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Abstract: The probability of different levels of depensation within four taxonomic groups was calculated using a Bayesian
technique called hierarchical modeling. With this method we combined spawner–recruit data from many stocks within a taxon
to estimate the distribution describing the variability of depensation within that taxon. The spawner–recruit model we use
allows for both depensation (lower than expected recruits at low population levels) and hypercompensation (where recruits are
higher than expected at low population levels). The end product of our analysis is a probability distribution that can be used as
a Bayesian prior when analyzing a new data set. We examined four taxonomic groups (the salmonids, gadiforms, clupeiforms
and pleuronectiforms) and found that, for all of the taxa, the most likely values fell close to or within the range of no
depensation. However, because the distributions were very broad we suggest that analysis of stock recruitment data should
incorporate spawner–recruit curves that include the possibility of depensation and hypercompensation.

Résumé: La probabilité de différents degrés d’anticompensation à l’intérieur de quatre groupes taxinomiques a été calculée à
l’aide d’une technique bayésienne appelée modélisation hiérarchique. Avec cette méthode, nous avons combiné les données
reproducteurs–recrues provenant de nombreux stocks à l’intérieur d’un taxon pour estimer la distribution décrivant la
variabilité de l’anticompensation à l’intérieur de ce taxon. Le modèle reproducteurs–recrues que nous avons utilisé tient
compte à la fois de l’anticompensation (des recrues moins nombreuses que prévu à des niveaux de population faibles) et de
l’hypercompensation (les recrues sont plus nombreuses que prévu à des niveaux de population faibles). Le produit final de
notre analyse est une distribution de probabilités qui peut être utilisée comme une prémisse bayésienne dans l’analyse d’un
nouvel ensemble de données. Nous avons examiné quatre groupes taxinomiques (des salmonidés, des gadiformes, des
clupéiformes et des pleuronectiformes). Nous avons constaté que pour tous ces taxons, les valeurs les plus vraisemblables
étaient proches ou à l’intérieur de l’étendue de non-anticompensation. Toutefois, parce que les distributions étaient très
étendues, nous avons proposé que l’analyse des données stock–recrutement comprenne des courbes reproducteurs–recrues qui
incluent la possibilité d’anticompensation et d’hypercompensation.
[Traduit par la Rédaction]

Introduction

Many fish populations have declined drastically. Some stocks
such as the Northern Atlantic cod (Gadus morhua) in eastern
Canada (Hutchings and Myers 1994), sardines (Sardinops sa-
gax) in California (Murphy 1966), and many whale species
(Scarff 1977a, 1977b) have been fished below 1% of their
original population sizes. Whether a severely reduced popula-
tion can recover and if so, how quickly, depends on the popu-
lation growth rate at low densities. The simplest population
models, such as the logistic equation, predict higher rates of
growth at lower abundances because of reduced intraspecific
competition. This type of process has been called compensa-
tion (Ricker 1975). An alternative phenomenon, depensation,
occurs when growth rates are reduced at low densities.

In problems of population viability analysis, models with
depensation predict much higher probabilities of decline and
extinction than do compensatory models. Understanding the

role of depensation in the dynamics of fished stocks is essential
in determining to what degree and how rapidly a population
will recover when fishing effort is reduced. A number of
mechanisms have been used to explain how depensation might
occur. These include predator pits, reduced reproductive suc-
cess, impaired aggregation, conditioning of the environment,
efficiency of food location, and inbreeding (Hilborn and Wal-
ters 1992; Parkinson 1990; Emlen 1984; Asmussen 1979).

