but the strength of this
distributional pattern and consistency between seasons
varied among species. Sockeye salmon demonstrated a
strong DVM during the spring, but remained at highest
densities in deep water across diel periods during the

fall. Longfin smelt exhibited DVM in both seasons and
were more evenly distributed throughout the water
column at night than the other species. Three-spine
stickleback also showed increasing densities in shal-
low waters from day to night periods during both
seasons, but were generally more abundant in shallow
water across all diel periods.

Fig. 4. Spring (April) depth distribution of
sockeye salmon, longfin smelt and three-
spine stickleback during day, dusk and night
periods. Mean catch-per-unit-effort (CPUE,
NÆmin)1) is shown for all sampling years
combined (1997–2011).

Fig. 5. Fall (October) depth distribution of
sockeye salmon, longfin smelt and three-
spine stickleback during day, dusk and night
periods. Mean catch-per-unit-effort (CPUE,
NÆmin)1) is shown for all sampling years
combined (1997–2011).
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Discussion

Midwater trawl data from Lake Washington demon-
strated species-specific variation in the vertical distri-
bution patterns of three planktivores across season and
diel periods. The three species differed from each
other, and in general, the hypotheses proposed for
species-specific variation in DVM were supported.
The DVM indicated by the sockeye salmon data was
consistent with that of prior work on Lake Washington
(Eggers 1978) and elsewhere (Levy 1987; Scheuerell

& Schindler 2003) on this species. Sockeye salmon
reside in lakes for the first year or two of their lives,
followed by migration to sea for the majority of their
growth prior to return for spawning. In general, they
grow slowly, as indicated by their smaller size at age
when leaving freshwater compared with coho salmon,
O. kisutch, a stream-rearing species, and smaller size
for their age at sea than other Pacific salmon (Quinn
2005). In Lake Washington, age-0 sockeye salmon
feed and grow much slower during their first months
in the lake (Beauchamp et al. 2004) than sympatric
lake-rearing Chinook salmon (Koehler et al. 2006).
Where sympatric with pink salmon, O. gorbuscha, in
lakes, sockeye salmon grow slower as well (Robins
et al. 2005), and they seem to be generally unaggres-
sive and risk-averse (Hoar 1954; Hutchison & Iwata
1997). Their nocturnal use of surface waters during
spring was advantageous for growth, given the size
and feeding rates exhibited by age-0 sockeye and to a
lesser degree for the age-1 smolts (Beauchamp et al.
2004). In contrast, their strong avoidance of shallow
strata during fall, when growth was insensitive to the
range of temperatures available in deep (�9 �C)
through shallow (ca. 15–16 �C) depths (Beauchamp
2009), was more consistent with predator avoidance.

There is less information on DVM by three-spine
sticklebacks than by sockeye salmon, but DVM was
reported in the Baltic Sea by Jurvelius et al. (1996)
and Iliamna Lake, Alaska, by Quinn et al. (2012). In
Alaska, significant numbers of sticklebacks were
caught at the surface during the day, and their vertical
shift in distribution was relatively subtle. In contrast,
daytime catch rates of sockeye salmon at that lake
were negligible compared with night-time catches
(T.P. Quinn, unpublished data). Compared with sock-
eye salmon, three-spine sticklebacks are armoured
(though still subject to predation from birds and fishes;
Kitano et al. 2008), have a 1-year lifespan in Lake
Washington (Eggers et al. 1978), and warmer optimal
temperature for growth (Lefébure et al. 2011). During
both spring and fall, the shallow stratum offered higher
growth benefits for three-spine sticklebacks than either
the intermediate or deep strata. These features likely
all contributed to their greater proximity to the surface.
Longfin smelt appeared to be intermediate between
sockeye salmon and three-spine sticklebacks in their
use of the epilimnion and extent of DVM. Like
sockeye salmon, they lack defensive structures and are
readily consumed by cutthroat trout in the lake
(Beauchamp et al. 1992; Nowak et al. 2004), but their
lifespan is much shorter, typically maturing at age-2
(Moulton 1974; Chigbu 2000).

Our age-specific samples of sockeye salmon in
spring and longfin smelt in fall were insufficient for
the rigorous statistical comparisons needed to test the
two hypotheses concerning size effects on DVM, so

Table 3. Parameter estimates from generalised linear models describing the
(a) frequency of occurrence and (b) nonzero catch-per-unit-effort (CPUE) for
three species. Coefficients (SE) are shown for the full model
(Diel + Depth + Season).

