CU - STREAM CROSSING UPGRADING

Gra	nt #: Project title:		
Dat	e : Evaluator: Site ID:	page _	of
	Project Feature Number		
	Feature Type Code		
Stream Crossing	1. Is the new or upgraded crossing structure performing as designed?		
	a. Structure condition: Excl, Good, Fair, Poor, Fail		
	b. Problems: ALN, APP, COR, CRS, INL, LNG, OTL, OVT, PIP, PLG, NTG,		
	SLA, UNS, WSH, NON, OTH		
	2. If an objective, was the stream crossing "storm-proofed" (Y or A to a-k)?		
	a. Is the crossing designed to pass at least a 100-yr flow?		
	b. If an undersized culvert in deep fill, is there an overflow culvert?		
	c. Is the crossing constructed or treated to eliminate diversion potential?		
	d. Does the crossing inlet have a low plug potential?		
	e. Is the crossing outlet protected from erosion?		
	<i>f.</i> Are the culvert inlet, outlet and bottom open and in sound condition?		
	g. If a bridge, are bridge abutments stable and not restricting flow?		
	h. Is the crossing fill stable?		
	i. Are road surfaces/attenes atsconnected to the greatest extent possible?		
	J. Length of roda surface of all charaining to this crossing: (JI)		
	³ Has there been sediment delivery from the crossing since implementation?		
Sediment Delivery	a Sediment sources: SEF FLS IAN CUT SRI NRI FFI SCW DIV		
	RRG, NRG, SBE, OTH		
	b. Estimate delivery since implementation: (cy)		
	4. Is there potential for sediment delivery from the crossing in the next 10 yrs?		
	a. Erosion potential: LOW, MOD/LOW, MOD, MOD/HIG, or HIG		
	b. Estimate future delivery: (cy/10 yr)		
	5. If an objective, was potential for future sediment delivery reduced?		
	6. Have spoils delivered sediment to streams?		
	a. Estimated delivery from spoils since implementation: (cy)		
Channel	7. Does any aggraded sediment upstream of the crossing remain?		
	8. Has stream channel incision/scour downstream of the crossing stabilized?		
	9. Are there other stream channel problems in the vicinity of the crossing?		
	10. If an objective, were localized channel problems corrected or stabilized?		
	11. Were there unintended effects on the stream channel? If Y, comment.		
Banks	12. Is there streambank erosion or instability in the vicinity of the crossing?		
	a. Locations: UPS, DNS, WIN and LBK, RBK		
	b. Apparent cause: BAR, CNR, EMG, GRZ, HYD, UND, USG, OTH		
	13. If an objective, was streambank instability and/or bank erosion reduced?		
	14. were there unintended effects on streambanks? If Y, comment.		
Rating	15. reature Effectiveness Kating: Excl, Good, Fair, Poor, Fail	+ - + - + -	
	10. Does uns feature need: DEC, ENH, MINT, KEP, NON, OTH		
J.	17. Are additional restoration deathents recommended at this location?		
Con			