When a predator removes a relatively constant number of
prey, the percentage of the prey population lost to predation
increases as the population declines. This mechanism for de-
pensation has been supported by a number of studies. Wood
(1987) examined predation by the common merganser (Mer-
gus merganser) on juvenile Pacific salmon during seaward
migration in two streams where populations were enhanced by
hatcheries and spawning channels. He found that maximum
rates of salmon mortality due to merganser predation declined
with increased salmon abundance (i.e., depensatory mortal-
ity). Using a statistical model, Crittenden (1994) found that
incorporating depensatory mortality along with weak compen-
sation during smolt migration explained a significant amount
of the variation in adult returns. Peterman (1980) showed that
several Native American subsistence fisheries in British Co-
lumbia behave like predators that become saturated. He used
this result to explain the depensatory dynamics of the fished
stocks suggested by data. However, Peterman and Gatto
(1978) suggested that for many salmon stocks the natural
predators are not being saturated.
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Parkinson (1990) constructed a model of school formation
for juvenile sockeye salmon (Oncorhynchus nerka). At lower
population levels, increased predation rates are predicted be-
cause of longer school formation time and smaller schools.
Montgomery et al. (1996) investigated the effects of spawning
chum salmon (Oncorhynchus keta) on bed surface grain mo-
bility in streams. They found that grain mobility was reduced
decreasing the chances of streambed scour and therefore ex-
cavation of salmon embryos. They concluded that “Such a
feedback between salmon spawning and bed mobility would
make it increasingly difficult to reverse declining populations
because decreased spawning activity would increase suscepti-
bility to scour, leading to higher embryo mortality.”

Myers et al. (1995) examined data sets from 129 fish stocks
to look for evidence of depensation. They used a likelihood
ratio test to compare the standard Beverton–Holt model with
a modified Beverton–Holt model that allows for depensation.
Of the 26 stocks for which the test had an estimated power
over 0.95, only three resulted in the choice of the hypothesis
with depensation while 11 rejected in the other direction
(i.e., higher recruits per spawner at low densities than would
be expected by the standard Beverton–Holt model). They con-
clude that the stock collapses observed up to now cannot be
explained by depensation and “the effects of overfishing are,
at this point, still generally reversible.”

While these results are generally comforting to those in-
volved in fisheries management, they do not provide much
help in the management of individual stocks. If we accept the
Myers et al. result that 3 of 26 stocks showed a statistically
significant level of depensation, should a manager of another
stock assume that there is a 3 in 26 chance of there being
depensation in that stock? If so how much depensation? Myers
et al. did not examine the effect of the intensity of depensation
on the statistical significance. A manager would ideally like to
know how probable different levels of depensation are for a
particular type of fish. Presumably every stock within a certain
group of fish (e.g., taxon) has a unique level of depensation,
and we are interested in the distribution of these levels within
that group.

One could fit the Myers et al. model to a group of stocks
and then create a histogram from the resulting estimates of the
depensation parameter. This assumes that the stocks used are
representative of the larger group of interest (e.g., gadiforms,
salmonids, etc.) There are two problems with this approach.
The first is that a data set where the depensation parameter is
very well estimated receives the same weight as one where the
parameter is poorly estimated. Second, variability due to meas-
urement error in the depensatory parameter is not differenti-
ated from the variability between stocks in the depensatory
parameter (the distribution we would like to know). By making
no attempt to factor out variability associated with measure-
ment error the estimated distribution is broader than necessary.

A second approach, used by McAllister et al. (1995) for
another type of parameter, is to estimate the conditional prob-
ability distribution p(di |xi) of a depensatory parameterd for
each stocki (wherexi is the spawner–recruit data for stocki)
and then average across then stocks for which there are data:

(1) p(d) = ∑
i=1

n

p(di |xi)
1
n

An advantage to this technique is that more information from
each stock is being used (the likelihood function instead of just
a point estimate). However, it still suffers the same problems
as the first method. For example when there are a large number
of uninformative data sets they dominate producing a very flat
distribution in spite of many other informative stocks.

Regardless of how the distribution is estimated, for it to be
useful, it is important that the measure of depensation used is
easily interpretable. The depensatory parameter used by Myers
et al. does not have a simple biological interpretation and is
ambiguous when presented without the other parameters of the
model.

Because most data sets provide little information about de-
pensation (because of high variability and few observations at
low spawner levels) it is normal practice not to consider de-
pensation as a possibility. The purpose of this paper is to use
the same data as Myers et al. to calculate a prior probability
distribution for a depensation parameter that can be used in the
analysis of other similar fish stocks. We accomplish this
through the following steps.