(a) Frequency of
occurrence

(b) CPUE,
nonzero tows

Sockeye salmon (full model)
Intercept )1.05 (0.41) )1.04 (0.21)
Season: Oct )2.16 (0.41) 0.01 (0.24)
Diel: Day )2.62 (0.40) )0.93 (0.24)
Diel: Night 0.69 (0.46) 0.47 (0.23)
Depth: Shallow )1.54 (0.38) 0.44 (0.27)
Depth: Deep 0.99 (0.33) 0.64 (0.21)

Longfin smelt (full model)
Intercept )1.02 (0.44) )0.22 (0.23)
Season: Oct 1.05 (0.34) 0.83 (0.20)
Diel: Day )2.77 (0.43) 0.21 (0.24)
Diel: Night 0.93 (0.65) 0.74 (0.26)
Depth: Shallow )0.99 (0.38) 0.52 (0.25)
Depth: Deep 1.52 (0.36) 0.33 (0.22)

Three-spine stickleback (Full model)
Intercept )2.28 (0.32) )0.64 (0.26)
Season: Oct )0.30 (0.28) )0.14 (0.25)
Diel: Day )1.38 (0.30) )0.04 (0.27)
Diel: Night 0.69 (0.39) 0.86 (0.30)
Depth: Shallow )0.11 (0.30) 0.84 (0.26)
Depth: Deep 0.57 (0.30) )0.85 (0.26)

Table 4. Parameter Akaike weights (wj) calculated from all candidate
generalised linear models, describing the relationships between catch-per-
unit-effort (CPUE) in biannual trawl surveys and environmental factors. CPUE
was modelled using a two-stage process, first estimating the probability of
capturing a species (a) and then modelling the CPUE given that the species
was caught (b).

(a) Frequency of
occurrence

(b) CPUE, nonzero
tows

Parameter wj wj

Sockeye salmon
Depth 1.00 0.89
Diel 1.00 1.00
Season 1.00 0.26

Longfin smelt
Depth 1.00 0.53
Diel 1.00 0.91
Season 0.98 1.00

Three-spine stickleback
Depth 0.75 1.00
Diel 1.00 0.96
Season 0.38 0.29
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these results should be interpreted cautiously.
However, the general patterns (Fig. 3) indicated
greater proximity to the surface among the young-of-
the-year, especially in longfin smelt. These fish would
be more vulnerable to predation on the basis of size
than the yearlings, and the use of the surface waters
suggests that foraging to achieve growth was more
important than predation risk. However, two features
of the biology of smelt complicate this interpretation.
First, the young-of-the-year are nearly transparent and
so may be less vulnerable to visual predators than
might be expected based on the size alone. In addition,
the larger smelt feed more heavily on Neomysis than
do smaller smelt (Chigbu and Sibley 1998), and
Neomysis are closely associated with the bottom
during the day, whereas zooplankton are primarily in
the epilimnion. This difference in the locations of focal
prey may also affect the vertical distributions of the
age groups. Recently, Busch & Mehner (2012)
reported earlier and more rapid ascent at dusk by
smaller coregonids compared to larger ones, so the
size-specific DVM patterns we saw may be genuine
but further sampling is needed.

For all three species across all depths and seasons,
there was a large disparity in CPUE among diel
periods (lowest during daylight, intermediate at dusk
and highest at night). Although light-mediated gear
avoidance likely contributed to this disparity, this
pattern was also observed in unbiased seasonal and
diel hydroacoustic surveys (Beauchamp et al. 1999;
Mazur & Beauchamp 2006). This disparity could be
explained by schooling or a strong benthic association
during daylight followed by partial or full dispersal
into the water column at dusk and night. Our net was
not designed to sample on the bottom, so close
proximity to the bottom would greatly reduce vulner-
ability to the gear. Daylight schooling can be difficult
to detect, much less quantify, by either small midwater
trawls or narrow beam hydroacoustics. Nonetheless,
occasional schools have been detected in the upper
10 m of the lake during hydroacoustic surveys in
October (Mazur 2004; D.A. Beauchamp, unpublished
data), and a single catch of nearly 17,000 three-spine
sticklebacks was encountered when fishing at 15 m
during daylight in October 2001 as well (Overman
et al. 2006).