(i) Introduce a spawner–recruit model that allows for de-
pensation.

(ii ) Reparameterize the model to include a more biologi-
cally interpretable depensatory parameter.

(iii ) Estimate the marginal likelihood function of this de-
pensatory parameter for each stock.

(iv) For each taxonomic group estimate the distribution of
the depensatory parameter based on the likelihoods from stepiii .

Materials and methods

The Beverton–Holt spawner–recruit curve can be modified to allow
for depensation by raising each occurrence of spawners (S) in the
right-hand side of the equation to the powerd:

(2) R = aSd

b d + Sd

For d = 1, the model displays the normal Beverton–Holt spawner–
recruit relationship. A reduced rate of recruitment at low spawner
levels, or depensation, occurs ford > 1. Ford < 1, hypercompensa-
tion, recruitment is elevated at low densities. The parametera is the
asymptote that recruitment approaches as spawner levels become
large andb is the level of spawners that producea/2 recruits. In this
parameterization,d is identical to the depensatory parameter,δ, that
Myers et al. (1995) used.

A meaningful depensation parameter for the Beverton–Holt
curve

The depensation parameterd has no straightforward biological inter-
pretation and is not a particularly good measure of the intensity of
depensation. Ad value of 2.0 may indicate intense depensation or
very slight depensation depending upon the other parameters of the
model. To illustrate the problem we consider twoa,b,d combinations
(a1,b1,d1 anda2,b2,d2), whered1 = d2, yet thea1,b1,d1 triple shows a
higher degree of depensation (Fig. 1). This is because the parameter
a also has a large effect on the degree of depensation.

For this reason we reparameterize the model froma,b,d to R*,z,q,
whereq is the depensatory parameter andR* and z are adapted from
Mace and Doonan (1988). We begin by settingS* equal to the maxi-
mum observed spawner level. The parameterR* is then defined as the
recruit level corresponding toS* (Fig. 2):

(3) R∗ =
aS∗d

bd + S∗d

Liermann and Hilborn 1977
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andz is calculated as the proportion ofR* corresponding to the model
at 0.5S*:

(4) z =





a(0.5S∗)d

bd + (0.5S∗)d





R∗

Next the parametersa′ andb′ are found for the standard Beverton–
Holt curve that agrees with the depensatory model at 0.5S* and S*
(i.e., such that both curves have the sameR* andz):

(5) R =
a′S

b′ + S

Finally q is defined as the ratio of the depensatory and standard mod-
els at 0.1S*:

(6) q =





a(0.1S∗)d

bd + (0.1S∗)d









a′(0.1S∗)
b′ + (0.1S∗)





This measure of depensation is less ambiguous, has a simple biologi-
cal interpretation, and can be explained graphically (Fig. 2). Forq <
1 the model is depensatory, whileq > 1 results in hypercompensation.
The parametersa′ andb′ are calculated by settingd = 1 and solving
eqs. 3 and 4 simultaneously fora andb:

(7) a′ =
0.5R∗z

z − 0.5

(8) b′ =
0.5S∗(1 − z)

z − 0.5

Because the Beverton–Holt model increases over its entire range,z
falls between 0 and 1 (i.e., the model at 0.5S* will never be greater
than the model atS*). Also, q is clearly bounded below by 0 and the
upper bound is approximately 1.55 (Appendix 1).

Estimating the likelihood function of the depensatory
parameter

Because we are interested in a distribution ofq, independent of the
other two parameters (z andR*) we would like to calculate the mar-
ginal likelihood ofq, L(q|data) (orp(data|q)). However, integrating
over z andR* is computationally demanding and difficult to stand-
ardize for all of the stocks. For this reason we chose to estimate the
marginal likelihood ofq with the likelihood profile (Meeker and
Escobar 1995; Venzon and Moolgavkar 1988). The likelihood profile
is calculated by maximizing the full likelihood overzandR*:

(9) L̂ (q|data) ≈ max
R∗,z

L(q,z,R∗ |data)

We use the model:

(10) R = f(S)eV

wheref is the spawner–recruit relationship described above andV is
a normal random variable with mean 0 and standard deviationσ.
Because the mean ofV is 0,f(S) is the median but not the mean of the
log normally distributed random variableR. Instead of includingσ as
a free parameter we used the estimate from the model:

(11) σ̂2 =

∑
i=1

n

(ln(Ri) − ln (f(Si)))2

n − 3

Since there is no closed-form transform fromR*, z,q to a,b,d, the
profiles were produced using an algorithm that systematically covers
the a,b,d parameter space and transforms the results into thez,q
parameter space (Appendix 2).

Estimating the distribution of the depensatory parameter for a
taxonomic group

Now that we have a likelihood function for each stock within a taxo-
nomic group we would like to combine this information to produce a
distribution describing the variability in the depensatory parameter,q,
for that taxon. In the introduction we described two methods and
pointed out that in both cases no effort is made to separate measure-
ment error from the between stock variability in which we are interested.

In the approach we use, hierarchical modeling, the two sources of
variability are explicitly included in the model so that the between
stock distribution of the depensatory parameter can be more success-
fully isolated.

Hierarchical modeling
Hierarchical modeling is a Bayesian technique that can be used to
combine data from several independent sources. Examples of appli-
cations include the analysis of toxoplasmosis rates in El Salvador
cities (Efron and Morris 1975) and the prediction of freshman grade
point averages based on data from a large group of law schools (Rubin
1980). Gelman et al. (1995) provide a good introduction to this tech-
nique. We describe hierarchical modeling in the context of our spe-
cific application.

The first step is to describe for each stock the uncertainty in the
estimate of the depensatory parameter. This is characterized by the
marginal likelihood ofq, p(xi |qi), wherexi is the data for theith stock.
We described the estimation of this function in the previous section.
With hierarchical modeling we can also account for the between-
stock variability inq. This is done by allowing theqis (the depensatory
parameter for each stock) to be random variables that follow a com-
mon distribution (Fig. 3). This distribution of theqis is what we
would like to estimate. The parameterq has a lower and upper bound
(0 to 1.55), but we are not sure what shape the distribution will take
on. Because the beta distribution is bounded below and above and can
take on a wide variety of symmetric and asymmetric shapes, it is a
natural choice for describing variability inq. (Because the domain of
the beta distribution is from 0 to 1 andq ranges from 0 to 1.55, we
adopted a scaledq, q′ = q/1.55, for the analysis. However, we will
refer toq′ asq to simplify the notation.):

(12) p(qi |α, β) = Beta(α, β) =
Γ(α + β)
Γ(α)Γ(β)

qi
α − 1(1 − qi)β − 1

Hereα andβ are called hyperparameters because they are the parame-
ters for a distribution of parameters.

By assuming that the stocks used in the analysis are a random
sample from the stocks of interest we can calculate the joint distribu-
tion for all of theqis givenα andβ as the product of the individual
distributions:

Fig. 1.Two spawner–recruit curves with the samed illustrating the
potential ambiguity ofd as a measure of depensation.
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(13) p(q
~

|α, β) = ∏
i=1

n

p(qi |α, β)

whereq
~

= (q1, q2, . . . ,qn). Similarly the joint likelihood of all of the
stocks can be written:

(14) p(x~ |q
~
) = ∏

i=1

n

p(xi |qi).

We can now use Bayes’ theorem to combine these two components
with a prior for the hyperparameters (the hyperprior; Appendix 3) to
produce a joint posterior distribution for all of the parameters:

(15) p(q
~
,α, β |x~) ∝ p(x~ |q

~
,α, β) p (q

~
,α, β) = p(x~ |q

~
) p(q

~
|α, β)

× p (α, β)

Note that, because the hyperparameters,α andβ, affectx~ , the data,
only through the parametersq

~
, we have:p (x~ |q

~
) = p (x~ |q

~
, α, β). Also

p (q
~
, α, β) = p (q

~
| α, β) p (α, β).

By integrating eq. 15 over theqis (Appendix 3) we get the mar-
ginal posterior probability distribution of the hyperparameters:

(16) p(α, β |x~) = ∫
q1

∫
q2

...∫
qn

p(q
~
, α, β |x~)dqn...dq2dq1.