The seasonal and diel vertical distribution patterns
of the three planktivores may reflect trade-offs
between antipredation behaviour and bioenergetic
benefits from behavioural thermoregulation. The low
densities of nonschooling planktivores in the upper
water column during daylight in both seasons, except
for the armoured three-spine sticklebacks in spring,
suggested that predator avoidance was a high priority
during high-light periods. The depth distribution
patterns during dusk were often intermediate between

day and night periods and could reflect either a critical
feeding period during an antipredation window (e.g.,
Eggers 1978; Clark & Levy 1988; Scheuerell &
Schindler 2003) or simply a transition from daylight to
nocturnal distributions. Strong crepuscular feeding
peaks were reported for longfin smelt (Dryfoos 1965)
and juvenile sockeye salmon (Doble & Eggers 1978)
in Lake Washington during the 1960s and early 1970s,
before the emergence of Daphnia as the predominant
zooplankter in the mid-1970s.

The depth distributions at night likely reflected
thermoregulation, because darkness should minimise
predation risk and inhibit feeding by the planktivores.
The juvenile sockeye salmon moved into the epilim-
nion at night in spring, where the warmer temperatures
offered a bioenergetic growth benefit. However, when
the thermal benefit was neutral in fall, they remained
in deep water at night. In contrast, the epilimnetic
temperatures during both spring and fall were bene-
ficial for growth of three-spine stickleback, and
presumably for longfin smelt, and the highest catches
of both species were in shallow depths at night during
both seasons. Although little is known about the
thermal preferences of longfin smelt, their optimal
temperature is likely higher than for sockeye salmon,
based on the much more southerly range of anadro-
mous populations (Scott & Crossman 1973) and their
generally shallower distribution in stratified lakes
(Enzenhofer & Hume 1989; Chigbu et al. 1998).
During peak thermal stratification in July–September,
the 18–23 �C average epilimnetic temperatures in
Lake Washington (Arhonditsis et al. 2004) would
markedly reduce the growth of sockeye salmon, but
optimise the growth of three-spine stickleback and
possibly of longfin smelt.

The seasonal differences in DVM among species
have implications for their vulnerability visually
feeding limnetic predators. Using telemetry data on
cutthroat trout (Nowak & Quinn 2002) and hydroa-
coustic data on nonschooling planktivores, a visual
detection foraging model predicted that in spring, most
predator–prey encounters would occur in the upper
12 m during all diel periods but rates were highest at
dusk in the upper 6 m (Mazur & Beauchamp 2006). In
fall, most predator–prey encounters would occur in the
upper 21 m of the water column during all diel
periods, with slightly higher maximum encounter rates
in the upper 6 m at night (Mazur & Beauchamp 2006).
These predicted encounter rates suggest that the
planktivores were only vulnerable to predation in
the shallow stratum. Thus in April, a larger fraction of
the three-spine stickleback population was vulnerable
to encounters with predators than in fall, followed by
longfin smelt, and then sockeye salmon. In October,
these species displayed the same ordering in terms of
predicted encounter rates with predators, but sockeye
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salmon were much less vulnerable than in the spring.
Indeed, during 1995–2000, juvenile sockeye salmon
represented larger fractions of the limnetic cutthroat
trout diets in spring than in the fall, whereas longfin
smelt contributed less to trout diets in spring than in
fall, and sticklebacks contributed considerably less
during any season for data spanning 1984–2000
(Beauchamp et al. 1992; Nowak et al. 2004). Follow-
ing the recent fivefold increase in three-spine stickle-
backs (Overman & Beauchamp 2006; Overman et al.
2006), they represented larger fractions of cutthroat
trout diets (but low prey electivity indices) during
spring and fall, while similar patterns in seasonal
contributions by the other species persisted
(D.A. Beauchamp, unpublished data).

In addition to the patterns documented by this study
for the three planktivore species in Lake Washington,
it offers broader implications for the DVM phenom-
enon and applied lake ecology. As noted by Piet &
Guruge (1997), vertical distribution and DVM affect
many aspects of community ecology in lakes, includ-
ing the influences of non-native species. Assessment
of these ecological interactions is greatly complicated
by the variation in species-specific DVM patterns with
season and size, and changing community composi-
tion at different trophic levels as species invade lakes
and cascading effects occur. Lake Washington has had
a particularly interesting and well-studied history of
sequential effects of natural and human-related pro-
cesses (Edmondson 1994; Winder et al. 2009), but it is
certainly not unique. Modelling efforts directed at the
conservation of species at risk and control of unwanted
invasive species may hinge in part on complex trophic
interactions affected by DVM patterns.
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