This describes the uncertainty about the shape of the distribution of
q’s within the taxon given the data. Finally, multiplying this by the
conditional distributionp(q|α, β) and integrating overα andβ pro-
duces the distribution we are interested in:

(17) p(q) = ∫
α

∫
β

p(q|α, β)p(α, β)dβdα

When analyzing data for a new stock from the same taxonp(q) can be
used as an informative prior:

(18) p(q|xnew) ∝ p(q)p(xnew|q)
wherexnew is the data from the new stock.

The data
We use spawner–recruit data compiled by Myers et. al. (1995) from
114 stocks. The stocks include clupeiforms, gadiforms, pleuronecti-
forms, and salmoniforms and are located throughout the world. We
chose to include only stocks with spawner–recruit time series of 15 or
more years.

Fig. 2.The graphical definition ofR*, z, andq, whereq = n/m.

Fig. 3. In a fully Bayesian hierarchical model there are three levels of random variables: the hyperparametersα andβ, the parametersqis, and
the data setsxis.

Liermann and Hilborn 1979
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Results

Individual stocks
The likelihoods for individual stocks convincingly mirror the
uncertainty about depensation within a particular data set. For
example, there were very few data at low spawner levels for
many of the clupeiform and gadiform stocks, which tended to
produce broad uninformative likelihoods. This can be seen in

the Gulf of Finland herring stock, where there are no data at
low spawning stocks and the resulting profile is very flat re-
flecting the absence of information about depensation (Fig. 4).
In contrast, the northwestern Vancouver Island herring stock
has a number of years at low spawner levels producing a more
defined distribution. The Chilko Lake sockeye salmon popula-
tion has an even higher percentage of years with low spawner
levels yielding yet a narrower distribution. Because there are a

Fig. 4.Spawner–recruit data for four stocks with the best fit lines included and the corresponding likelihood profiles with beta fits (the lines).
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Fig. 5.The results of the two techniques for estimating the variability ofq within a taxon: (1) hierarchical modeling and (2) creating the
histogram of point estimates.

Liermann and Hilborn 1981
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number of low spawner years with relatively low recruit levels,
a significant proportion of the probability falls in the range of
depensation. In one of the three examples where Myers et al.
(1995) rejected in favor of depensation, the Prince William
Sound pink salmon data set results in a likelihood with most of
its mass well to the left ofq = 1. This is sensible given the
disproportionately low recruit levels at low spawner popula-
tions and the low variability.

The beta approximations to the profiles (Appendix 3) fit
relatively well. The sum of squares residual from the fit of the
beta distribution to the profile for the northwestern Vancouver
Island herring stock in Fig. 4 is 0.0033. The average sum of
squares residual for the total 114 stocks is 0.0019.

The hierarchical model
For each of the four taxa the distributions forq, resulting from
the hierarchical model, allowed for significant depensation.
The salmonid distribution shows the least degree of variability
with more than 95% of the probability betweenq = 0.5 and
q = 1.4. The other three taxa, clupeiforms, gadiforms, and
pleuronectiforms, have distributions with broad tails extending
over the entire range ofq. With the exception of the pleuronec-
tiforms all the distributions had modes to the right of one (hy-
percompensation). In the case of the pleuronectiforms, the
mode was between 0.8 and 0.9. For each of the four taxa the
hierarchical modeling distributions were more narrow than
those produced by histograms of the point estimates (Fig. 5).

The most difficult part of using hierarchical modeling on
this problem was constructing an “uninformative” prior forα
andβ (the hyperprior). The different priors we used resulted
in different posteriors. This sensitivity to the hyperprior illus-
trates the degree of uncertainty aboutq in the data. A more
informative data set would produce a posterior that is relatively
robust to changes in the prior.

Uniform priors onα andβ and ln(α) and ln(β) produced
posteriors with a narrow band of high probability extending
from low values ofα andβ to infinite values ofα andβ. This
band is defined by the linem = (α–1)/(α + β – 2) wherem is
the mode of the beta distribution with parametersα andβ. For
smallαs andβs the variance is high, whereas largeαs andβs
produce distributions with small variance. In the hierarchical
model the largeαs andβs are possible by forcing all theqs to
be very close to the modem. The result is an improper poste-
rior. A more sensible prior is the uniform distribution over the
mean,α/(α + β), and an approximation of the standard devia-
tion, 1/(α + β)1/2 (Gelman et al. 1995). These parameters are
more readily interpreted and are bounded above and below
when (α + β) is constrained to be greater than a positive con-
stant (we chose 1).

Discussion

By creating distributions for a depensatory parameter, we
found that there is a significant amount of uncertainty about
whether depensation exists and to what degree. Although, as
Myers et al. (1995) showed, hypothesis tests do not provide
convincing evidence for widespread depensation, the fact that
broad tails in the distributions for each of the four taxa extend
well into the depensatory range suggests that not allowing for
the possibility of depensation in fish population dynamics is a
poor assumption, given these data.

The results presented here can be used directly as prior
distributions forq in a Bayesian stock assessment. This is done
by first fitting a population dynamics model to data from a
stock of interest to create the joint likelihood function for the
model parameters. The posterior distribution for these parame-
ters can then be calculated using a prior (constructed in part
with theq distribution) and Bayes’ theorem. This can be used
to calculate the probability of different states of nature, which
in turn can be used in a decision analysis to calculate expected
biological and economic outcomes. By using an informative
prior in this process, depensation is allowed for without claim-
ing complete ignorance. For an example of this type of analysis
see McAllister et al. (1994). The usefulness of these distribu-
tions is not restricted to Bayesian analysis. They can also be
included as a likelihood component in a maximum likelihood
analysis.

The analysis of Myers et al. illustrates the general incom-
patibility between tests of hypotheses and decision making.
Bayesian methods provide a result that can be directly incor-
porated into decision making. Traditional hypothesis testing,
by not distinguishing between statistical and biological signifi-
cance and by not providing any indication of the relative like-
lihood of competing hypotheses, serves little purpose for
fishery managers.
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Appendix 1. The boundary of the z,q parameter space.

Thez,qparameter space, or range of possiblez,qcombinations,
can be calculated by solving forq in terms ofz. The parameter
q is defined as

(1-1) q =





a(0.1S∗)d

bd + (0.1S∗)d









a′(0.1S∗)
b′ + 0.1S∗





From eqs. 7 and 8 we havea′ andb′ in terms ofz andR*. We
do the same fora andb resulting in

(1-2) a =
R∗(1 − 0.5d)z

z − 0.5d

(1-3) b =




(0.5S∗)d(1 − z)
z− 0.5d





1/d

Substituting eqs. 7, 8, 1-2, and 1-3 into 1-1 and simplifying
gives

(1-4) q =

(1 − 0.5d) 



0.5
0.1

(1 − z) + (z− 0.5)


(1 − 0.5) 



0.5d

0.1d (1 − z) + (z− 0.5d)


Now we translate the constraints on the original parametersa,
b, andd to constraints onq andz. First we haveb > 0. Now
from eq. 1-3 we can see thatb > 0 as long as 0.5d < z< 1.
Second, we have the constrainta > 0. From eq. 1-2 this will be
true if z> 0.5d. So on the boundary,z = 0.5d. Solving ford, we
can substitute ln(z)/ln(0.5) for all theds in eq. 1-4. This gives
us a function forq in terms of onlyz:

(1-5) q =

0.1
ln(z)

ln(0.5) 



0.5
0.1

(1 − z) + (z − 0.5)


(1 − 0.5)z

Finally, we look at the constraintd > 0. Settingd = 0 in eq. 1-4
results in 0/0. To find the limit for eq. 1-4 asd approaches 0,
we use l’Hospital’s rule to arrive at

(1-6) q =

−ln(0.5) 



0.5
0.1

(1 − z) + (z − 0.5)


(1 − 0.5) 


ln 




0.5
0.1





(1 − z) − ln(0.5)


Plotting the three constraints inz,q space shows thatb > 0 and
a > 0 define thez,q parameter space (Fig. A1). The largest
possibleq can be found by setting the first derivative of eq. 1-5
equal to 0, solving forz, and evaluating eq. 1-5 at the resulting
z. This producesq(z = 0.786 34)= 1.550 49.

Fig. A1. Boundaries in thez,q parameter space correspond to
boundaries in thea,b,d parameter space. The curves fora = 0 andd
= 0 are defined by eqs. 1-5 and 1-6, respectively.
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Appendix 2. Computing the likelihood profiles.

Because the model we are using has only three parameters, it
is feasible to characterize the likelihood surface by evaluating
it at points on a three-dimensional grid. Because there is no
closed-form inverse function for the transform froma,b,d
space toR*, z,q space, we searched overa,b,d and recorded
the maximum likelihood for thea,b,d triples that fell in each
cell of az,q table.

Because we were dealing with a large number of data sets
with varying parameter ranges, it was not feasible to iterate
over a prespecified volume. Instead, the algorithm started at

the maximum-likelihood estimate and moved away until the
likelihood became negligibly small. This necessitates updating
the maximums of the parameters in the inner loops as the outer
loop parameters change.

By plotting the original parameters (a,b,d) against the new
parameters (R*, z,q) it became apparent that the mapping in-
volved logarithmiclike relationships. For this reason using ad-
ditive steps in the original parameter space led to increasingly
large (or small) steps in the transformed space. This problem
was reduced significantly by changing to multiplicative steps.

Appendix 3. The hierarchical modeling details.

Integrating over the qis
Integrating over all theqis numerically would be computation-
ally prohibitive because there are groups with over 30 stocks
(i.e., 30 variables over which to integrate). We sidestep this
problem by scaling each likelihood profile so that it integrates
to one and then fitting a beta distribution to it using least
squares. In this way we replace each data setxi with the pa-
rameters of a beta distribution (ui, vi):

(3-1) p(xi |qi) ≈ p(ui, vi |qi) =
Γ(ui + vi)
Γ(ui)Γ(vi)

qi
ui − 1 (1 − qi)vi − 1

The joint posterior probability distribution of the parameters
and hyperparameters becomes

p(q
~
, α, β |u~ , v~) = ∏

i=1

n

p(qi |α, β)

× ∏
i=1

n

p(ui, vi |qi) p (α, β)

(3-2) ≈ ∏
i=1

n




Γ(α + β)
Γ(α)Γ(β)

qi
α − 1 (1 − qi)β − 1



× ∏
i=1

n




Γ (ui + vi)
Γ(ui)Γ(vi)

qi
ui − 1(1 − qi)vi − 1





× p(α, β)

This simplifies to

(3-3)
Γ(α + β)
Γ(α)Γ(β) ∏

i=1

n




Γ (ui + vi)
Γ(ui)Γ(vi)

qi
ui + α − 2(1 − qi)vi + β − 2





× p(α, β)
Using the fact that all distributions integrate to one, the integral
over allqs can be calculated analytically to produce the mar-
ginal posterior probability distribution for the hyperparame-
ters:

(3-4) p(α, β |x~) ∝ ∏
i=1

n




Γ (α + β)Γ(α + ui − 1)Γ(β + vi − 1)
Γ(α)Γ(β)Γ(α + ui + β + vi − 2)





× p(α, β)

Choosing a hyperprior
Choosing a prior forα andβ in eq. 20 is not trivial. A uniform
prior on α andβ results in an improper posterior. This is be-
cause very large values ofα andβ yield a beta distribution with
a very small variance. If all theqs are set to the same value,m,
there are highly probable combinations ofα andβ (i.e., all α
andβ such that the mode (α – 1)/(α + β – 2) equalsm) extend-
ing to infinity. A sensible alternative is to use a uniform prior
on the mean,α/(α + β), and a measure of variability 1/(α +
β)1/2 (Gelman et al. 1995, p. 131) In the original parameters,
α andβ, this translates to the distribution:

(3-5) p(α, β) ∝ (α + β)−5/2

Applying this hyperprior produces a proper posterior.
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